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Abstract: 

 

Background: Cognitive impairment is a pervasive, functionally limiting symptom of multiple sclerosis 

(MS), a disease of the central nervous system that is the most common non-traumatic cause of neurologic 

disability in young adults. Recently, language dysfunction has received increased attention as a prevalent 

and early affected cognitive domain in individuals with MS.  

Objectives: To establish a network-level model of language dysfunction in MS.  

Methods: Cognitive data and 3T structural and functional brain magnetic resonance imaging (MRI) scans 

were acquired from 54 MS patients and 54 healthy controls (HCs). Summary measures of the extended 

language network (ELN) and structural imaging metrics were calculated. Group differences in ELN 

summary measures were evaluated. Associations between ELN summary measures and language 

performance were assessed in both groups; in the MS group, a two-step regression analysis was applied to 

assess relationships between additional language-specific imaging measures and language performance. 

Results: In comparison to the HC group, the MS group performed significantly worse on the semantic 

fluency and rapid automized naming tests (p < 0.005). Concerning the ELN summary measures, the MS 

group exhibited higher within-ELN connectivity than the HCs (0.11 ± 0.02 vs. 0.10 ± 0.01, p < 0.05, 

respectively). While no significant relationships between ELN summary measures and language function 

were observed in either group, the regression analysis identified a set of 17 imaging features that 

predicted performance on the rapid automized naming test (p < 0.05) and identified key white matter 

tracts predicting language function in individuals with MS. 

Conclusion: The derived functional network-level measures, combined with the identified structural 

neuroimaging metrics, constitute a comprehensive set of imaging features to characterize language 

dysfunction in MS. Further studies leveraging these features may uncover underlying mechanisms and 

clinically relevant predictors of language dysfunction, potentially leading to improved precision treatment 

strategies for cognitively impaired patients with multiple sclerosis. 

 

Keyword: Network model, Language dysfunction, Extended language network, Multiple sclerosis 
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Introduction 

Multiple sclerosis (MS) is a chronic neurological disease characterized by neurodegeneration and axonal 

demyelination 1. Cognitive impairment affects many individuals with MS and can arise early in the 

disease course 2. Memory decline and slowed information processing speed are generally considered to be 

the most prominent features of cognitive impairment in MS 3-5. Language dysfunction has only recently 

begun to receive widespread attention as an important affected domain 6-9. In their seminal study by Rao 

et al.1991, performance on a verbal fluency test was identified as one of the most impaired cognitive 

measures in people with MS (pwMS). However, this test was characterized as a measure of recent 

memory, potentially leading to an important oversight in the field’s conceptualization of the prominence 

of language dysfunction in MS 10. Recently, a test of rapid automatized naming was the only objective 

cognitive test measure (of 9 different measures) that distinguished recently diagnosed pwMS from 

matched healthy controls (HCs), and word finding difficulties were  the most commonly reported 

cognitive issue by pwMS early in their disease course 11. This growing recognition of the prominence of 

language deficits in the cognitive profile of pwMS highlights the need for a mechanistic model to 

elucidate the cause(s) of disrupted language function in MS. The focus of this study is to provide an initial 

network-level model of language dysfunction for MS. 

 

Traditionally, studies investigating the neural substrates of language (in the non-MS literature) have 

focused on mapping individual cortical regions to specific language functions (i.e., one-to-one brain-

behavior relationships). Towards a network-level conceptualization of language function, Tomasi & 

Volkow employed resting-state functional magnetic resonance imaging (fMRI) to identify the extended 

language network (ELN) in 970 healthy adults 12. The ELN is highly reproducible both during resting-

state and task-based fMRI, recommending its use as a promising network model to explore language 

dysfunction in normal aging and clinical populations (e.g., temporal lobe epilepsy) 13-16. In the context of 

MS, the few studies to date that have evaluated the neural substrates of language function examined 

relationships to cortical thickness and white matter microstructure 11,17. Developing a network-level model 

of language for MS will permit mechanistic insights into this key and functionally limiting cognitive 

deficit.  

 

Here, we utilized the ELN as a framework to develop a network-level model of language impairment in 

MS. Applying an established approach for characterizing network (re)organization of functionally 

specific subnetworks using resting state functional connectivity (rsFC), we derived language-specific 

rsFC summary measures to capture non-random patterns of network-level reorganization of the language 

network: within-ELN connectivity, between-ELN connectivity, segregation index (Seg-I), and anteriority 

index (Ant-I) 18,19. We then tested: (a) whether distinct patterns of functional organization of the ELN are 

observable in pwMS compared to matched HCs; (b) whether rsFC in the ELN is associated with language 

function within the MS group; and (c) whether ELN summary measures are more informative for 

predicting language function than standard structural and functional MRI measures. 

 

Methods 

 

Participants 

Study procedures were approved by Columbia University institutional review board in accordance with 

ethical guidelines. Written informed consent was obtained from all participants prior to enrollment. For 
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the MS group, we utilized data collected for MEM CONNECT 20, a prospective cohort of adults 

diagnosed with relapsing-remitting MS. A separate sample of age, sex, and Intelligent quotient (IQ) 

matched healthy adults serving in the Reference Ability Neural Networks (RANN) cohort study served as 

a comparison group 21. For sample characteristics, see Table 1. 

 

Cognitive measures  

All participants completed a comprehensive neuropsychological battery assessing multiple cognitive 

domains. For this study, we evaluated performance on the following language tests: the Controlled Oral 

Word Association Test (COWAT): phonemic fluency (FAS) and semantic fluency (Animals); rapid 

automatized naming: Stroop Word Naming Test, and Stroop Color Naming Test. One-tailed t-tests were 

used to compare performance across tests based on the expectation that the MS group would show 

relative decrements compared to the HC group.  

 

MRI data acquisition 

 In the MS sample, images were acquired on a 3 Tesla MR scanner (GE Discovery) employing the 

following parameters: Structural images: T1-weighted BRAVO 1 mm sequence, TE/TR=2.7, 7200 ms, 

voxel resolution=1×1×1mm3. Functional images: echo planar imaging (EPI), 66 axial slices, TE/TR=25, 

850 ms, voxel resolution = 2×2×2 mm3. During the 9-minute resting-state scan acquisition, participants 

were instructed to remain still and awake, with eyes closed. In the HC sample, images were acquired on a 

3 Tesla MR scanner (Philips Achieva Magnet). Structural images: T1-weighted magnetization-prepared 

rapid gradient-echo (MPRAGE) scan, TE/TR=3, 6500 ms, voxel resolution of 1×1×1 mm3. Functional 

images: echo planar imaging, 41 axial slices, TE/TR=20, 2000 ms, voxel resolution = 2×2×2 mm3. 

During the 7-minute resting-state scan acquisition, participants were instructed to remain still and awake, 

with eyes closed 22-24. 

 

Resting-state functional connectivity (rsFC)  

Functional connectivity analysis was performed using the CONN toolbox (version 21a; 

http://www.nitrc.org/projects/conn), implemented in MATLAB 2021a (MathWorks Inc., Natick, MA, 

USA). Images were preprocessed using CONN toolbox default preprocessing pipeline. Functional data 

were spatially realigned, unwarped, and slice-time corrected. Outlier scans were identified using 

conservative thresholds (framewise displacement above 0.5 mm or global blood oxygen-level-dependent 

(BOLD) signal changes greater than Z = 5). Functional and anatomical images were then normalized into 

the common stereotaxic Montreal Neurological Institute (MNI) space with 2- and 1-mm isotropic voxels, 

respectively, and segmented into gray matter, white matter, and cerebrospinal fluid (CSF) tissue classes. 

Finally, functional data were spatially smoothed using an 8mm full width half maximum (FWHM) 

Gaussian kernel. Successful normalization and smoothing of functional and anatomical images were 

confirmed manually for each subject. Next, functional images were denoised using the CONN toolbox 

default denoising pipeline. Confounding effects were estimated and removed from the BOLD signal for 

each voxel for each subject using the default anatomical component-based noise correction procedure 

(aCompCor). Finally, a bandpass filter (0.008, 0.09 Hz) was applied to functional data to investigate low-

frequency BOLD signal fluctuations while minimizing influence of physiological and head-movement 

noise. 

 

rsFC processing 
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Regions of interest (ROIs) were defined based on the default CONN toolbox atlas, the Schaefer 200-

parcel parcellation 25, and the ELN atlas. The default CONN toolbox atlas includes 132 cortical, 

subcortical, and cerebellar ROIs from the Harvard-Oxford Atlas and Automated anatomical labelling 

(AAL) atlas 3 26. The 17 network Schaefer 200-parcel parcellation was extracted in the 2mm space 27. A 

custom atlas was created for the ELN by importing spherical ROIs using the MNI coordinates specified 

for each region by Tomasi & Volkow 13. This procedure resulted in a 23 ROI atlas of the ELN (Figure 1). 

For each participant, Pearson’s correlation coefficients were calculated for all possible pairs among the 

ELN and non-ELN regions in the rest of the brain (Schaefer 17 network 200-parcel parcellation). A 23 × 

23 connectivity matrix of Fisher z-transformed r-values for each participant was thus derived for the ELN, 

and a 23 × 200 connectivity matrix of Fisher z-transformed r-values was derived for the connectivity 

values between nodes of the ELN and non-ELN nodes. Prior to calculating the ELN summary measures, 

the matrices were passed through neuroCombat, a site-harmonization tool to reduce scanner effects 

introduced by differences between the two groups. This method estimates an additive and a multiplicative 

site-effect coefficient at each parcel, thus accounting for regional scanner differences. neuroCombat has 

been successfully applied to mitigate scanner differences in previous fMRI studies allowing for 

harmonization of data collected across multiple scanners 28-30. The diagonal and negative values of the 

matrices were set to 0 in the final matrices permitting only positive interactions between ROIs to 

contribute to derived measures of network interactions. 

 

Calculating ELN summary measures 

Four ELN measures were calculated from the resultant matrices: within-ELN connectivity (average 

connectivity of nodes within the ELN); between-ELN connectivity (average connectivity between nodes 

of the ELN and nodes of the rest of the brain); Seg-I (relationship of within-ELN connectivity to between-

ELN connectivity); and Ant-I (average connectivity of the 11 anterior nodes of the ELN divided by 

average connectivity of the 12 posterior nodes of the ELN) 19,31. Higher Seg-I indicates greater 'within-

ness' than 'between-ness', that is, greater reliance on within-ELN connections compared to the 

connections between the ELN and the rest of the brain. Ant-I captures the differences in connectivity of 

anterior and posterior regions of the ELN. An Ant-I value of 1 indicates equivalent connectivity of 

anterior and posterior regions, whereas higher Ant-I indicates increasing reliance on anterior regions and 

lower values indicate greater reliance on posterior regions. See Figure 2 for a graphical representation of 

the ELN measures. 

 

Structural imaging measures 

Additional imaging measures were extracted from structural T1 images of the MS cohort. Cortical 

thickness of 68 cortical regions (34 per hemisphere) was calculated on lesion in-painted 3D-T1 images 

using FreeSurfer (V-6.0) with default settings 32.  

 

Diffusion weighted imaging measures  

Raw diffusion-weighted images were corrected for distortions caused by motion, eddy current, and field 

inhomogeneity using FMRIB’s Diffusion Toolbox within FSL 6.0.4. Then, probabilistic distribution of 18 

major diffusion weighted white matter tracts (corpus callosum-forceps minor, corpus callosum-forceps 

major, left and right anterior thalamic radiations, uncinate fasciculus, inferior longitudinal fasciculus, 

cingulum-angular bundle, superior longitudinal fasciculus- temporal segment, superior longitudinal 

fasciculus-parietal segment, corticospinal tract, and cingulum-cingulate gyrus bundle) in each participant 
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were extracted using Free Surfer V-6.0, TRACULA 33. Average fractional anisotropy (FA) and mean 

diffusivity (MD) for each tract were calculated. 

 

Statistical analyses 

For our primary analysis, statistics were conducted with the scipy.stats package in Python.  

 

Group differences in language test performance 

To assess whether there were significant differences in language performance, one-tailed t-tests were used 

to compare the MS to HC group for each of four language tests.  

 

Group differences in ELN summary measures 

To assess whether ELN summary measures were differentially expressed between MS and HC groups, 

two-tailed t-tests were conducted for each of the four summary measures (within-ELN, between-ELN, 

segregation index, anteriority index).  

 

Relationship between ELN summary measures and performance on language tests 

Pearson’s correlation coefficients were computed within each diagnostic group to determine whether 

there were any relationships between summary measures and language performance. In a planned 

exploratory analysis, we compared performance of ELN summary measures to traditional functional and 

structural connectivity measures in predicting performance on language tests. 

 

Group differences in pairwise ELN connectivity 

To assess whether there were any significant differences in pairwise ELN connections between diagnostic 

groups, two-tailed t-tests were conducted for each node-node connection with the ELN, as well as each 

node-node connection from the ELN to the rest of the brain (Schaefer 200-parcel parcellation). All p-

values were FDR corrected for multiple comparisons. 

 

Relationship between all language-specific imaging measures and language performance in MS 

To compare predictive power of ELN summary measures to other imaging measures, a two-step 

regression process was applied: First, prior to conducting the regression, the feature set was determined 

using a data- and empirically driven approach. The feature set for the regression included 4 ELN 

summary measures, 7 rsFC connections deemed specific to the MS group from the pairwise ELN 

connectivity analysis, 18 cortical thickness measures from putative language regions in addition to 

regions that differed at the rsFC level, and 16 diffusion tensor imaging measures (mean diffusivity and 

fractional anisotropy) of putative language pathways 34. We calculated mean functional connectivity, 

cortical thickness, fractional anisotropy, and mean diffusivity to include for reference. Sex and age were 

also included as features in the regression to rule out their confounding effects. Next, of the 54 pwMS, 9 

subjects with missing features were removed from the dataset. This resulted in a 45-subject by 51-feature 

dataset. Given the suboptimal sample size-to-feature ratio and potential multicollinearity across similar 

features, 5-fold ridge regression was used to select the top tertile of features. Ridge regression was 

conducted for each language test individually and the top tertile of features were retained based on the 

absolute value of the regression feature coefficients 35. Then, a standard Ordinary Least Squares (OLS) 

regression was conducted with the top tertile of imaging features to determine the R2 and p-value of the 

regression. Finally, by fitting OLS regressors for each language test, we were able to ascertain which 
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language tests could be significantly predicted by the top tertile of imaging features. If the OLS regression 

reached significance, the relative coefficient values of the top tertile of features could be analyzed as 

(weak) representations of feature importance. Ridge regression was performed with sci-kit learn RidgeCV 

package and OLS regression was performed with statsmodels package in Python.  

 

Results 

Group differences in cognitive test performance 

The MS group performed significantly worse than HCs on semantic fluency (p < 0.005), Stroop Color 

Naming (p < 0.005), and Stroop Word Naming (p < 0.001). See Table 2 for full behavioral results.  

 

Group differences in ELN summary measures 

The MS group showed higher within-ELN connectivity compared to the HC group (p < 0.05). The MS 

group also demonstrated marginally higher Seg-I compared to HCs, although this did not reach the level 

of statistical significance (p = 0.07). No group differences were found for between-ELN connectivity or 

Ant-I Figure 3). 

 

Relationship of ELN summary measures to language function 

Pearson’s correlation analysis revealed no significant relationships between ELN summary measures and 

language function in either the MS or HC group. However, in the MS group there were several 

relationships trending towards significance on the Stroop Word Naming test. Both within- and between-

ELN connectivity showed trend-level positive correlations with performance on this test (r = 0.22, p = 

0.11; r = 0.24, p = 0.08, respectively). These trends are reported in reference to a p-value of 0.10, given 

the small sample size of our study, which may underpower the observed effects 36. No trend-level 

relationships were observed between ELN summary measures and any language test in the HC group.  

  

Group differences in pairwise functional connectivity 

For exploratory purposes, we evaluated group differences in rsFC among all ELN connections. Five 

pairwise connections differed for connections within the ELN (Figure 4), and two pairwise connections 

differed for connections between nodes of the ELN and nodes of the rest of the brain. While the above 

connections did not withstand FDR-correction for multiple comparisons, they were included in further 

exploratory analysis due to their potential relevance as MS-specific language connections. 

 

Relationship of all language-specific imaging measures to language function 

Ridge regression models were trained to predict performance on each language test using all ELN, rsFC, 

diffusion tensor imaging (DTI), and cortical thickness language-specific imaging features. The ridge 

regression models were trained with a 5-fold cross validation procedure and final R2 values were 

calculated for the full training set. With all features included, all four ridge regression models performed 

with an R2 value above 0.90. Due to the sample size of the dataset, we were unable to test the ridge 

regression models on a held-out sample, thus the resultant R2 values should be cautiously interpreted 

outside the context of the present sample.  

 

Relationship of key language-specific imaging measures to language function 

After retaining the top tertile of features from the ridge regression model of each language test, OLS 

regression models were fit to predict performance on each language test. Of the four tests, the Stroop 
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Color Naming test was the only test significantly predicted by the top tertile set of 17 language-specific 

multimodal imaging features (R2 = 0.58, R2 corrected = 0.31, p < 0.05). The top tertile of features 

comprised of 4 rsFC measures (including 2 ELN measures), 5 cortical thickness measures, and 8 DTI 

measures. Age, sex, mean global rsFC, mean cortical thickness, and mean DTI were not retained in the 

top tertile of features. The relative coefficients (feature weights) of the ridge regression model are shown 

in Table 3. 

 

Discussion 

The main findings of our study point to decrements in language function and alterations within the ELN 

of pwMS that have been largely overlooked as components of the cognitive profile of pwMS, which has 

primarily focused on memory and processing speed impairment. In our approach, we derived summary 

measures to capture large-scale organizational shifts of the ELN. This approach has been used in prior 

work to test functionally meaningful shifts in memory subnetwork organization 19. By comparing the ELN 

summary measures of pwMS to HCs, we found that pwMS exhibited greater within-ELN connectivity 

relative to HCs. A trend-level difference was also observed for Seg-I. While there were no significant 

associations of index scores to language function, trend-level associations suggest that we may have been 

underpowered to detect significant relationships. Finally, our exploratory analysis tested a multimodal 

model of language function including functional and structural MRI variables, which highlighted the 

importance of key white matter tracts for predicting language function in pwMS. 

 

Prior studies employing rsFC have generally evaluated connectivity across primary brain networks, e.g., 

the default-mode network, the salience network, and their constituent nodes 37,38. Here, we employed a 

strategy of calculating network-level summary index scores, consistent with our prior work 18. The 

advantage of summary measures is that they permit explicit tests of potential mechanisms of large-scale 

network reorganization to explain dysfunction within a prespecified cognitive domain. Within-ELN 

connectivity characterizes the intrinsic wiring of the language network, with higher values suggesting 

stronger ‘local’ processing. Between-ELN connectivity, conversely, captures the affinity for nodes of the 

ELN to functionally wire with non-ELN cortical regions, a proxy for ‘global’ connectivity of the ELN. 

Seg-I describes the balance between ‘local’ and ‘global’ connectivity of the ELN (Figure 2). Comparing 

these measures between diagnostic groups as well as relating their values to language test performance 

can thus provide insight into potentially MS-specific neural reorganization related to language 

dysfunction. Our results highlight higher within-ELN connectivity in the MS group compared to HCs, 

suggesting stronger connectivity of nodes within the ELN. We also observed slightly elevated (though 

non-statistically significant) segregation in the MS group pointing toward more local than global 

connectivity of the ELN.  

 

There is moderate agreement of these results with prior work reporting patterns of network segregation 

within functional subnetworks in cognitively impaired pwMS 37-39. Segregated processing is hypothesized 

to represent functional rerouting as a compensatory mechanism to preserve communication between 

distant and potentially structurally disconnected brain regions 40. Some studies, however, have shown 

alternate patterns of network segregation in pwMS, potentially due to the high sensitivity of the measure 

to disease stage 41. Nonetheless, these studies implicate functional rerouting as a probable phenomenon 

with relevance for cognitive status throughout the MS disease course.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.30.23294843doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.30.23294843
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

The positive trend of stronger within-ELN connectivity to better language performance supports the 

hypothesis that functional rerouting is compensatory in early stages of MS disease 42. As a mechanistic 

hypothesis, these results point to the possibility that as lesion load and white matter structural damage 

increase, compensatory functional reorganization takes place 43, leading to greater within-ELN 

connectivity to maintain language function. In contrast, no relationships were observed between any ELN 

summary measures and language performance in HCs, suggesting that functional rerouting of large-scale 

networks may be a marker of compensation in the face of pathological brain changes. Longitudinal 

studies relating change in functional reorganization to change in cognition across diagnostic groups could 

help validate this hypothesis. 

 

In our secondary analysis, we compared the predictive value of derived ELN summary measures of rsFC 

to structural imaging measures. This analysis was conducted in the MS group only, given our aim to 

explore disease-specific mechanisms of language (dys)function. A subset of the 17 most important 

imaging features (identified with a data-driven approach; see Table 3) significantly predicted performance 

on the Stroop Color Naming test. The top feature set was largely dominated by FA and MD of candidate 

language pathways (superior longitudinal fasciculus and inferior longitudinal fasciculus), consistent with 

the known importance of demyelination as a hallmark of MS disease and links of white matter 

microstructure to cognitive impairment 33,41. The two ELN measures retained in the top feature set were 

between-ELN connectivity and Ant-I, despite their failure to discriminate between MS and HC groups. 

The diversity of features retained in the top feature set suggests that brain network rerouting is a complex 

process that likely occurs structurally, functionally, and at varying levels (i.e., node-node and network-

level; Figure 4).  

 

Another advantage of employing network summary measures as opposed to node-node connections in our 

rsFC analysis is that they minimize individual inhomogeneities (e.g., global rsFC, lateralization 

differences) that hinder standardization of neuroimaging metrics for use as clinical trial outcomes and in 

mechanistic models of cognitive impairment 15. Seg-I, for example, is more resistant to scanner effects as 

it compares relative differences in network activations on a within-subject basis. If global rsFC was 

higher overall in one group, Seg-I would be unaffected as the value is dependent on the relative ratio of 

within-ELN to between-ELN connectivity. Other measures such as within and between-ELN connectivity 

minimize other inhomogeneities such as lateralization differences across individuals. These measures, 

calculated downstream of our neuroCombat harmonization, rely on the connectivity of many nodes in a 

network reducing the potential effects of individual node-node outliers. Finally, network summary 

measures are replicable, simple to calculate, and theoretically driven making them uniquely useful as 

mechanistic descriptors of language impairment. In all, our study was well-equipped to address our aim of 

providing an initial network-level model of language in a sample of adults with MS that would benefit 

from replication in a larger sample collected across many scanners, to bolster validity of our results. 

 

Language function has largely been omitted from the widely accepted conceptualization of cognitive 

impairment in MS as dominated by memory and information processing speed dysfunction. Based on 

growing evidence supporting the prevalence of language dysfunction 6-9, this long-standing oversight 

needs to be corrected. The present study aims to shift the field’s focus to language decrements in MS, and 

sheds light on a network-level model to guide mechanistic understanding of how language function is 

disrupted in a ‘dysconnection syndrome’ 44. Revisiting the seminal work of Rao and colleagues to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.30.23294843doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.30.23294843
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

characterize cognitive impairment in MS reveals that in fact verbal fluency was recognized among the top 

most impaired domains 10. It is of note that the fluency task they administered was grouped with memory 

measures, which may have been one factor that set us on a path to disregard the important role of 

language in MS.  

  

There are some notable limitations to this study. The MS sample primarily comprised patients who were 

relatively early in disease progression. Future work involving patients in later stages of MS is warranted, 

as it would extend our findings beyond a relatively limited snapshot of MS disease stages. This could be 

accompanied by longitudinal studies that relate changes in imaging measures to changes in cognition, 

which would be a more valid approach for elucidating mechanisms. The sample-size of this study may 

have limited our ability to detect significant relationships, specifically in the regression analysis. The 

growing commitment to data sharing and open science in the neuroscience community will hopefully 

provide the opportunity for replication and follow-ups in a more adequately powered sample of pwMS. A 

larger cohort would also help address scanner differences between cohorts. In this study, the two cohorts 

used were collected on different scanners. To harmonize them, we applied neuroCombat, which estimates 

voxel or parcel-level adjustments to eliminate effects directly associated with different scanner types and 

protocols. Although the method has been validated for use on a limited number of different scanners, 

utilizing several cohorts collected across more scanners would yield more effective adjustments based on 

scanner effects 37. 

 

Conclusions 

The results of this proof-of-concept study support the need for future explorations into the neural 

substrates of language dysfunction in MS. The derived functional network-level measures in addition to 

the identified structural neuroimaging metrics provide a detailed set of imaging features that can be tested 

as clinically meaningful predictors and mechanisms of language dysfunction. The proposed framework 

further facilitates a shift toward the use of standardized network-level neuroimaging metrics in 

combination with well-defined measures of neuroanatomical language regions to develop a more 

complete and neuroanatomically specific model of language impairment in MS. With these tools in hand, 

there is potential for critical advancements into the mechanism and treatment of language impairment in 

MS. 
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Table 1. General Characteristics of the study group. 

Variables  MS (N=54) HCs (N=54) p-value 

Sex (N%) 

Men 

Women 

 

12 (22.2) 

42 (77.8) 

 

14 (25.9) 

40 (74.1) 

 

0.65 

Age 39.8 ± 9.8^ 39.0 ± 9.8 0.73 

Estimated intelligence 

quotient a 

111 ± 7.6 111 ± 8.6 0.64 

aAs estimated by Wechsler Test of Adult Reading, ^ mean ± SD. 

MS: multiple sclerosis; HCs: Healthy controls. 
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Table 2. Language test performance for study groups. 

Variables  MS  HCs t-score p-value 

Verbal fluency 

FAS (phonemic fluency)  

  

   42.2±13.7^ 

 

44.3±10.1 

 

-0.88 

 

0.19 

Animals (semantic fluency) 22.0±6.1 24.6±4.9 -2.45 0.008* 

Rapid automatized naming 

Stroop Color 

 

71.5±11.9 

 

78.1±14.1 

 

-2.65 

 

0.005* 

Stroop Word  95.1±16.7 105.5±16.8 -3.20 0.0009** 

^mean ± SD; *p<0.01, **p<0.001. 

MS: multiple sclerosis; HCs: Healthy controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.30.23294843doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.30.23294843
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Ridge regression coefficients for Stroop color test. 

Feature Weight 

LH SLFP MD +11.349 

LH SLFT FA +6.547 

RH SLFT FA +6.311 

Left inferior temporal-right inferior temporal +5.416 

LH ILF FA +5.292 

ELN between-ness +4.002 

RH inferiorparietal thickness +3.753 

Broca’s area-left IPFC +3.738 

LH SLFT MD +3.564 

anteriority index -3.773 

LH superiortemporal thickness -3.862 

RH parsorbitalis thickness -4.435 

RH SLFP FA -5.660 

LH ILF MD -5.896 

LH precuneus thickness -7.363 

RH SLFT MD -7.504 

FA: fractional anisotropy; MD: mean diffusivity; LH: left; RH: right; 

SLFP: superior longitudinal fasciculus-parietal endings; SLFT: 

superior longitudinal fasciculus-temporal endings; ILF: inferior 

longitudinal fasciculus. 
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Legends 

 

Figure 1. Nodes and connections of the ELN defined by Tomasi & Volkow, 201213. 

(a) axial view, (b) coronal view, (c) left sagittal view. 1= Wernicke’s area; 2= Right inferior parietal; 3= 

Middle frontal; 4= Pars opercularis; 5= Left pars orbitalis; 6= Right pars orbitalis; 7= Left inferior 

temporal; 8= Right inferior temporal; 9= Superior frontal; 10= Cerebellum; 11= Broca’s area; 12= Pars 

triangularis; 13= Left caudate; 14= Right caudate; 15= Putamen/globus pallidus; 16= Ventral thalamus; 

17= Striate; 18= Extrastriate; 19= Posterior parietal; 20= Superior Parietal; 21= Left superior temporal; 

22= Right superior temporal; and 23= Cingulate. 

 

Figure 2. Derivation of ELN summary measures. 

(a) Square matrix of rsFC within the 23 ELN nodes used to calculate within-ELN connectivity. Left 

sagittal view of within-ELN connectivity. (b) Matrix of rsFC between 23 ELN ROIs and 200 non-ELN 

ROIs of the rest of the brain used to calculate between-ELN connectivity. Darker red edges represent 

stronger connectivity between nodes (higher r-values) while lighter red and light blue represent low 

connectivity (see scale in a). Negative connectivity values are set to zero in the calculation of ELN 

summary measures. (c) Anterior and posterior nodes of the ELN. Dotted line is a reference for anterior 

versus posterior regions of the ELN. (d) Segregation index equation. ELN: extended language network. 

  

Figure 3. Group differences in network summary metrics. 

Quantification of (a) within-ELN connectivity, (b) between-ELN connectivity, (c) Seg-I, and (d) Ant-I for 

individuals with MS and HCs. Means are marked with “X”. *p < 0.05. ELN: extended language network; 

Se-I: segregation index; Ant-I: anteriority index; MS: Multiples sclerosis; HCs: Healthy controls. 

 

Figure 4. Group average within-ELN connectivity.  

(a, b) Average within-ELN connectivity in patients with MS and HCs. Red lines represent the fisher z-

transformed r values of connectivity between nodes with darker lines representing stronger connectivity 

(i.e., higher r-values). (c) Group differences in within-ELN connectivity thresholded at p < 0.05 

uncorrected. Connections include middle frontal to right pars orbitalis, left pars orbitalis to pars 

triangularis, right pars orbitalis to right inferior temporal, left inferior temporal to right inferior temporal, 

and Broca’s area to pars triangularis. ELN: extended language network; MS: Multiples sclerosis; HCs: 

Healthy controls. 
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Figure 4 
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