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Abstract 21 
Background: Puberty depicts a period of profound and multifactorial changes ranging from social to 22 
biological factors. While brain development in youths has been studied mostly from an age perspective, 23 
recent evidence suggests that pubertal measures may be more sensitive to study adolescent 24 
neurodevelopment, however, studies on pubertal timing in relation to brain development are still scarce.   25 
Methods: We investigated if pre- vs. post-menarche status can be classified using machine learning on 26 
cortical and subcortical structural magnetic resonance imaging (MRI) data from strictly age-matched 27 
adolescent females from the Adolescent Brain Cognitive Development (ABCD) cohort. For comparison of 28 
the identified menarche-related patterns to age-related patterns of neurodevelopment, we trained a brain age 29 
prediction model on data from the Philadelphia Neurodevelopmental Cohort and applied it to the same 30 
ABCD data, yielding differences between predicted and chronological age referred to as brain age gaps. We 31 
tested the sensitivity of both these frameworks to measures of pubertal maturation, specifically age at 32 
menarche and puberty status.  33 
Results: The machine learning model achieved moderate but statistically significant accuracy in the 34 
menarche classification task, yielding for each subject a class probability ranging from 0 (pre-) to 1 (post- 35 
menarche). Comparison to brain age predictions revealed shared and distinct patterns of neurodevelopment 36 
captured by both approaches. Continuous menarche class probabilities were positively associated with brain 37 
age gaps, but only the menarche class probabilities – not the brain age gaps – were associated with age at 38 
menarche.  39 
Conclusions: This study demonstrates the use of a machine learning model to classify menarche status from 40 
structural MRI data while accounting for age-related neurodevelopment. Given its sensitivity towards 41 
measures of puberty timing, our work suggests that menarche class probabilities may be developed toward 42 
an objective brain-based marker of pubertal development. 43 
 44 
 45 
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Highlights 49 
ü We classified pre- vs. post-menarche status in adolescent females from structural brain imaging data  50 
ü We compared class probabilities to brain-age predictions to disentangle puberty- vs. age-related patterns 51 

of brain development 52 
ü The derived continuous brain-based menarche class probabilities captured shared but also unique 53 

variations of adolescent neurodevelopment, and were associated with pubertal timing and status 54 

 55 

 56 

Plain English Summary  57 
Puberty is a period of substantial changes in the life of youths, and these include profound brain changes. 58 
Most studies have investigated age related changes in brain development, recent work however suggests 59 
that looking at brain development through the lens of pubertal development can provide additional insights 60 
beyond age effects. We here analyzed brain imaging data from a group of same-aged adolescent girls from 61 
the Adolescent Brain Cognitive Development study. Our goal was to investigate if we could determine from 62 
brain images whether a girl had started her menstrual period (menarche) or not, and we used machine 63 
learning to classify between them. This machine learning model does not just return a “yes/no” decision, 64 
but also returns a number between 0 and 1 indicating a probability to be pre- (0) or post- (1) menarche.  To 65 
rule out, that our approach only maps age-related development, we selected a strictly age-matched sample 66 
of girls and compared our classification model to a brain age model trained on independent individuals. Our 67 
model classified between pre- and post-menarche with moderate accuracy. The obtained class probability 68 
was partly related to age-related brain development, but only the probability was significantly associated 69 
with pubertal timing (age at menarche). In summary, our study uses a machine learning model to estimate 70 
whether a girl has reached menarche based on her brain structure. This approach offers new insights into 71 
the connection between puberty and brain development and might serve as an objective way to assess 72 
pubertal timing from imaging data. 73 
 74 
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Background 76 

Adolescence is a time of profound changes to the body and the brain, with substantial impact on an 77 
individual’s behaviour, emotions, and self-perception, among other things [1]. This transition includes 78 
puberty, the time period during which an individual acquires the capability for sexual reproduction [2]. The 79 
latter is characterised by an interplay of gonadotropin-releasing hormone, gonadotropins such as follicle-80 
stimulating hormone and luteinizing hormone, and sex hormones such as androgens, estrogens and 81 
progesterones. Together, they not only drive changes of the body, but also directly act on the brain [3]. 82 
Studies using magnetic resonance imaging (MRI) to investigate human brain anatomy have illustrated that 83 
the brain undergoes significant changes during adolescence described by a complex yet orchestrated 84 
interplay of progressive (e.g., myelination) and regressive (e.g., pruning) neuronal processes [4]. While 85 
brain development in youths has been commonly investigated through the lens of age-related brain 86 
maturation, there has been an increasing number of studies focusing on neurodevelopment mediated by 87 
pubertal processes in youth [5–7]. These studies suggest that puberty-related brain development cannot be 88 
simply explained by age trajectories but rather goes beyond the effects of growing older [7–9] and 89 
consequently that pubertal development may thus be a more sensitive measure to study neurodevelopment 90 
in youths as compared to age [6].   91 

A recent systematic review on the relationship between pubertal and structural brain development 92 
in human adolescents describes brain wide reductions in cortical grey matter thickness and volume 93 
associated with progressed pubertal maturation from both cross-sectional and longitudinal studies [7]. 94 
Findings suggest that these effects are global across the brain with frontal regions showing the most 95 
pronounced effects [7,10]. Alongside cortical changes, advanced pubertal maturation is also associated with 96 
subcortical brain development, in particular the amygdala and hippocampus [11]. Across studies these 97 
effects are subject to sex differences, which not only manifest in varying effect sizes but also sometimes in 98 
opposing effect directions in males and females [5,12].  99 

While methodological choices, such as accounting for age in statistical models, may factor into the 100 
diverging observations, these differences may also stem from variability that is inherent to pubertal 101 
maturation [13]. Although all individuals pass through the same pubertal stages, there is large variability 102 
regarding pubertal timing and the speed of progression [14,15]. Pubertal timing describes the time point at 103 
which an individual reaches certain pubertal milestones in comparison to their peers of the same age [16]. 104 
While pubertal timing appears to be highly heritable [17,18], recent evidence is also linking variation in 105 
pubertal timing to environmental factors, such as nutrition intake, socioeconomic status or obesity [14]. This 106 
malleability may consequently lead to pubertal onsets that deviate in their timing and individuals thus 107 
experiencing early or late pubertal onsets [5]. Interestingly these deviations in pubertal timing appear to be 108 
associated with physical and psychiatric health issues [5,19]. 109 
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Many studies over the years have shown an association between pubertal timing and 110 
psychopathology [20–22]. In boys, evidence concerning the effect of pubertal timing on health risks is 111 
inconsistent and could be best described by the ‘off-time hypothesis’, that is either very early or very late 112 
onset [23]. In contrast, evidence for the association between health risk and puberty timing in girls has been 113 
well-replicated, converging on the so-called ‘early timing hypothesis’, which posits that early maturing girls 114 
(most often assessed using age at menarche as a proxy measure, i.e. age at which individuals experience 115 
their first menstruation) are more likely to experience adverse mental health outcomes than their on time 116 
and late maturing peers [24,25]. Therefore, pubertal timing and its malleability depict a critical tipping point 117 
which may set the course for later vulnerability and worse (mental) health outcome.  118 

While most puberty-related imaging studies to date have focused on investigating the association 119 
between the brain and puberty status (i.e., the quantification of pubertal characteristics indicating a more or 120 
less advanced maturation akin to the transition through pubertal stages), imaging studies on pubertal timing 121 
– despite its importance for emerging (mental) health risks – are to the best of our knowledge scarce. The 122 
current study investigated the impact of pubertal timing on brain maturation, deploying age-matching to 123 
control for age-related neurodevelopment. Using structural imaging data from the Adolescent Brain 124 
Cognitive Development cohort (ABCD; [26]) we aimed at classifying pre- and post-menarcheal females 125 
using a machine learning model. To validate the sensitivity of our approach and to test the biological validity 126 
of the obtained class probabilities, we drew comparison to a brain age prediction framework, investigating 127 
to what extent both approaches capture the same or distinct neurodevelopmental variance in the female 128 
adolescent brain.  129 
 130 
Methods  131 

Sample Descriptions 132 
ABCD: For the menarche classification and as the test sample for the age prediction model, we included 133 
data of N = 3248 female (henceforth referring to individuals assigned female at birth; mean age = 11.91 134 
years, SD = 0.65) participants of the Adolescent Brain Cognitive Development study 2-year follow up data 135 
[26]. Study protocols have been approved by either local institutional review boards (IRB) or by reliance 136 
agreements with the central IRB at University of California. For each study participant, structural brain 137 
imaging features were obtained from the tabulated imaging data provided by the ABCD release 4.0 [27]. 138 
The 2-year follow up data was chosen because it offers the most balanced distribution of pre- and post-139 
menarcheal individuals. Subjects with missing MRI or missing relevant demographic data were excluded. 140 
Furthermore, those who did not answer either ‘yes’ or ‘no’ to the question ‘Have you begun to menstruate 141 
(started to have your period)?’ from the ABCD Youth Pubertal Development Scale and Menstrual Cycle 142 
Survey History (PDMS) [28], or whose imaging data quality was deemed too low for inclusion by two 143 
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ABCD researchers, were excluded. From the PDMS data we determined pubertal status ranging from 144 
prepubertal to postpubertal. In brief, we summed pubic hair growth and breast development scores and 145 
incorporated information about menarche and converted resulting score to a pubertal status category 146 
according to a scheme provided by the ABCD study (variable: pds_p_ss_female_category). Pubertal status 147 
was calculated from youth-reported as well as caregiver-reported data to account for differences in the 148 
perception of pubertal maturation.  149 
 150 
PNC: We used data from N= 786 female participants (mean age = 15.25 years, SD = 3.65) of the 151 
Philadelphia Neurodevelopmental Cohort (PNC; [29]) as an independent training sample to derive an age 152 
prediction model. In PNC, all study procedures were approved by the respective institutional review boards. 153 
We processed the T1 MRI images using FreeSurfer (version 7.1.1) [30] and derived the same cortical and 154 
subcortical features as used for the ABCD cohort. Euler numbers were used as a proxy of image quality for 155 
quality control [31]. Subjects with missing MRI, missing demographic data, a Euler number more than three 156 
standard deviations below the mean, or those with a medical rating of 3 or higher (severe medical condition) 157 
were excluded. 158 
 159 
MRI data description 160 
For each subject in both data sets we included a total number of 234 anatomical MRI features. Specifically, 161 
we used 30 subcortical features as well as, for each hemisphere, 34 volume, 34 thickness, and 34 area cortical 162 
features matching the Desikan-Killiany atlas [32] (see Supplementary Table S1). Of note, since ABCD data 163 
was acquired across 21 study sites, we performed batch harmonization with neuroCombat (v.0.2.12) [33] 164 
for each individual modality and training and testing sets independently. 165 
  166 
Statistical Analyses 167 
All statistical analyses were performed in python (v.3.10.5) [34]. Basic data handling was performed with 168 
numpy (v.1.23.2) [35] and pandas (v.1.4.3) [36,37].  169 
 170 
Menarche Classification: For the classification of pre- and post-menarche individuals in the ABCD sample, 171 
a linear discriminant analysis (LDA) classification model was trained using scikit-learn (version 1.1.1; [38]. 172 
For classification we split the full ABCD sample (N=3248 females) into a training and an independent test 173 
set by randomly sampling 20% of the data into the test set. The test sample consisted of N = 650 participants 174 
(pre-menarche: N = 419, mean age = 11.68 years, SD = 0.56; post-menarche: N = 231, mean age = 12.32 175 
years, SD = 0.59). Furthermore, to avoid bias in the training process, propensity score matching [39] was 176 
performed in the training data to achieve equal distributions of age and MRI scanner in the pre- and post-177 
menarche groups, as well as equal group sizes. After age-matching, there was no statistical age difference 178 
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(two-sided independent samples t-test, p = 0.968) between the pre- and post-menarche groups in the training 179 
dataset (pre-menarche: N = 775, mean age = 12.09 years, SD = 0.58; post-menarche: N = 775, mean age = 180 
12.09 years, SD = 0.58). Participants’ responses to the question ‘Have you begun to menstruate (started to 181 
have your period)?’ from the ABCD Youth Pubertal Development Scale and Menstrual Cycle Survey 182 
History (PDMS) were used as target labels for the classification algorithm. Responses were encoded 183 
numerically in the original survey as (4: Yes; 1: No) and relabelled to 0 and 1.  184 

Train- and test set features were independently transformed into z-scores. Model tuning was 185 
performed via scikit-learn’s GridSearchCV. The hyperparameters explored in the grid search included the 186 
'solver' parameter with options ['svd', 'lsqr', 'eigen'] and the 'shrinkage' parameter with values [None, 'auto', 187 
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. The performance metric used for evaluation was accuracy and 188 
a 10-fold cross-validation approach was employed to assess the model's performance during hyperparameter 189 

tuning. For the final model, an LDA model was fitted to the entire training dataset using the selected 190 

hyperparameters (solver: least squares solution, shrinkage: 0.8). A combined approach of 5-fold cross 191 
validation and a permutation test with 1000 permutations was employed to assess classifier performance. 192 
To assess the model’s performance on unseen data, the menarche status of participants from a held-out test 193 
sample of ABCD subjects was classified. An accuracy score and a confusion matrix were calculated. 194 
Furthermore, a permutation test with 1000 permutations was conducted to confirm that the accuracy of the 195 
classifier was significantly higher than chance. The estimated class probabilities of the withheld test sample 196 
were extracted from the LDA model to further assess the biological validity of the classification.  197 

 198 
Brain age prediction: The python package of the XGBoost (v1.6.1) library was used [40] to predict 199 
chronological age in months from the same 235 sMRI features as those used in the menarche classification. 200 
Model tuning was again performed via scikit-learn’s GridSearchCV. The hyperparameters explored in the 201 
grid search were 'max_depth': [3,6,9], 'max_leaves': [0,2,5,10], ’learning_rate': [0.001,0.01,0.1,0.5,1,3], 202 
'min_child_weight': [1,10,100] and 'n_estimators': [100, 500, 1000]. The performance metric used for 203 
evaluation was mean squared error (mse) and a 5-fold cross-validation approach was employed to assess 204 
the model's performance during hyperparameter tuning. The final model was fitted to the entire training 205 
dataset using the determined hyperparameters ('learning_rate': 0.01, 'max_depth': 6, 'max_leaves': 0, 206 
'min_child_weight': 10, ‘subsample’: 0.5, ‘num_rounds’: 1000). Again, a combined approach of 5-fold cross 207 
validation and a permutation test with 1000 permutations was employed to assess classifier performance via 208 
root-MSE (RMSE) and mean absolute error (MAE). The model’s performance on unseen data was tested 209 
by applying it to the ABCD withheld test sample described above. The rmse and MAE were calculated and 210 
the brain age gap (difference between predicted brain age and chronological age; BAG) was calculated for 211 
further analysis.  212 
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Association Analyses 213 
Association analyses were performed with the ordinary least squares (OLS) regression function of the 214 
Python module statsmodels (v0.13.2) [41]. In line with previous studies [42,43], a residualised BAG was 215 
produced by regressing age and scanning site on BAG. Menarche class probabilities were residualised in 216 
the same way to account for age and scanning site. OLS regression was performed to test the association of 217 
residualised BAG and residualised menarche class probabilities. Finally, we tested for associations between 218 
age at menarche and residualised menarche class probabilities, as well as age at menarche and residualised 219 
BAG using OLS. Likewise, we tested for association between pubertal status and menarche class 220 
probability, as well as BAG, respectively. All association analyses were repeated accounting for potential 221 
effects of sociodemographic status (SES), body mass index (BMI) and race / ethnicity. In brief, BMI was 222 
calculated by averaging two height and weight measurements respectively and using the formula ‘height 223 
(lb) / height (in) x 703’. Ethnicity was encoded in 5 levels: White, Black, Hispanic, Asian, other (multiracial 224 
or ethnicity with too few members in the sample). Ordinal SES variables were transformed through rank-225 
based inverse normal transformation and averaged, producing a single SES variable. Further details on the 226 
covariates and its calculations can be found in Kraft et al. [13]. 227 
 228 

Results  229 

We first tested if it was possible to classify from anatomical MRI between same-aged pre- and post-230 
menarcheal girls. Our classifier trained in a sample of age-matched groups of females pre- and post-231 
menarche performed with an accuracy of 60.00% in 5-fold cross validation (p < 0.001 across 1000 232 
permutations; Fig. 1a). Applied to a held-out test set of 419 pre- and 231 post-menarcheal girls, the classifier 233 
performed equally well (61.23% accuracy, Fig. 1b, c).  234 
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 235 

Figure 1: Menarche can be classified from brain imaging data. a) Confusion matrix of 5-fold cross validation in training data; b) 236 
Confusion matrix of classification model applied to hold-out test data; c) ROC curves of 5-fold cross validation and hold-out test 237 
data classification.  238 

Figure 2a depicts the class probability obtained from the pre-/post-menarche classifier for each individual 239 
in the independent ABCD test sample. In an association analysis in the post-menarche group, we found an 240 
association of derived class probabilities and age at menarche. Specifically, individuals with an earlier 241 
menarche tend to be classified as post-menarche with a higher confidence (adj. 𝑅2 = 0.1.121, F(26, 188) = 242 
2.129,  t = -2.714, p = 0.007), supporting biological sensitivity of the class probabilities beyond the binary 243 
pre-/post distinction (Figure 2b). We furthermore found a positive association between menarche class 244 
probability and pubertal status (youth-reported PDMS: adj. 𝑅2 = 0.020, F(1, 629) = 13.94, t = 3.734, p < 245 
0.001, caregiver-reported PDMS: : adj. 𝑅2 = 0.022, F(1, 616) = 14.76, t = 3.842, p < 0.001; Figure 3c), 246 
further corroborating biological sensitivity. Of note, both associations (age at menarche, puberty status) 247 
were diminished when incorporating BMI, SES and race/ethnicity as confound factors (Supplementary 248 
Table S2), highlighting the complex relationship between these factors, puberty and the brain. 249 
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 250 

Figure 2: Menarche class probabilities are associated with measures of pubertal timing and status. a) Density plot of post-menarche 251 
class probabilities of the pre- and post-menarche groups respectively. Class probability of 1 signifies a 100% confident 252 
classification as post-menarche, class probability of 0 signifies a 100% confident classification as pre-menarche. b) Association of 253 
age at menarche and menarche class probability controlled for age and scanner. c) Distribution of class probabilities (age- and 254 
scanner residualised) by puberty category (youth-reported).  255 

Pubertal development and age are intertwined. Our classifier distinguished between pre- and post-256 
menarcheal females of same age, thereby essentially distinguishing earlier from later pubertal timing relative 257 
to age-matched peers. We further sought to investigate whether and to which degree the menarche class 258 
probabilities relate to brain age patterns. Our brain age prediction model performed with an RMSE of 2.3 259 
years and a MAE of 1.8 years (5-fold cross validation) in the PNC sample, and permutation tests indicating 260 
significant age prediction (p<0.001, 1000 permutations). We next applied the brain age prediction model to 261 
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the same independent ABCD test sample as used as test sample in the menarche classification. Here, the 262 
prediction model performed with an RMSE of 1.8 years and a MAE of 1.6 years (Figure 3a). From the 263 
predicted brain ages, we calculated the brain age gap (difference between predicted brain age and 264 
chronological age; BAG). These gaps were significantly associated with menarche class probabilities (Fig. 265 
3b), as observed from a linear model controlling for the effect of age and scanner (adj. 𝑅2 = 0.126, F(1, 648) 266 
= 94.51, t = 9.722, p < 0.001). This association stayed significant when including BMI, SES, and race / 267 
ethnicity as covariates in the analysis (Supplementary Table S2). BAG was positively associated with 268 
pubertal status (youth-reported PDMS: adj. 𝑅2 = 0.008, F(1, 629) = 5.826, t = 2.414, p = 0.016, caregiver-269 
reported PDMS: adj. 𝑅2 = 0.009, F(1, 616) = 6.841, t = 2.616, p = 0.009). This effect was descriptively 270 
smaller as compared to the class probability effect and also diminshed after including both variables into a 271 
single model, in which only class probabilities remained signifcantly associated with pubertal status (t = 272 
3.076, p = 0.002). Interestingly, whereas the menarche class probability was weakly associated with age at 273 
menarche as reported above, the brain age gaps were not. Including age at menarche in the model showed 274 
no correlation of BAG and age at menarche (adj. 𝑅2 = 0.366, F(26, 188) = 5.760, t = -1.748, p = 0.082), 275 
lending support to the idea that the menarche classification model picks up biological variability additional 276 
to that revealed by a brain age model.  277 

 278 

 279 

Figure 3: Comparison of menarche classification to a brain age prediction framework. a) Predicted age by age. b) BAGs 280 
residualised for age and scanner by menarche class probabilities residualised for age and scanner. 281 

 282 

 283 
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Discussion 284 

The present study aimed at investigating whether structural MRI data can be used to correctly classify pre- 285 
vs post-menarche status in adolescent females, thus shedding light on the neurodevelopment associated with 286 
pubertal timing. For this, we successfully trained a machine learning model for the classification of pre- and 287 
post-menarcheal females in the ABCD cohort while strictly controlling for age-related neurodevelopment 288 
through age-matching. To further disentangle age- vs. puberty-related patterns in neurodevelopment, we 289 
performed subsequent comparison to a brain age prediction framework that predicts chronological age from 290 
MRI, revealing shared and distinct variance in the two machine learning approaches. Finally, we 291 
investigated if the class probabilities obtained from menarche classification render a continuous biological 292 
marker of pubertal timing that can add relevant information beyond the pre- vs post-menarche dichotomy. 293 
Indeed, our results indicate that the probabilities are sensitive to other key variables of pubertal maturation, 294 
in particular age at menarche and pubertal status.  295 
 296 
Menarche classification  297 
We argue that leveraging a multivariate, machine learning model helps to integrate information from a 298 
collection of brain regions into a single score, which eventually may overcome the inherent complexity of 299 
modelling puberty in a univariate fashion and its accompanying statistical considerations [7,44–46] (see 300 
[44] for a conceptually similar approach of integrating various sources into a single marker representing 301 
pubertal timing). By doing so, our menarche classification model performed with moderate yet significantly 302 
above chance accuracy during cross-validation and when applied to a withheld test sample. To rule out that 303 
this classification solely mimics a separation of a younger vs. older subgroup of females, we performed a 304 
strict age matching prior to model training. Consequently, our results suggest that there is menarche related 305 
neuronal variance detectable in structural MRI data. This aligns well with endocrinological trajectories, 306 
which are characterized by a substantial, year-long increase in estradiol levels prior to menarche [47] and 307 
related findings that estrogens affect neuroplasticity [6,48,49].  308 
 309 
Validation of derived class probabilities 310 
Given the close relationship between pubertal- and age-related neurodevelopment we contrasted the results 311 
of our classification model to outcomes of a brain age prediction framework. This approach aimed at 312 
exploring the degree to which our derived class probabilities and brain-age estimations capture similar or 313 
distinct patterns of neurodevelopmental variation in the adolescent female brain. Testing the brain age 314 
prediction model on the above mentioned held-out test sample from the ABCD cohort, we observed highly 315 
significant and accurate model performance comparable to results of previous studies modelling brain age 316 
in the ABCD cohort [6]. Our derived menarche class probabilities were positively related to brain age gaps 317 
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(BAGs, i.e., the difference between someone’s brain and chronological age), matching earlier results that 318 
associated brain age with pubertal status (e.g., [6]) and pubertal timing (e.g., [44]). Individuals with higher 319 
class probabilities (i.e., a higher probability of being classified as post-menarche) also had higher brain-age 320 
gaps (i.e., an indication of a more mature brain in relation to their chronological ages), suggesting that both 321 
approaches capture variations in adolescent brain development related to advanced brain maturation. Our 322 
work however extends previous findings, by showing that our menarche classification approach seems to 323 
be able to better exploit traces of pubertal timing in the brain that are specific to puberty and go beyond the 324 
traces of age-related neurodevelopment that are captured by a brain age prediction framework. This finding 325 
is in line with previous suggestions that puberty related processes may be a more sensitive measure to 326 
investigate adolescent brain development compared to age-related neurodevelopment [6–9].   327 
 328 
To prove the additional benefit of studying neurodevelopment from a puberty-focused perspective and to 329 
further substantiate the biological validity and capability of the class probabilities of capturing meaningful 330 
biological variance, we furthermore aimed at investigating the probabilities associations with puberty-331 
related measurements. In the ABCD study, puberty is assessed by different means, ranging from hormonal 332 
measurements to self-reported evaluation of perceived pubertal maturation (see [50]. The latter allows to 333 
localize individuals in different pubertal stages or categories ranging from pre- to post-pubertal. As 334 
described before, for females the score is derived by summing over ratings of key physical changes, such as 335 
breast development and pubic hair growth, but also the (non-) completion of menarche [14]. Since menarche 336 
is directly incorporated in the pubertal category scores, we additionally showed that higher pubertal category 337 
scores (thus indicating a later pubertal stage) are associated with higher class probabilities, which serves as 338 
an important sanity check for our proposed approach. Higher BAGs were also significantly associated with 339 
higher pubertal category scores, however with a descriptively smaller effect sized compared to the class 340 
probabilities. Furthermore, after including both variables into a model, only the effect of class probabilities 341 
remained significant. Furthermore, we show that post-menarche class probabilities were weakly yet 342 
significantly associated with age at menarche. In contrast, the association between BAG and age at menarche 343 
was not significant. This suggests that there are traces of pubertal timing in the brain that go beyond patterns 344 
of age-related brain development, and that these traces can be more successfully exploited by our proposed 345 
menarche classification model than by the brain age prediction framework. Interestingly, the pattern of 346 
higher class probabilities in females that underwent early or earlier menarche, resonates with the hypothesis 347 
that the brain might be more susceptible to the hormonal influences of puberty at a younger age and that, 348 
therefore, individuals who experience an earlier menarche undergo the increase of gonadal hormones at a 349 
time when their brain is relatively more sensitive to their effects on neuroplasticity [51,52]. Of note, after 350 
adding SES, race/ethnicity, and BMI as covariates into our analyses, the association between the class 351 
probabilities and age at menarche diminished. This observation matches previous reports about the close 352 
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link between pubertal processes, for example pubertal timing (e.g., operationalized as age at menarche) [53] 353 
and these covariates (e.g., [54–56]). Importantly, associations between the aforementioned covariates and 354 
puberty were also replicated for ABCD 2-year follow up data, which we used in the current study [14]. 355 
While we consider it important to understand the associations with these covariates, their interplay is 356 
difficult to disentangle with the data at hand, given the relationship between pubertal timing and these 357 
variables. We argue that these results rather warrant further systematic investigation of the interplay between 358 
all factors in the equation.  359 
 360 
Methodological considerations and future directions 361 
Potential limitations may stem from the fact that we limited our machine learning model to structural 362 
imaging data from cortical and subcortical regions. While this decision resonates with well-replicated 363 
findings of cortical and subcortical grey matter changes during puberty [7], integrating additional imaging 364 
features, such as white matter measures, may help in a more holistic investigation of pubertal timing. While 365 
myelination plays a crucial role in shaping the human brain during adolescence, findings regarding pubertal 366 
maturation appear to be either mixed regarding different measures of white matter (e.g., [5,7]) or lack 367 
previous investigations. Furthermore, while we followed a common approach of training our brain-age 368 
prediction model in an independent dataset (see e.g., [6,42]) and applying it to our target sample in the 369 
ABCD cohort, recent work from Ray and colleagues [57] suggests that refined brain age models (i.e., a 370 
combination of pre-trained models with subsequent finetuning on a fraction of the target data) may improve 371 
model performance and thus also downstream analyses. Lastly, our work focuses on a proof of concept on 372 
the 2-year follow up data of the ABCD study. With additional longitudinal data becoming available through 373 
upcoming releases, the ABCD study depicts an unprecedented resource to validate our model and proof its 374 
usability, since more and more female will eventually undergo their menarche.  375 
 376 
Perspective and Significance 377 
This work may be seen as a proof of principle that pubertal timing can be classified from brain imaging 378 
data. Previous studies that have used age focused approaches like brain age prediction frameworks have 379 
found associations with pubertal measures [44], yet our results suggest that grounding the modelling in 380 
puberty data directly may yield brain based markers that are even more sensitive to pubertal status and 381 
timing. Future studies may thus further explore similar approaches toward the development of brain-based 382 
puberty markers that may be useful in downstream analyses in developmental neuroscience.  383 
 384 
Conclusion 385 
We introduced a machine learning approach that classifies menarche status of adolescent females from their 386 
cortical and subcortical structural MRI data. The derived continuous brain-based class probabilities captured 387 
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shared but also unique variations of adolescent neurodevelopment when compared to a brain-age prediction 388 
model. Taken together, our results suggest that there are markers of menarche in the brain that can be 389 
formalized into a continuous class probability, which might in the future be developed toward an objective 390 
brain-based marker of pubertal timing.  391 
 392 
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