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KEY POINTS: 33 

Question: Can pre-operative patient characteristics be used to develop a formal system 34 

to accurately estimate, rank, and predict the relative short-term mortality of waitlisted 35 

heart transplant patients?  36 

 37 

Findings: Using twelve patient attributes, we derived three linear regression equations 38 

to accurately predict the 30-day, 90-day, and 1-year mortality of waitlisted heart 39 

transplant patients. We developed and calibrated a seven-tiered risk index for each 40 

model that was 99% correlated to the observed mortality rate. Using several 41 

independent validation methods, we achieved extreme sensitivity (>98%) in ordinally 42 

ranking patient groups who were more likely to survive 30 days on the waitlist. Model 43 

performance was measured using the area under the receiver operating characteristic 44 

(ROC) curve. Using six interaction terms, the area under the ROC curve was 96.4% 45 

(30-day), 90.4% (90-day), and 78% (1-year). 46 

 47 

Meaning: Our models accurately discriminate among patient subgroups who are more 48 

likely to die while waitlisted. Because our tiered ranking system is simple, extremely 49 

sensitive, and well calibrated, it is ideal for prioritizing waitlisted heart transplant patients 50 

based on a well-defined medical urgency score. These models are generalized and 51 

therefore extensible to defining medical urgency in larger patient populations 52 

experiencing end-stage heart failure. 53 

 54 

 55 
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ABSTRACT:  56 

Importance: Although the Organ Procurement and Transplantation network provides 57 

structured policies and guidance for waitlisted cardiac transplant patients, the heart 58 

transplantation community lacks a mathematical model that can accurately estimate the 59 

short-term risk of death associated with being waitlisted. Importantly, the CHARM score 60 

provides a risk management and ranking system for patients based on a well-defined 61 

and sensitive medical urgency metric.  62 

Objective: We had three primary objectives in completing this study. First, to increase 63 

relevance and applicability, we selected patient attributes that were clinically justified 64 

and readily available. Second, we designed and implemented an intuitive, formal 65 

system that accurately defined the relative risk of death while being waitlisted at 30-day, 66 

90-day, and 1-year censoring periods. Third, we developed and validated a medical 67 

urgency metric that is intuitive, practical, and can be implemented nationally.  68 

Design: We present a multivariable, prognostic model and risk management strategy 69 

for adult waitlisted heart transplant patients (N=1,965) from the Scientific Registry of 70 

Transplant Recipients (SRTR) database that were waitlisted from January 1, 2008, to 71 

September 2, 2022. To independently validate each model, we randomly split this 72 

cohort into a discovery set (N=1,174) and validation set (N=784). Twelve independent 73 

patient attributes were selected, and three linear regression formulas were derived to 74 

estimate and rank the relative risk of dying while waitlisted. Four independent validation 75 

methods were used to measure each model's performance as a classifier and ranking 76 

system.  77 

Setting: The United States 78 
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Participants: This cohort (N=1,965) consisted of adult heart transplant candidates 79 

without missing laboratory data who were placed on the waitlist from January 1, 2008, 80 

to September 2, 2022. Patients listed for multi-organ transplantation were excluded. 81 

Patients with missing laboratory data were analyzed independently. 82 

Exposures: The short-term risk of death remaining on the heart transplant waitlist.  83 

Main Outcomes and Measures: The primary outcome of this study was the design, 84 

development, and validation of a formal risk management system for waitlisted heart 85 

transplant candidates experiencing end-stage heart failure. We derived three linear 86 

regression formulas and calibrated a seven-tiered risk index to accurately rank patients 87 

who were more likely to die on the waitlist at 30-day (30D), 90-day (90D), and 1-year 88 

(1Y) censoring periods. Four independent validation methods were used to measure 89 

each model’s classification and ranking performance.  90 

Results: Using six interaction terms, we applied the 5-fold cross-validation procedure to 91 

the CHARM to discover an area under the ROC curve of 96.4%, 90.4.%, and 78% for 92 

the 30D, 90D, and 1Y models, respectively. The mean positive predictive values of the 93 

tiered risk system were 99.2% (30D), 94.1% (90D), and 88% (1Y). Risk indices for all 94 

three models were >99% correlated to the observed mortality rate across the seven 95 

tiers for the 30D, 90D, and 1Y models.  96 

Conclusions and Relevance: We designed, implemented, and validated an intuitive 97 

and formal risk scoring and ranking system which is ideal for prioritizing waitlisted heart 98 

failure patients based on a well-defined medical urgency metric. The CHARM score 99 

provides extreme sensitivity in predicting short-term mortality outcomes. The CHARM 100 

score is extensible to larger patient populations experiencing end-stage heart failure. 101 
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1. INTRODUCTION 102 

The Organ Procurement and Transplantation Network (OPTN) has worked to develop a 103 

cardiac transplant allocation system that distributes donor hearts to the most critically ill 104 

patients1. The 2018 policy revision created a 6-tiered “status”-based stratification 105 

system that attempted to encompass the increasing complexity of managing critical 106 

cardiac illness. However, this policy has been critiqued for its subjectivity and 107 

heterogeneity in accurately discriminating patient risk while on the waitlist. For example, 108 

a large percentage of transplant candidates are now stratified to Status 1 or Status 2 by 109 

exception rather than by the standard criteria, which can be modified by a physician’s 110 

practice2. Importantly, studies have demonstrated that the 2018 policy revision is 111 

associated with a significant reduction in post-transplant survival3,4. A formal prognostic 112 

model that accurately stratifies waitlisted end-stage heart failure (HF) patients based on 113 

medical urgency is nonexistent. The need for such a model was recently highlighted by 114 

Pelzer et al., who determined the current allocation system had only a moderate ability 115 

to successfully rank transplant candidates according to medical urgency5.  116 

 117 

While useful prognostic tools for patients with HF have been introduced, such as the 118 

Heart Failure Survival Score6 and the Seattle Heart Failure Model7, they have not 119 

accurately predicted waitlist mortality8. The Ottawa Heart Failure Risk Scale provides a 120 

risk stratification tool designed for acute heart failure patients in emergency 121 

departments9. However, this score has not been applied to or validated against a 122 

waitlisted heart transplant patient population. Similarly, the Meta-Analysis Global Group 123 

in Chronic Heart Failure (MAGGIC) risk score performs well for HF patients with 124 
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preserved ejection fraction, but it has not been externally validated for reduced ejection 125 

fraction, which would exclude most of the population on a transplant list10. 126 

 127 

Predictive models have been successfully implemented in other organ transplant 128 

systems. The Model for End-stage Liver Disease including Sodium or MELD-Na score 129 

for liver transplantation accurately predicts 90-day patient waitlist mortality and is the 130 

most significant metric in liver allocation11. A similar model is desperately needed in 131 

cardiac transplantation to accurately prioritize the most critically ill patients. We used the 132 

Scientific Registry of Transplant Recipients (SRTR) database to develop and validate 133 

three predictive mortality models for waitlisted patients with end-stage HF. Our models 134 

utilize objective physiological data to determine the most urgent heart transplant 135 

candidates and stratify their relative risk of waitlist mortality at 30 days, 90 days, and 1 136 

year. 137 

 138 

2. METHODS 139 

2.1 Data sources 140 

This study utilized retrospective data from the SRTR. The SRTR system includes data 141 

on all donors, waitlisted candidates, and transplant recipients in the US, submitted by 142 

the members of OPTN12. The Health Resources and Services Administration, U.S. 143 

Department of Health and Human Services provides oversight to the activities of the 144 

OPTN and SRTR contractors. The data reported here have been supplied by the 145 

Hennepin Healthcare Research Institute as the contractor for SRTR. The interpretation 146 
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and reporting of these data are the responsibility of the author(s) and in no way should 147 

be seen as an official policy of or interpretation by the SRTR or the U.S. Government. 148 

 149 

2.2 Study population 150 

The study population included adult waitlisted cardiac transplant patients with complete 151 

laboratory results who registered for a single-organ heart transplant (N=1,965) between 152 

January 1, 2008, and September 2, 2022. Supplemental Figure 1 provides a 153 

participant workflow diagram with the number of participants retained for each exclusion 154 

criterion. All steps in this analysis were conducted for 30-day (30D), 90-day (90D), and 155 

1-year (1Y) all-cause mortality. Survival times for waitlisted candidates started at the 156 

date of listing and were censored at the date of death and upon removal from the 157 

waitlist. The population was randomly split (60%/40%) into two cohorts, a discovery set 158 

(N=1,179) and a validation set (N=786). The discovery set was used for variable 159 

selection, the generation of three linear regression equations, and the creation of a 160 

tiered risk index. The validation set was used to independently evaluate each model’s 161 

performance in predicting mortality outcomes and ranking patients’ relative risk of death.  162 

 163 

2.3 Study Ethics 164 

Informed consent was obtained for all study participants. This study was reviewed by an 165 

ethical committee (Colorado Multiple Institutions Review Board) and was determined to 166 

be non-human subjects research. This study was not grant funded. The authors do not 167 

have any conflicts of interest to disclose. All authors reviewed the results and approved 168 

the final manuscript. 169 
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 170 

2.4 Statistical approach 171 

2.4.1 Missingness and Sensitivity Analysis 172 

We compared the patient populations with some missing laboratory data (N=20,991) to 173 

those without missing data (N=1,965). For continuous variables, two-way ANOVA was 174 

used to test the observed differences in patient characteristics and the twelve 175 

independent variables used in this study. The chi-squared test was used to measure the 176 

significance of categorical and indicator (binary) variables. Missing data were significant 177 

in the laboratory variables; therefore, we analyzed missingness patterns and performed 178 

three related sensitivity analyses using: 1) participants without missing data (N=1,965); 179 

2) all participants with missing laboratory data (N=22,949); and 3) all participants with 180 

missing laboratory values imputed (N=22,949). The Multivariate Imputation by Chain 181 

Variables or MICE algorithm was used to impute missing values. 182 

 183 

2.4.2 Clinical Variable Selection and Importance 184 

For clinical applicability, we selected twelve patient variables that were readily available 185 

and clinically justified. These twelve variables should also exhibit discriminating power 186 

and low collinearity. To measure collinearity, we calculated the Pearson’s cross-187 

correlation coefficient (R) and variance inflation factor (VIF) for all twelve independent 188 

variables. Low collinearity was defined as two independent variables with an R value 189 

less than 0.7. The VIF is used to determine the correlation between independent 190 

variables in a logistic regression model. A VIF of 1 provides no correlation, whereas 191 

values above 2.5 indicate considerable multicollinearity13. Using the discovery set, we 192 
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measured and ranked the relative importance of each patient variable via the 193 

unsupervised Random Forest (RF) algorithm14 with the number of days survived as the 194 

outcome. The RF algorithm provided an orthogonal method for comparing the relative 195 

effect of each independent variable used in these models. 196 

  197 

2.4.3. Independent Variable Definitions 198 

Life Support refers to any waitlisted heart transplant recipient who received any cardiac 199 

support prior to transplant including intravenous (IV) inotropic infusion, or any circulatory 200 

support device such as right ventricular assist devices (RVAD), left ventricular assist 201 

devices (LVAD), total artificial hearts (TAH), extracorporeal membrane oxygenation 202 

(ECMO), or intra-aortic balloon pumps (IABP)15. The Ventilator variable refers to the 203 

need for any mechanical ventilation prior to transplant. The use of mechanical 204 

ventilators has been shown to significantly increase patients’ risk of death post-205 

transplant16. The Prior Cardiac Surgery indicator variable includes patients with any 206 

history of cardiac surgery.  207 

 208 

2.4.4 Regression Formulas for Calculating Patient Risk Scores 209 

We set out to develop a short-term prognostic model to formally define a patient risk 210 

score also known as the CHARM score based on a patient’s estimated likelihood of 211 

death while waitlisted. Thus, we constructed three linear regression equations using the 212 

logistic link function for 30D, 90D, and 1Y mortality outcomes (Equations 1-3). All 213 

laboratory values were transformed to the logarithmic scale prior to calculation. We 214 

calculated CHARM scores for all patients in the discovery set to develop these 215 
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equations. For consistency across the models, we used Equation 4 to normalize 216 

CHARM scores to range from 0 to 1. 217 

 218 

2.4.5 Model Calibration and the Tiered Risk Index  219 

A well calibrated ranking system is required to accurately estimate the relative medical 220 

urgency of waitlisted heart transplant patients. Thus, we developed a seven-tiered risk 221 

index system based on the CHARM score which ranges from one to seven. We then fit 222 

the risk tiers to the observed mortality rate to maximize the statistical discrimination in 223 

ranking the relative mortality likelihood observed in these patient subgroups or indices. 224 

We defined tiered risk thresholds and calibrated each regression model by maximizing 225 

the goodness-of-fit between the observed mortality and the risk indices, which are 226 

positively correlated. Here, we calculated the goodness-of-fit (R) using linear 227 

regression. 228 

 229 

2.4.6 Validating Dichotomous Outcomes using Logistic Regression 230 

We measured each model’s performance in predicting mortality events at three 231 

censoring periods using 5-fold cross-validation (in-sample) and supervised sample hold-232 

out validation (out-sample) using the validation set. We evaluated both additive models 233 

and those using interaction terms. Age, Albumin, Creatinine, Circulatory Support, 234 

Previous Transplant, and Prior Cardiac Surgery were the interaction terms. For sample 235 

hold-out validation, we used the supervised Random Forest classification method14 with 236 

70 trees. Priors were calculated using the discovery set and predictions were 237 
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independently validated using the validation set. Finally, we calculated the area under 238 

the ROC curve17 for all three models. 239 

 240 

2.4.7 Validating the Seven-Tiered Risk Index System 241 

To validate our risk classification system using a univariate test, we leveraged the Cox 242 

proportional-hazard regression (CPHR) method18 to measure tier performance in terms 243 

of survival time. Here the unit of measurement was the concordance index19. To further 244 

evaluate the performance of the tiered risk system, we used Equation 5 to calculate the 245 

rank precision or the positive predictive value (PPV) for each risk tier as compared to all 246 

others. A true positive (TP) occurred when a patient with a lower risk index outlived a 247 

patient in any higher tier. A false positive (FP) occurred when a patient with a higher risk 248 

index outlived a patient in any lower tier20. All analyses were performed using the R 249 

statistical language version 4.1.221. 250 

 251 

3. RESULTS  252 

3.1 Population Characteristics  253 

The discovery, validation, and total patient population characteristics are depicted in 254 

Table 1. The mean (SD) age of the 1,965 study participants with no missing laboratory 255 

data was 48.5 (14.5) years; 1,432 (73.1%) participants were male, 1,402 (71.6%) were 256 

White/Caucasian, 374 (19.1%) were Black or African American, 104 (5.3%) were 257 

Hispanic or Latino, 56 (2.9%) were Asian, 9 (0.5%) were Native Hawaiian or Other 258 

Pacific Islander, and 6 (0.3%) were American Indian or Alaska Native. In summary, 259 
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there were no statistically significant differences in the patient characteristics or 260 

independent variables when comparing the discovery set to the validation set.   261 

 262 

3.2. Missingness and Sensitivity Analysis 263 

Supplemental Table 1 summarizes the missing data for the twelve independent 264 

variables used in this model. More than 90% of total waitlisted patients were missing 265 

laboratory data. Supplemental Table 2 provides the patient population characteristics 266 

for those with some missing data (N=20,991) and those without missing data (N=1,965). 267 

On average, patients without missing data were younger and more likely to be female or 268 

Caucasian. Statistically significant differences between the two cohorts were observed 269 

in five of the twelve independent variables. Supplemental Figure 2 provides a missing 270 

value map for all independent variables. In summary, Age, Circulatory Support, 271 

Previous Transplant, Sodium, and Ventilator were missing at random. The other seven 272 

variables were missing completely at random22. Supplemental Table 3 provides the 273 

AUC of the ROC for participants without missing data, with missing data, and with 274 

missing values imputed. 275 

  276 

3.3 Variable Selection and Importance 277 

Supplemental Table 4 provides the relative variable importance in the RF model, 278 

measured by the Gini Index, a statistic dispersion value notated as the Increase in Node 279 

Purity (IncNodePurity). These data were normalized using Equation 4 and are useful 280 

for ranking the relative importance of each independent variable. All logistic regression 281 

coefficients, p-values, and VIF values are provided in Supplemental Table 5. The 282 
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correlation coefficients of the independent variables were below the absolute value of 283 

0.21, and VIF values ranged from 1 to 1.532 (Figure 1). No significant co-linearity was 284 

observed in the variables or models.  285 

 286 

3.4 Mathematical Formulas 287 

Equation 1: The 30-day CHARM score 288 

𝑪𝑯𝑨𝑹𝑴𝟑𝟎𝑫 =  10.5 + ሺ0.0129 ∗ 𝐴𝑔𝑒ሻ − ሺ0.116 ∗  𝐶𝑎𝑟𝑑𝑖𝑎𝑐 𝑆𝑢𝑟𝑔𝑒𝑟𝑦ሻ
ୀଵ+ ሺ0.6512 ∗ 𝐿𝑖𝑓𝑒 𝑆𝑢𝑝𝑝𝑜𝑟𝑡ሻ − ൫0.7136 ∗ 𝑙𝑜𝑔ሺ𝐴𝑙𝑏𝑢𝑚𝑖𝑛ሻ൯+ ൫0.4314 ∗ 𝑙𝑜𝑔ሺ𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒ሻ൯ − ሺ15.83 ∗ 𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑜𝑟ሻ+ ሺ1.088 ∗ 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑇𝑟𝑎𝑛𝑠𝑝𝑙𝑎𝑛𝑡ሻ + ൫0.0001 ∗ 𝑙𝑜𝑔ሺ𝐵𝑁𝑃ሻ൯+  ൫0.6119 ∗ 𝑙𝑜𝑔ሺ𝐴𝑆𝑇ሻ൯  − ൫2.992 ∗ 𝑙𝑜𝑔ሺ𝑆𝑜𝑑𝑖𝑢𝑚ሻ൯+  ൫0.5185 ∗ 𝑙𝑜𝑔ሺ𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛ሻ൯ − ሺ0.0711 ∗ 𝑊𝑎𝑖𝑡𝑙𝑖𝑠𝑡 𝐷𝑎𝑦𝑠ሻ  

 289 
Equation 2: The 90-day CHARM score 290 

𝑪𝑯𝑨𝑹𝑴𝟗𝟎𝑫 =  −6.61 + ሺ0.076 ∗ 𝐴𝑔𝑒ሻ + ሺ0.123 ∗  𝐶𝑎𝑟𝑑𝑖𝑎𝑐 𝑆𝑢𝑟𝑔𝑒𝑟𝑦ሻ
ୀଵ+ ሺ1.111 ∗ 𝐿𝑖𝑓𝑒 𝑆𝑢𝑝𝑝𝑜𝑟𝑡ሻ + ൫0.76 ∗ 𝑙𝑜𝑔ሺ𝐴𝑙𝑏𝑢𝑚𝑖𝑛ሻ൯+ ൫0.423 ∗ 𝑙𝑜𝑔ሺ𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒ሻ൯ + ሺ0.336 ∗ 𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑜𝑟ሻ+ ሺ0.029 ∗ 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑇𝑟𝑎𝑛𝑠𝑝𝑙𝑎𝑛𝑡ሻ − ൫0.205 ∗ 𝑙𝑜𝑔ሺ𝐵𝑁𝑃ሻ൯+  ൫0.12 ∗ 𝑙𝑜𝑔ሺ𝐴𝑆𝑇ሻ൯  − ൫0.124 ∗ 𝑙𝑜𝑔ሺ𝑆𝑜𝑑𝑖𝑢𝑚ሻ൯+  ൫0.089 ∗ 𝑙𝑜𝑔ሺ𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛ሻ൯ − ሺ7.433 ∗ 𝑊𝑎𝑖𝑡𝑙𝑖𝑠𝑡 𝐷𝑎𝑦𝑠ሻ 

 291 
Equation 3: The 1-year CHARM score 292 

𝑪𝑯𝑨𝑹𝑴𝟏𝒀 =  −2.485 + ሺ0.1 ∗ 𝐴𝑔𝑒ሻ + ሺ0.164 ∗  𝐶𝑎𝑟𝑑𝑖𝑎𝑐 𝑆𝑢𝑟𝑔𝑒𝑟𝑦ሻ
ୀଵ+ ሺ0.814 ∗ 𝐿𝑖𝑓𝑒 𝑆𝑢𝑝𝑝𝑜𝑟𝑡ሻ + ൫0.285 ∗ 𝑙𝑜𝑔ሺ𝐴𝑙𝑏𝑢𝑚𝑖𝑛ሻ൯+ ൫0.554 ∗ 𝑙𝑜𝑔ሺ𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒ሻ൯ + ሺ0.134 ∗ 𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑜𝑟ሻ+ ሺ0.013 ∗ 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑇𝑟𝑎𝑛𝑠𝑝𝑙𝑎𝑛𝑡ሻ − ൫0.148 ∗ 𝑙𝑜𝑔ሺ𝐵𝑁𝑃ሻ൯+  ൫0.255 ∗ 𝑙𝑜𝑔ሺ𝐴𝑆𝑇ሻ൯  − ൫0.175 ∗ 𝑙𝑜𝑔ሺ𝑆𝑜𝑑𝑖𝑢𝑚ሻ൯+  ൫0.136 ∗ 𝑙𝑜𝑔ሺ𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛ሻ൯ − ሺ1.382 ∗ 𝑊𝑎𝑖𝑡𝑙𝑖𝑠𝑡 𝐷𝑎𝑦𝑠ሻ 

 293 
Equation 4: Normalization by scaling between 0 and 1  294 
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𝑵𝑷𝑹𝑺 =  ሺ𝑃𝑅𝑆ሻ − 𝑚𝑖𝑛ሺ𝑃𝑅𝑆:ሻ𝑚𝑎𝑥ሺ𝑃𝑅𝑆:ሻ − 𝑚𝑖𝑛ሺ𝑃𝑅𝑆:ሻ
ୀଵ  

 295 

Equation 5: Positive Predictive Value of the Tiered Risk System  296 𝑷𝑷𝑽 = 𝑇𝑃/ሺ𝑇𝑃 + 𝐹𝑃ሻ 

 297 

3.4 Model Calibration and the Tiered Risk Index  298 

The observed mortality rate is presented in Figure 2 per risk index as a function of the 299 

CHARM score. Supplemental Figures 3-5 provide the CHARM score distributions for 300 

each model. For the 90-day model, Risk Index (RI) 1 had an observed mortality rate of 301 

1.52%, RI 2 had a mortality rate of 3.54%, RI 3 had a mortality rate of 7%, RI 4 had a 302 

mortality rate of 11.25%, RI 5 had a mortality rate of 13.5%, RI 6 had a mortality rate of 303 

20.8%, and RI 7 had a mortality rate of 26.5%. The risk indices were >99% correlated to 304 

the observed mortality rate across the seven tiers for all three models.  305 

 306 

3.5 Logistic Regression for Predicting Short-term Mortality Outcomes 307 

The 5-fold cross-validation procedure produced an AUC of 94.8%, 86.7.%, and 74.2% 308 

for the 30D, 90D, and 1Y additive models, respectively (Supplemental Figures 6-8). 309 

Using interaction terms, the AUC was 96.4%, 90.4%, and 78%, respectively (Figure 3). 310 

Sample hold-out validation produced an AUC of 93.8%, 92.5%, and 74.7% for the 30D, 311 

90D, and 1Y additive models, respectively (Supplemental Figures 9-11). In summary, 312 

these models and the tiered risk system provide a reliable and highly accurate 313 

methodology for ranking the short-term survival of waitlisted heart transplant patients.  314 
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3.6 Validation of the Seven-Tiered Risk Index System 315 

Using the validation cohort, we found that the PPV of the seven-tiered risk index system 316 

ranged from 98.3% to 100% (30D), 83.7% to 100% (90D), and 0.668% to 100% (Table 317 

2). The mean PPVs were 99.2% (30D), 94.1% (90D), and 88% (1Y). Using the Cox 318 

proportional-hazard regression methodology as a univariate test where the unit of 319 

measurement was the risk index, we found a significant difference in survival times by 320 

risk tier (Supplemental Figure 12-14). For example, CPHR revealed that a patient with 321 

a RI of 7 had a 26% chance of death after 90 days on the waitlist, while a patient with a 322 

RI of 1 had about a 2% risk of death. The mortality rates for the risk indices provided in 323 

Figure 2 are nearly identical to the inverse survival rates provided by the CPHR 324 

analysis.  325 

 326 
4. DISCUSSION 327 

There is currently no model that accurately stratifies waitlisted cardiac transplant 328 

patients based on medical urgency. Formal pre-transplant predictive models have been 329 

successfully developed in liver transplantation. Evans et al. demonstrated an overall 1-330 

year survival rate increase of 18% in high-acuity patients in the 15 years following the 331 

national implementation of the MELD-Na score23. A similar metric is needed for cardiac 332 

transplant to prioritize the most critically ill waitlisted patients.  333 

  334 

To this end, we created the Colorado Heart failure Acuity Risk Model or CHARM score. 335 

The models provided herein precisely rank patient subgroups based on waitlist mortality 336 

with mean PPVs of 99.2% (30D), 94.1% (90D), and 88% (1Y). They demonstrate 337 

excellent accuracy with AUC values of 96.4%, 90.4%, and 78%, respectively. While 338 
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previous scores or models have aimed to assess heart failure illness severity, the 339 

CHARM score is the first to present this level of accuracy and predictive performance 340 

among waitlisted HF patients.  341 

 342 

The CHARM score is intended to be used in cardiac transplant candidates at the time of 343 

listing. The 90D time frame will allow for frequent reevaluation while maintaining a high 344 

degree of prediction accuracy. The CHARM score can substantially improve heart 345 

allocation within the current “status”-based system by providing an objective prognostic 346 

measurement of medical urgency. The CHARM score will inform the continuous 347 

distribution for CD system, as it utilizes a framework that is point-based rather than 348 

“status”-based, in which candidates are prioritized for transplant through designation of 349 

a composite score from a variety of attributes. Staged implementation of the CD system 350 

is currently underway with anticipated completion of the heart allocation system within 351 

the next few years. A substantial portion (25%) of the lung transplant composite score is 352 

comprised of estimated waitlist mortality, further emphasizing the importance of pre-353 

transplant mortality estimates for assessing patient acuity. The CHARM score provides 354 

a simple, accurate measure of pre-transplant mortality that can easily be incorporated 355 

into a heart transplant composite score. 356 

 357 

The twelve independent patient variables incorporated into the CHARM score were 358 

chosen for their objectivity, clinical availability, and relevance to cardiac illness. Each 359 

variable was determined to significantly contribute to the predictive value of waitlist 360 

mortality. Laboratory values were selected for their evaluation of crucial organ function 361 
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in the setting of severe HF. A large meta-analysis of sixty-four models that predicted 362 

death or hospitalization from HF determined renal function is one of the most significant 363 

factors in these outcomes24. Renal function was included in the CHARM score through 364 

serum sodium and creatinine. Multiple studies have demonstrated worsened short-term 365 

mortality for HF patients related to low serum sodium25,26. Creatinine is a standard 366 

measure of renal function, often used as a surrogate for eGFR. While eGFR was 367 

considered as a measure of renal function, it is not a value directly recorded in the 368 

SRTR database and can be calculated differently by institutions. Both age and BNP are 369 

also known prognostic factors in severe HF patients17. While age influences a variety of 370 

physiological processes, advanced age in HF (>65 years) affects vascular resistance 371 

and heart rate responsiveness, likely due to increased circulating norepinephrine 372 

levels27. BNP is a biomarker exclusively produced by cardiac tissue. It serves as an 373 

objective marker of cardiac stretch since it is influenced by level of end-diastolic volume, 374 

and it can also be an indicator of responsiveness to diuretic management28. 375 

 376 

In addition to physiologic data, indicator variables such as previous cardiac surgery, 377 

previous cardiac transplant, ventilator support, and life support proved to be large 378 

contributors to pre-transplant mortality. These interventions often serve as a “bridge” to 379 

transplant, reserved for the most critically ill patients. Previous cardiac surgeries or 380 

transplants are also indicative of a more extensive history of cardiac illness. We 381 

specifically chose not to include variables that depend upon a physician’s practice or 382 

measurement, such as right heart catheterization data or the level of inotropic support. 383 
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These variables were excluded with the intent of reducing bias based on treatment 384 

variation.  385 

 386 

Though we present accurate predictive models, they must be viewed through the 387 

confines of the study limitations, including sample size and missing data. Sample size 388 

was dependent on the availability of data within the SRTR, reduced to 1,965 389 

participants to account for missing laboratory variables. A thorough missingness 390 

analysis was performed to account for selection biases; however, a larger population 391 

with complete laboratory data would increase the power of these models. Additionally, 392 

variables chosen for the model were limited by the type of data recorded within SRTR. 393 

As such, certain serum markers were not readily available within the database and 394 

therefore could not be used. Similarly, the specificity of some variables was limited. For 395 

example, the term “Life Support” is broad and included anyone on inotropic support 396 

alone or varying degrees of temporary or durable mechanical support. Therefore, “Life 397 

Support” currently serves as a binary variable within the model, understanding that 398 

different modalities of mechanical support may contribute differently to patient risk. The 399 

next steps for further utilization of the CHARM score will include simulation modeling 400 

and a prospective, multi-center validation study in which these additional variables are 401 

collected and analyzed. 402 

 403 

Conclusion 404 

The Colorado Heart failure Acuity Risk Model (CHARM) score provides a novel, 405 

validated model with strong positive predictive value for short-term mortality among 406 
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patients waitlisted for cardiac transplantation. We anticipate the CHARM score will be 407 

useful in the era of continuous distribution to standardize organ allocation by providing 408 

an objective and intuitive system for stratifying waitlisted heart failure patients based on 409 

medical urgency. 410 
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FIGURE LEGENDS: 516 
 517 
Figure 1. Correlation Heatmap of Independent Variables. Pearson’s correlation 518 
coefficients were calculated using all patients (N=1,965) and independent variables 519 
(N=12) used to construct the three models (30D, 90D, and 1Y). This is used to provide a 520 
measure of collinearity. Blue indicates a positive correlation, and red indicates a 521 
negative correlation. The color saturation and circle area increase as the correlation 522 
coefficients increase in magnitude. 523 
 524 
Figure 2. Calibration Plots for 30-day, 90-day, and 1-year Models. Patient risk 525 
scores (PRS) were calculated for all patients in the discovery cohort (N=1,179) and are 526 
provided as a function of observed patient mortality rate per tier for the 30-day, 90-day, 527 
and 1-year models. 30-day, 90-day, and 1-year models are labeled A, B, and C, 528 
respectively. The goodness-of-fit (R) was calculated using linear regression and was 529 
greater than 0.99 for all three models. 530 
 531 
Figure 3. Area Under the Receiver Operating Characteristic Curve using 532 
Interaction Terms. Logistic regression was performed using the generalized linear 533 
model with interaction terms for the 30-day (A), 90-day (B), and 1-year (C) models. The 534 
area under the receiver operating characteristic curve or AUC was reported at 0.964, 535 
0.904, and 0.78 for the 30-day, 90-day, and 1-year models, respectively. 536 
  537 
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TABLES: 538 

Table 1. Patient Characteristics and Laboratory Values for Waitlisted Heart Transplant Patients, 
2008 to 2022 

  Discovery 
(N=1,179) 

 Validation 
(N=786) 

All (N=1,965) p-value 

Age 

 Mean (SD) 48.9 (14.6) 47.8 (14.2) 48.5 (14.5) 0.243 

 Median [Min, Max] 53.0 [18.0, 74.0] 50.0 [18.0, 73.0] 52.0 [18.0, 74.0]  

Sex 

 Female 312 (26.6%) 214 (27.3%) 526 (26.9%) 0.94 

 Male 862 (73.4%) 570 (72.7%) 1432 (73.1%)  

Race 

 Caucasian 851 (72.5%) 551 (70.3%) 1402 (71.6%) 0.995 

 Hispanic/Latino 57 (4.9%) 47 (6.0%) 104 (5.3%)  

 Black or African 

American 

222 (18.9%) 152 (19.4%) 374 (19.1%)  

 Asian 31 (2.6%) 25 (3.2%) 56 (2.9%)  

 American Indian or 

Alaska Native 

4 (0.3%) 2 (0.3%) 6 (0.3%)  

 Native Hawaiian or 

Pacific Islander 

5 (0.4%) 4 (0.5%) 9 (0.5%)  

Ethnicity 

 Latino 59 (5.0%) 47 (6.0%) 106 (5.4%) 0.65 

 Non-Latino or 

unknown 

1115 (95.0%) 737 (94.0%) 1852 (94.6%)  

Education 

 High School (9-12) 394 (33.6%) 252 (32.1%) 646 (33.0%) 0.994 

 Attended 

College/Technical 

School 

324 (27.6%) 225 (28.7%) 549 (28.0%)  

 Associate/Bachelor 

Degree 

251 (21.4%) 164 (20.9%) 415 (21.2%)  

 Post-college 

Graduate Degree 

114 (9.7%) 88 (11.2%) 202 (10.3%)  

 Grade School (0-8) 21 (1.8%) 15 (1.9%) 36 (1.8%)  

 None 70 (6.0%) 40 (5.1%) 110 (5.6%)  
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Independent Variables 

Albumin 
 Mean (SD) 3.59 (0.578) 3.59 (0.611) 3.59 (0.591) 0.991 

 Median [Min, Max] 3.60 [1.70, 6.40] 3.60 [0.7, 6.50] 3.60 [0.7, 6.50]  

AST 
 Mean (SD) 39.4 (74.0) 39.8 (83.1) 39.6 (77.7) 0.993 

 Median [Min, Max] 27.0 [0.1, 1640] 26.0 [0.1, 1810] 26.5 [0.1, 1810]  

Bilirubin 
 Mean (SD) 0.975 (1.83) 1.09 (1.77) 1.02 (1.80) 0.377 

 Median [Min, Max] 0.7 [0.1, 40.6] 0.7 [0.1, 34.7] 0.7 [0.1, 40.6]  

BNP 
 Mean (SD) 1690 (2280) 1560 (2180) 1640 (2240) 0.478 

 Median [Min, Max] 776 [0, 10000] 696 [5, 10000] 741 [0, 10000]  

Cardiac Surgery 
 Yes 506 (43.1%) 332 (42.3%) 838 (42.8%) 0.947 

 No 668 (56.9%) 452 (57.7%) 1120 (57.2%)  

Creatinine 
 Mean (SD) 1.49 (1.16) 1.53 (1.14) 1.51 (1.15) 0.725 

 Median [Min, Max] 1.24 [0.2, 16.1] 1.25 [0.14, 10.8] 1.25 [0.14, 16.1]  

Circulatory Support 
 Yes 436 (37.1%) 296 (37.8%) 732 (37.4%) 0.962 

 No 738 (62.9%) 488 (62.2%) 1226 (62.6%)  

Previous Transplant 
 Yes 97 (8.3%) 75 (9.6%) 172 (8.8%) 0.607 

 No 1077 (91.7%) 709 (90.4%) 1786 (91.2%)  

Sodium 
 Mean (SD) 135 (4.39) 135 (4.63) 135 (4.50) 0.13 

 Median [Min, Max] 136 [117, 150] 136 [109, 149] 136 [109, 150]  

Ventilator 
 Yes 18 (1.5%) 5 (0.6%) 23 (1.2%) 0.197 

 No 1156 (98.5%) 779 (99.4%) 1935 (98.8%)  

Waitlist Days 
 Mean (SD) 260 (388) 268 (412) 263 (398) 0.899 

 Median [Min, Max] 110 [1.00, 4090] 119 [1.00, 3370] 113 [1.00, 4090]  

AST=aspartate aminotransferase; BNP=Brain natriuretic peptide 
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Table 2. Tier Risk Index Precision for 30-day, 90-day, and 1-year Mortality 
Models 
Tier 30-day Precision (PPV) 90-day Precision 1-year Precision 
7 0.983 0.942 0.857 
6 0.987 0.927 0.862 
5 0.989 0.924 0.825 
4 0.993 0.837 0.668 
3 0.986 0.969 0.966 
2 1.0 0.985 0.985 
1 1.0 1.0 1.0 
PPV = Positive Predictive Value   
  540 
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Figure 1. Correlation Heatmap of Independent Variables. 541 

542 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.30.23294870doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.30.23294870
http://creativecommons.org/licenses/by-nc/4.0/


 
 

29 
  

Figure 2. Calibration Plots for 30-day, 90-day, and 1-year Models. 543 
  544 

  545 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.30.23294870doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.30.23294870
http://creativecommons.org/licenses/by-nc/4.0/


 
 

30 
  

Figure 3. Area Under the Receiver Operating Characteristic Curve using 546 
Interaction terms. 547 
 548 

 549 
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