Symptom experience before vs. after confirmed SARS-CoV-2 infection: a population and case control study using prospectively recorded symptom data.

Authors

Carole H. Sudre, PhD^{1,2,3}
Michela Antonelli, PhD¹
Nathan J Cheetham, PhD
Erika Molteni, PhD¹
Liane S Canas, PhD¹ Michela Antonelli, PhD
Nathan J Cheetham, PhD
Erika Molteni, PhD¹
Liane S Canas, PhD¹
Vicky Bowyer, MSc⁴

Nathan J Cheetham, PhD*
Erika Molteni, PhD¹
Liane S Canas, PhD¹
Vicky Bowyer, MSc⁴
Ben Murray, MSc¹ Erika Molteni, PhD⁺
Liane S Canas, PhD¹
Vicky Bowyer, MSc⁴
Ben Murray, MSc¹
Khaled Rjoob, PhD² $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ Liane S Canas, PhD⁺
Vicky Bowyer, MSc⁴
Ben Murray, MSc¹
Khaled Rjoob, PhD²
Marc Modat, PhD¹

Ben Murray, MSc⁺
Khaled Rjoob, PhD
Marc Modat, PhD¹
Joan Capdevila Pu
Christina Hu ⁵ $\frac{1}{2}$

Ben Murray, MSc¹
Khaled Rjoob, PhD²
Marc Modat, PhD¹
Joan Capdevila Pujol ⁵ \overline{a} Khaled Rjoob, PhD²
Marc Modat, PhD¹
Joan Capdevila Pujo
Christina Hu⁵
Jonathan Wolf⁵ Marc Modat, PhD⁺
Joan Capdevila Puj
Christina Hu ⁵
Jonathan Wolf ⁵
Tim D Spector, Pro $\frac{1}{2}$

Joan Capdevila Pujol
Christina Hu⁵
Jonathan Wolf⁵
Tim D Spector, Prof⁴
Alexander Hammers, I

Christina Hu
Jonathan Wol
Tim D Spector
Alexander Har
Claire J Steves Jonathan Wolf
Tim D Spector, F
Alexander Hamr
Claire J Steves, F
Sebastien Ourse Tim D Spector, Prof
Alexander Hammers,
Claire J Steves, Prof^{4,}
Sebastien Ourselin, F
Emma L Duncan, Pro Alexander Hammers, MD, PhD^{4, 9}
Claire J Steves, Prof^{4, 7}
Sebastien Ourselin, Prof⁴
Emma L Duncan, Prof^{4,8,}
Affiliations Claire J Steves, Prof \tilde{a}
Sebastien Ourselin, Prof 2
Emma L Duncan, Prof 2
Affiliations
1. School of Biom
2. MRC Unit for L

-
- Sebastien Ourselin, Prof^{4,8,}
Emma L Duncan, Prof^{4,8,}
Affiliations
1. School of Biomec
2. MRC Unit for Life
Experimental Me $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ Emma L Duncan, Prof ^{4,8},
Affiliations
1. School of Biomee
2. MRC Unit for Life
Experimental Me
3. Centre for Medic 1. Sch
2. MR
2. MR
Exp
3. Cen
4. Dep
	- 1. School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.

	2. MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and

	Experimental Medicine, University College Experimental Medicine, University College London, London, UK

	2. Centre for Medical Image Computing, Department of Computer Science, University Colle

	1. London, London, UK

	2. Department of Twin Research and Genetic Epide Experiment for Medical Image Computing, Department of Computer
London, London, UK
Department of Twin Research and Genetic Epidemiology, King's
ZOE Limited London, UK
Guy's and St Thomas' PET Centre, Guy's and St Thomas' NH 3. Centre for Medical Image Computer Computer Computer States College London, London, UI
3. Computer of Twin Research and Genetic Epidemiology, King's College London, London, UI
3. Guy's and St Thomas' PET Centre, Guy's an
	- Department of Twin
ZOE Limited London,
Guy's and St Thomas
Department of Agein
Department of Endoo
	-
	- 6. Guy's and St Thomas' PE
7. Department of Ageing ar
8. Department of Endocrino
words
	- 5. ZOE Limited London, UK
6. Guy's and St Thomas' PET Centre, Guy's and St Thomas' NHS Foundation trust, London, UK.
7. Department of Ageing and Health, Guy's and St Thomas' NHS Foundation trust, London, UK.
8. Department
- 7. Department of Ageing and Health, Guy's and St Thomas' NHS Foundation trust, London, UK.
8. Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK.
Key words
COVID-19 symptoms; long COVID; p 7. Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK.
8. Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK.
1D-19 symptoms; long COVID; post-COVID.

Key words

8. Beptartment of Endocrinology, Guy's and St Thomas (MD-19 symptoms; long COVID; post-COVID.
The Symptoms; long COVID; post-COVID.
The count

Word count

Abstract: 256
Number of figures: 8
Number of tables: 1 Abstract: 256
Number of figures: 8

Number of tables: 1

Abstract

Background:

Methods

Some marviadals experience prolonged illness duration.
 Methods

Survival analysis was performed in adults (n=23,452) with community-managed SARC-CoV-2

infection prospectively self-logging data through the ZOE COVID Sym infection symptoms affected post-COVID illness duration.
Methods
Survival analysis was performed in adults (n=23,452) with
infection prospectively self-logging data through the ZOE (
weekly, from 8 weeks before to 12 wee Survival analysis was performed in adults (n=23,452) with community-managed SARC-CoV-2
infection prospectively self-logging data through the ZOE COVID Symptom Study app, at least
weekly, from 8 weeks before to 12 weeks aft infection prospection, and the Logging and the Z_OU (D-19 onset, conditioned on presence vs.
absence of baseline symptoms (4-8 weeks before COVID-19). A case-control study was perform
1350 individuals with long illness (≥ weekly, from 8 weekly here are the 12 weeks before COVID-19). A case-control study was perfor
1350 individuals with long illness (≥8 weeks, 906 [67.1%] with illness ≥12 weeks), matched 1:2
age, sex, body mass index, testin 1350 individuals with long illness (\geq 8 weeks, 906 [67.1%] with illness \geq 12 weeks), matched 1:1 (for
age, sex, body mass index, testing week, prior infection, vaccination, smoking, index of multiple
deprivation) wi 1350 individuals with short life in the specific order in the specific state of multiple
deprivation) with 1350 individuals with short illness (<4 weeks). Baseline symptoms were compare
between the two groups; and against

age, sex, body mass individuals with short illness (<4 weeks). Baseline symptoms were comp
between the two groups; and against post-COVID symptoms.
Findings: Individuals reporting baseline symptoms had longer post-COVID sy deprediently that 1350 individuals with short COVID symptoms.

Findings: Individuals reporting baseline symptoms had longer post-COVID symptom duration (from

10 to 15 days) with baseline fatigue nearly doubling duration. Findings: Individuals reporting baseline symptoms had longer
10 to 15 days) with baseline fatigue nearly doubling duration.
individuals with long illness were asymptomatic beforehand.
symptoms, vs. 255 (18.9%) of 1350 ind Finangs: Individuals reporting baseline symptoms had longer post-COVID symptom duration (from
10 to 15 days) with baseline fatigue nearly doubling duration. Two-thirds (910 of 1350 [67.4%]) of
individuals with long illnes 10 to 15 days) with baseline fatigue nearly doubling duration. Two-thirds (910 of 1350 [67.4%]) of
individuals with long illness were asymptomatic beforehand. However, 440 (32.6%) had baseline
symptoms, vs. 255 (18.9%) of symptoms, vs. 255 (18.9%) of 1350 individuals with short illness (p<0.0001). Baseline symptoms
increased the odds ratio for long illness (2.14 [CI: 1.78; 2.57]). Prior comorbidities were more
common in individuals with lo increased the odds ratio for long illness (2.14 [CI: 1.78; 2.57]). Prior comorbidities were more
common in individuals with long vs. short illness. In individuals with long illness, baseline
symptomatic (vs. asymptomatic) common in individuals with long vs. short illness. In individuals with long illness, baseline
symptomatic (vs. asymptomatic) individuals were more likely to be female, younger, and have prior
comorbidities; and baseline an symptomatic (vs. asymptomatic) individuals were more likely to be female, younger, and
comorbidities; and baseline and post-acute symptoms and symptom burden correlated st
Interpretation: Individuals experiencing symptoms symptomatic (vs. asymptomatic) individuals in the interestinct) is a seriestinct, younger, and have prior comorbidities; and baseline and post-acute symptoms and symptom burden correlated strongly.
Interpretation: Individu Interpretation: Individuals experiencing symptoms before COVID-19 have longer illness duration
increased odds of long illness. However, many individuals with long illness are well before SARS-C
2 infection. Interpretation: Individuals experiencing symptoms before COVID-19 have longer imress duration and
increased odds of long illness. However, many individuals with long illness are well before SARS-CoV-
2 infection. 2 infection.

Introduction

SARS-CoV-2 has infected more than half a billion individuals to date. Individuals of older age, male
sex, and with prior comorbidities have poorer outcomes after acute infection, including higher rates
of hospitalization a sex, and mortality [1]. many individuals hospitalized for COVID-19 experience
protracted convalescence [2,3] particularly individuals requiring ventilatory support; a longitudinal
UK study found the majority (71%) were not protracted convalescence [2,3] particularly individuals requiring ventilatory support; a longi
UK study found the majority (71%) were not fully recovered six months post-discharge [4].
Imany community-managed individuals a protracted convariations (2,3) particularly individuals requiring ventilatory supportions of the majority (71%) were not fully recovered six months post-discharge [4]. Howeve many community-managed individuals also report many community-managed individuals also report protracted post-acute illness. An early
community-based study found 13.3% experienced illness beyond 4 weeks, and 2.8% beyond 12
weeks, with longer duration associated with fe many community-based study found 13.3% experienced illness beyond 4 weeks, and 2.8% beyo
weeks, with longer duration associated with female sex, older age, more severe acute illn
prior comorbidities [3]. In the UK, ongoing community-based study found 2010 in performanced study from 13.3% provided illness, are prior comorbidities [3]. In the UK, ongoing symptomatic COVID-19 (OCS) and the Post COVID-19 syndrome (PCS) are defined as otherwise-u prior comorbidities [3]. In the UK, ongoing symptomatic COVID-19 (OCS) and the Post COVID-19
syndrome (PCS) are defined as otherwise-unexplained symptoms and signs for 4-12 weeks (OSC), after an acute illness attributable prior comorbidities [3]. In the UK, ongoing symptomate COVID-19 (COU) more than 12 weeks (OSC) more than 12 weeks (PCS), after an acute illness attributable to SARS-CoV-2 infection [5] with so variation internationally in syndrome (PCS), are defined as otherwise analytical symptoms and signs for $T = 12$ week (PCS), after an acute illness attributable to SARS-CoV-2 infection [5] with some variation internationally in terminology and symptom

variation internationally in terminology and symptom duration (e.g., 8 vs. 12-week threshold) [6]).
PCS prevalence estimates vary substantially. A recent meta-analysis [7] highlighted the
heterogeneity of published studie PCS prevalence estimates vary substantially. A recent meta-analysis [7] highlighted the
heterogeneity of published studies (l^2 = 100%) with widely differing prevalence estimates (9%-81%
varying globally, regionally, and PERTURENCE EDMINISTRIP, THE EMPTON META-META-ANDRETIC MAP, THE INDEEDED META-
Photography and by the meta-analysis (PCS prevalence estimates der
predominantly hospitalized cohorts. In March 2023 the UK Office of National heterogeneity of published studies ($I = 100\%$) with widely differing prevalence estimates (9%-81%),
varying globally, regionally, and by hospitalization status. PCS prevalence estimates derive from
predominantly hospitali predominantly hospitalized cohorts. In March 2023 the UK Office of National Statistics estimated 1.9
million citizens (2.9% of the population) had self-reported long COVID (defined as symptoms for
more than four weeks afte million citizens (2.9% of the population) had self-reported long COVID (defined as symptoms for
more than four weeks after either test-positive or suspected SARS-CoV-2 infection)[8]. An earlier UK
study reported prevalence million chain four weeks after either test-positive or suspected SARS-CoV-2 infection][8]. An earlier
study reported prevalence of PCS of 1.2%-4.8% in test-positive individuals, considering only
symptoms that limited day-t study reported prevalence of PCS of 1.2%-4.8% in test-positive individuals, considering only
symptoms that limited day-to-day functioning [9]. Neither study included a control group. In
contrast, a large UK primary-care st symptoms that limited day-to-day functioning [9]. Neither study included a control group. In
contrast, a large UK primary-care study comparing community-managed adults with contrast, a large UK primary-care study comparing sum transit, a large UK primary-care study comparing community-managed adults with confirent SARS-CoV-2 infection to a matched contemporaneous cohort reported symptom prevalen
(here, at least one symptom) at 12 weeks of 5. contrast, a large UK primary-care study comparing community-managed adults with confirmed
SARS-CoV-2 infection to a matched contemporaneous cohort reported symptom prevalence
(here, at least one symptom) at 12 weeks of 5.4 SARS-CoV-2 infection to a matched contemporaneous cohort reported symptom prevalence (here, at least one symptom) at 12 weeks of 5.4% in infected vs. 4.3% in uninfected individuals $[10]$.

Infections, including bacteria (e.g., Borrelia) viruses (e.g., Epstein-Barr Virus) and parasites (e.g.,
Giardia), which share many characteristics including fatigue, exertional intolerance, and
neurocognitive symptoms ('br Giardia), which share many characteristics including fatigue, exertional intolerance, and
neurocognitive symptoms ('brain fog') (recently comprehensively reviewed [11]). Post-acute
infection syndromes are more common in fe Etherica, which share many characteristics including targety such share meaning that
infection syndromes are more common in females and younger individuals, though a rel
with initial illness severity is less clear [11]. Fe infection syndromes are more common in females and younger individuals, though a relation
with initial illness severity is less clear [11]. Few studies assess pre-morbid risk factors for post-
syndromes prospectively [12] infection symplements are more common termined and younger individuals, in eigenstanding
with initial illness severity is less clear [11]. Few studies assess pre-morbid risk factors for post-acu
syndromes prospectively [12 syndromes prospectively [12] despite possible influence of premorbid conditions on post-acute
illness symptomatology [13]. Postulated non-exclusive mechanisms include remnant infection,
4 illness symptomatology [13]. Postulated non-exclusive mechanisms include remnant infection,
illness symptomatology [13]. Postulated non-exclusive mechanisms include remnant infection, illness symptomatology [13]. Postulated non-exclusive mechanisms include remnant infection,

autoimmunity induction, and/or maladaptive tissue repair; however, for most affected individuals,
definitive pathophysiology is unclear despite extensive investigations. Whether similar processes
underpin PCS, and whether

underpin PCS, and whether common to all PCS individuals, is unclear [14].
The ZOE COVID Symptom Study began in March 2020 with participating adults logging their healt
data contemporaneously across the pandemic. Thus, symp The ZOE COVID Symptom Study began in March 2020 with participating ad
data contemporaneously across the pandemic. Thus, symptoms could be a
longitudinally in individuals subsequently contracting SARS-CoV-2, and irre
profil data contemporaneously across the pandemic. Thus, symptoms could be assessed prospectively at
longitudinally in individuals subsequently contracting SARS-CoV-2, and irrespective of ultimate illne
profile.
We hypothesised t data contemporance are pandemic. Thus, symptoms could be above a properties and the illness
profile.
We hypothesised that symptoms and comorbidities before SARS-CoV-2 infection might contribute to
post-acute symptomatology

longitudinal, in individuals subsequently subsequently experience of unintersement profile.
We hypothesised that symptoms and comorbidities before SARS-CoV-2 infection might contribute to
post-acute symptomatology, includi profile.
We hypothesised that symptoms and comorbidities before SARS-CoV-2 infection might contribute to
post-acute symptomatology, including illness duration. We assessed:
A) symptoms reported before COVID-19, in individu

- Metal symptomatology, including illness duration. We assessed:

A) symptoms reported before COVID-19, in individuals subsequently experiencing long vs. short

illness;

B) symptom correlation before and after SARS-CoV-2 in examine symptomatology, including initial that the subseque

illness;

B) symptom correlation before and after SARS-CoV-2 infection; a

C) whether prior symptoms and comorbidities affect post-COVID A) symptoms reported before COVID-19, in individuals subsequently inperioding and individuals subsequently experience COVID-19, in the COVID-19, in the COVID-19, whether prior symptoms and comorbidities affect post-COVID i
	-
	- iversified
interface
s
s B) whether prior symptoms and comorbidities affect post-COVID illn

	shods

	. C) whether prior symptoms affect post-COVID in the prior symptoms affect post-COVID in the profile. The prior symptoms are computed to the profile of \mathcal{C} in the prior symptom of \mathcal{C} is a computed to the profile.

Methods

Cohort

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ The Ltd, King's College London, Massachusetts General Hospital, Lund University and Uppsala
University (ethics approval: KCL ethics committee REMAS no. 18210, review reference LRS-19/20–
18210, with all individuals providi University (ethics approval: KCL ethics committee REMAS no. 18210, review reference LRS-19/
18210, with all individuals providing informed consent for use of their data in COVID-19 resear
registration). After initial loggi University (ethics approximates committee Remark of Lethical, COVID-19 research a

registration). After initial logging of baseline demographics including comorbidities, (Suppl. Table :

participants were prompted daily to 1821-19 mm annumed providing incomponent of the control and monoidities, (Suppl. Table S1
participants were prompted daily to report any symptoms (direct questions and free text (Suppl.
Table S1)), SARS-CoV-2 testing and r registration). After initial logging of baseline demographics including comorbidities, (Suppl. Table 31)
participants were prompted daily to report any symptoms (direct questions and free text (Suppl.
Table S1)), SARS-CoVparticipants were prompted daily to report any symptoms (direct questions and rice text (Supplit
Table S1)), SARS-CoV-2 testing and results, and vaccination(s) using a phone-based app. Data
collection expanded on 4 Novembe Table S1)), SARS-COV-2 testing and results, and vaccination(s) using a phone-based app. Data
collection expanded on 4 November 2020 to include more direct symptom questions. The col
was surveyed regarding pre-pandemic ment was surveyed regarding pre-pandemic mental health diagnoses in February-April 2021 [15] (Supp
Table S2). The current dataset was cut on 30 May 2022 with symptom assessment altering the
following day.
As previously [3], COV was surveyed regarding pre-pandemic mental health diagnoses in rebruary-April 2021 [15] (Suppl.
Table S2). The current dataset was cut on 30 May 2022 with symptom assessment altering the
following day.
As previously [3], C

Table S2). The current dataset was cut on 30 May 2022 with symptom assessment altering the
following day.
Table S1) commencing between 14 days before and 7 days after a self-reported positive polym
chain reaction (PCR) or Forening any.
As previously [
Table S1) coming
chain reaction
subsequent illr Table S1) commencing between 14 days before and 7 days after a self-reported positive polymerase
chain reaction (PCR) or lateral flow antigen test (LFAT). For individuals with multiple positive tests,
subsequent illness p Table S1) commencing between 14 days before and 7 days after a sen-reported positive polymerase
chain reaction (PCR) or lateral flow antigen test (LFAT). For individuals with multiple positive tests,
subsequent illness pr subsequent illness profiles were defined for tests spaced >90 days apart. If \leq 90 days apart, illness subsequent illness profiles were defined for the stage spaced \sim 10 days apart. If \sim 90 days apart. If \sim

profile was defined according to the first positive test. Illness duration was calculated from first
symptomatic day until return to asymptomatic (i.e., logging as healthy) [3,16]. Consideration was
given to possible right siven to possible right censoring in duration calculation (ongoing illness at final data censoring;
logging discontinuation while still symptomatic). To calculate illness duration attributable to acute
SARS-CoV-2 infection logging discontinuation while still symptomatic). To calculate illness duration attributable to act
SARS-CoV-2 infection, individuals were required to log as healthy for at least one week immedia
before COVID-19 commenceme SARS-COVID-19 commencement [3,16]. If symptoms were again logged within one week of a
healthy report, illness was considered ongoing, thus allowing for illness fluctuation [3,16].
The baseline period was defined as 4 to 8

healthy report, illness was considered ongoing, thus allowing for illness fluctuation [3,16].
The baseline period was defined as 4 to 8 weeks before, and the post-COVID period as 8-12 weeks bealthy report, illness was considered ongoing, thus allowing for illness fluctuation [3,16].
The baseline period was defined as 4 to 8 weeks before, and the post-COVID period as 8-12 we
after, COVID-19 onset. To ensure co he baseline period was defined as 4 to 8 weeks before, and the post-COVID period as 8-1.
after, COVID-19 onset. To ensure consistent assessment in the entire cohort for the necess
weeks, data were constrained to individual after, COVID-19 onset. To ensure consistent assessment in the entire cohort for the necessary 20
weeks, data were constrained to individuals in whom COVID-19 commenced between 30 Decembe
2020 (8 weeks after 4 November 2020 after, COVID-19 commenced between 30 December 2020 (8 weeks, data were constrained to individuals in whom COVID-19 commenced between 30 December 2020 (8 weeks after 4 November 2020, date of symptom question expansion) and weeks, data were constrained to individuals in whom COVID-19 commenced between 30
2020 (8 weeks after 4 November 2020, date of symptom question expansion) and 2 Marc
weeks before 1 June 2022, date of symptom assessment alt h 2022 (12
_{Is}
eriod of
rders that weeks before 1 June 2022, date of symptom assessment alteration). Symptom burden was
calculated as number of individual symptoms reported at least once during the defined period of
assessment. Self-reported mental health d weeks before 1 June 2022, and the property alternative interation, property alternative rate
calculated as number of individual symptoms reported at least once during the defined per
assessment. Self-reported mental health assessment. Self-reported mental health diagnoses were considered overall, and for disorders that
can include psychosis (Suppl. Table S2).
Short illness was defined as <4 weeks and long illness as ≥8 weeks.
Inclusion crite can include psychosis (Suppl. Table S2).
Short illness was defined as <4 weeks and long illness as ≥8 weeks.
Inclusion criteria were:

- can include psychosis (Suppl. Table S2).
Short illness was defined as <4 weeks and long illness as ≥8 weeks.
Inclusion criteria were:
a) self-reporting UK adults presenting with PCR- or LFAT-confirmed COVID-19, between 30 S
Short inclusion criteria were:
Short in the self-reporting UK adults presenting with PCR- or LFAT-confi
December 2020 and 2 March 2022.
Short long in the self once weekly, from ≥8 weeks before until ≥1
- a) self-reporting U
December 2020
b) logging at least
commencemen Becember 2020 and 2 March 2022.

a) logging at least once weekly, from ≥8 weeks before until ≥12 weeks after COVID-19

commencement.

c) logging as healthy in the week before COVID-19 commencement.

d) co-morbidity and de Degging at least once weekly, from ≥
Commencement.
logging as healthy in the week befor
co-morbidity and demographic data
the mental health survey
	-
	- b) logging at least once were week before COVID-19 commencement.

	b) logging as healthy in the week before COVID-19 commencement.

	d) co-morbidity and demographic data logged at registration, with subsequent particip

	the Economization

	logging as healthy

	co-morbidity and

	the mental health

	on to non-adhere

d) co-morbidity and demographic data logged at registration, with su
the mental health survey.
ddition to non-adherence to inclusion criteria, individuals vaccinated v
c-COVID periods or one week before these periods were d) co-mortal health survey.

ddition to non-adherence to inclusion criteria, individuals vaccinated within either baseline or

:-COVID periods or one week before these periods were excluded, given symptom overlap

veen vac on to non-adherence to in
VID periods or one week b
n vaccination side-effects a
aining individuals, a Cox m In addition to non-addition to include the periods were excluded, given symptom overlap
between vaccination side-effects and COVID-19 [17].
For remaining individuals, a Cox model was performed, adjusting for demographic cr

postmeen vaccination side-effects and COVID-19 [17].
For remaining individuals, a Cox model was performed, adjusting for demographic criteria inclu
age, sex, body mass index (BMI), week of test, number of test-positive SAR For remaining individuals, a Cox model was performe
age, sex, body mass index (BMI), week of test, numbe
smoking status, index of multiple deprivation (IMD), a
effect of any symptom present at baseline on median For remaining individuals, a Commodel was performed, any adjusting of themographic criteria including
age, sex, body mass index (BMI), week of test, number of test-positive SARS-CoV-2 infections,
smoking status, index of m anoking status, index of multiple deprivation (IMD), and number of vaccinations, evaluating the
effect of any symptom present at baseline on median duration overall, and for each symptom
individually. effect of any symptom present at baseline on median duration overall, and for each symptom individually. effect of any symptom present at baseline on median duration overall, and for each symptom
individually. individually.

Selected first. Individuals with short illness (<4 weeks) were then selected, matched 1:1 per
previously listed demographic criteria using the Hungarian algorithm [18], minimizing the Euclidean
distance cost and ensuring e previously listed demographic criteria using the Hungarian algorithm [18], minimizing the Eu
distance cost and ensuring equal weighting across all characteristics (normalising baseline v:
before matching); without replacem previously interacting depine anticia using the Hungarian algorithm [19], minimizing the Euclidean
distance cost and ensuring equal weighting across all characteristics (normalising baseline variables
before matching); wit

before matching); without replacement for controls.
Data were compared across groups using the McNemar test for counts and Wilcoxon signed rank
tests for continuous variables.
Using conditional logistic regression models,

before matching); Data were compared across groups using the McNem
tests for continuous variables.
Using conditional logistic regression models, we assem
to baseline symptom presentation (considered overa Late were compared across groups using the McNemar test of the McNemar theorem, given rank
tests for continuous variables.
Using conditional logistic regression models, we assessed the odds of long illness duration accordi Using conditional logistic regre
to baseline symptom presentat
individual symptom) using thre
1) Model 1 – no adjustme Using conditional regression models, we assessed the odds of an american models of adjustment and set and for each individual symptom) using three levels of adjustment for covariates:

1) Model 1 – no adjustment

2) Model

-
- to baseline symptom) using three levels of adjustment for covariates:

1) Model 1 no adjustment

2) Model 2: As for Model 1, with additional adjustment for presence of any comorbidity logged

at registration (allergic rh individual symptom) and given the levels of any administrator to contain the levels of adjustment for pressors
2) Model 2: As for Model 1, with additional adjustment for pressors at registration (allergic rhinitis [hay fev 2) Model 2: As for Model 1,
at registration (allergic rhi
lung disease, asthma)
3) Model 3: As for Model 2, 2) at registration (allergic rhinitis [hay fever], cancer, diabetes, kidney disease, heart disease,
lung disease, asthma)
3) Model 3: As for Model 2, with additional adjustment for prior mental health diagnosis.
2) Model 3
	-

at registration (and given rhinitis [hay] feveral), cancer, manifestively measure, measure, heart and sum all
Model 3: As for Model 2, with additional adjustment for prior mental health diagnosis.
tigate relationships betw Model 3: As for Model
tigate relationships be
tigate relationships be
ncing each individual sy 3) Model 2: And a displayment displayment for procedure the diagnosis.
Notes figate relationships between baseline and post-COVID symptoms, we assessed the odd
Priencing each individual symptom in the post-COVID period acc Experiencing each individual symptom in the post-COVID period according to its presence at
baseline, separately in individuals with long and with short illness, using logistic regression models
with the three levels of adj baseline, separately in individuals with long and with short illness, using logistic regression m
with the three levels of adjustment detailed above, and adjusting for previously listed demog
variables. We further investig baseline, separate levels of adjustment detailed above, and adjusting for previously listed demographic
variables. We further investigated possible sex-based difference in reporting at baseline and in the
post-COVID period wariables. We further investigated possible sex-based difference in reporting at baseline and in the
post-COVID period according to duration group given previous evidence of sex differences in post-
acute infection syndrom variables. We further investigated positive since the interfaction of sex-differences in post-
acute infection syndromes [11], and OSC/PCS [8]. For symptoms with a severity scale (fatigue and
dyspnoea), we compared severit symptom separately for long and short illness groups using summertime (May-September) as dyspnoea), we compared severity during baseline and post-COVID periods in individuals reporting
these symptoms at baseline; we also considered dyspnoea specifically in individuals with prior
asthma/lung disease. Seasonal e dysposition, we compared severity during discussion provides in position individuals with prior asthma/lung disease. Seasonal effects on symptom reporting were assessed for each individual
symptom separately for long and s asthma/lung disease. Seasonal effects on symptom reporting were assessed for each individua
symptom separately for long and short illness groups, using summertime (May-September) as
reference. As some co-morbidities exhibi symptom separately for long and short illness groups, using summertime (May-September) as
reference. As some co-morbidities exhibit symptom seasonality (e.g., allergic rhinitis) adjustme
previously listed demographic varia symptom separately for long and short inherent groups, and same lines (e.g., allergic rhinitis) adjustm
previously listed demographic variables and Model 3 variables was applied.
For individuals with long illness, we inves

previously listed demographic variables and Model 3 variables was applied.
For individuals with long illness, we investigated demographic differences according to baseline
symptomatology (≥1 symptom at baseline) using Chipreviously listed demographic differences are
previously listed demographic differences and
symptomatology (21 symptom at baseline) using Chi-squared test for catego
U-Test for continuous variables. We investigated the rel symptomatology (≥ 1 symptom at baseline) using Chi-squared test for categorical and Mann Whi
U-Test for continuous variables. We investigated the relationship between baseline and post-CC
symptom burden using linear r symptomatology (≥2 symptom at baseline) using Chi-square decrease large into analyticity, increased U-Test for continuous variables. We investigated the relationship between baseline and post-COVID symptom burden using lin U-TEST FORMALES THANKER TEST FOR CONTENDANT PRODUCED THE RELATIONSHIP BETWEEN BASELINE AND provide a
symptom burden using linear regression, adjusting for demographic variables. symptom burden using linear regression, adjusting for demographic variables.

For baseline comorbidities that differed between individuals with long vs. short illness (Table 1), we assessed whether presence of any of these comorbidities affected baseline symptom presentation and overall post-COVID s and overall post-COVID symptom burden, using Chi-squared and Mann-Whitney U tests respectivel
We investigated odds for individual baseline and post-COVID symptoms in individuals with long
illness according to these comorbi and overall post-COVID symptoms in individuals with long
We investigated odds for individual baseline and post-COVID symptoms in individuals with long
illness according to these comorbidities, using a logistic regression m Uness according to these comorbidities, using a logistic regression model adjusted for demogra
Variables.
We repeated the conditional logistic regression analysis and other analyses for individuals with l
Uness, with minim

in the according to these comorbidities, using a logistic regression $\frac{1}{2}$. Then in the largest also according to the variables.
We repeated the conditional logistic regression analysis and other analyses for individua We repeat
illness, wit
of less assi
False disco We repeated the conditional regression analysis and control analysis conditions, illness, with minimal logging frequency of at least fortnightly (vs. weekly), thus allowing for inclusion of less assiduous loggers and longe

illess assiduous loggers and longer periodicity of symptom fluctuation.
False discovery rate adjustment using the Benjamini-Hochberg procedure was applied across all
tested symptoms, in each analysis. False discovery rate adjustment using the Benjamini-Hochberg procedur
tested symptoms, in each analysis.
. False discovery rate adjustment using the Benjaministed symptoms, in each analysis. tested symptoms, in each analysis.

Results:

Figure 1 shows participant selection. Table 1 presents the cohort before and after matching.
Compared to the overall cohort of test-positive individuals, the selected cohort of regular loggers
was older, with slightly more Examples of the slightly more comorbidities. Censoring on mental health survey participation did not affect the cohort greatly except for sex (females more likely to participate); other characteristics
were stable (data no affect the cohort greatly except for sex (females more likely to participate); other characteristics
were stable (data not shown).
The majority (906 of 1350, 67.1%) individuals with long illness had illness duration beyond affect the control of the cohort greatly except for sex (females more likely to participate); once characteristics
The majority (906 of 1350, 67.1%) individuals with long illness had illness duration beyond 12 we
Impact of

Impact of baseline symptoms on median illness duration

The majority (906 of 1350, 67.)
Impact of baseline symptoms
Reporting of any symptom at k The major of baseline symptoms on median illness duration
The matricon median illness duration
(1008: 13;16] days). Right censoring (unfinished illness) was identified for some long illness individuals
due to data censorsh Reporting of any symptom at baseline increased median increasing (i.e.m. 2) (i.e.m. 3) Legister 2) and [IQR: 13;16] days). Right censoring (unfinished illness) was identified for some long illness individual
due to data ce

(unit 2) any spanned internal (unit internal internal internal internal internal internal internal internal due
to data censorship (n=338) and logging interruption while unhealthy (n=166).
Considering individual symptoms, due to data censorship (n=338) and logging interruption while unhealthy (n=166).
Considering individual symptoms, baseline reporting of fatigue, headache, sneezing, sore throat, and
rhinorrhea increased median illness dura Primorrhea increased median illness duration by 9, 7, 5, 5, and 4 days respectively.

Matched case-control cohort analysis

Comorbidities

Matched case-control cohort analysis

Comorbidities

rhin china increased median increased median in \mathcal{S}_1 , 7, 7, 9, 9, and 4 days respectively.
 Comorbidities

Considering the matched cohort (n=2700 individuals), 463 individuals reported lung Considering the matched cohort (n=2700 individuals), 463 individuals reported lung disease and/or
asthma: 310 (67.0%) reported both, 115 (24.8%) only asthma, and 38 (8.2%) only lung disease. Thus
'lung disease' and 'asthma 'lung disease' and 'asthma' categories were jointly considered. In contrast, 1326 individuals reported
allergic rhinitis and/or asthma: 317 (23.9%) reported both, 910 (67.9%) only allergic rhinitis, and 108
(8.1%) only as (8.1%) only asthma; thus, allergic rhinitis was considered both, 910 (67.9%) only allergic rhinitis, and 108
(8.1%) only asthma; thus, allergic rhinitis was considered separately.
Individuals with long (vs. short) illness

(8.1%) only asthma; thus, allergic rhinitis was considered separately.

Individuals with long (vs. short) illness were more likely to report co-morbidities of allergic rhinitis

(p<0.001), asthma/lung disease (p<0.001), h (8.1%) only as the long (vs. short) illness were more likely to report co-rodic resolutions (p<0.001), asthma/lung disease (p<0.001), heart disease (p=0.044], doprior mental health diagnosis (p=0.003).
Baseline symptoms i Individuals with long (vs. short) illness were more likely to report co-morbidities of allergic rhinities (p=0.037), and/or a
prior mental health diagnosis (p=0.003).
Baseline symptoms in individuals with short vs. long il

Baseline symptoms in individuals with short vs. long illness.

(p=0.001), assuming disease (p=0.003),
prior mental health diagnosis (p=0.003).
Baseline symptoms in individuals with short vs. long illness.
Individuals with long (vs. short) illness were more likely to report baseline sy prior mental mental health diagnost in the spaceline symptoms in individuals with spaceling individuals were asymptomatic before COVID illness were asymptomatic before COVID Individuals with long (version) interest with long of the protein since symptoms (16.8%), p-value <0.0001) (Table 1). However, over two-thirds (67.4%) of individuals with long illness were asymptomatic before COVID-19.
Log

255 (16.8%), p-value <0.0001) (Table 1). However, over two-thirds (67.4%) of hidividuals with long
illness were asymptomatic before COVID-19.
Logging frequency during the baseline period did not differ between individuals Logging frequency during the baseline period
illness, and only marginally) in the post-COVII
short illness). Illness, and only marginally) in the post-COVID period (20 vs. 21 logs for individuals with long vs.
short illness). $\frac{1}{2}$ in the post-COVID period (20 vs. 21 logs for individuals with long vs. 21 logs for individuals with long vs. 21 lon short illness).

Considering individual symptoms at baseline (Figure 2), the five commonest symptoms were the
same regardless of ultimate illness duration but were more prevalent in individuals with subsequent
long (vs. short) illness: hea same regardless of ultimates of us. short) illness: headache (18.9% vs. 9.4%), fatigue (13.0% vs. 5.6%), sore throat (15.0% vs.
8.8%), rhinorrhea (14.3% vs. 8.5%), and sneezing (11.9% vs.6.8%) [descriptive data only].
Base

dong (variably material and the term of the computing and called the computer material (19.0%), shorted (18.0%), and sneezing (11.9% vs. 6.8%) [descriptive data only].
Baseline symptoms associated with increased odds of lo Baseline symptoms associated with increased odds of long illness.
Adjusting for demographic variables, the odds ratio for long illness in symptomatic (vs.
asymptomatic) baseline status was 2.14 [CI:1.78; 2.57].

Baseline symptoms associated with increased odds of long illness.
Adjusting for demographic variables, the odds ratio for long illness in
asymptomatic) baseline status was 2.14 [Cl:1.78; 2.57].
Considered per-symptom, with Adjusting formulation in the status was 2.14 [CI:1.78; 2.57].
Adjustment considered per-symptom, with identical covariates: reporting of almost any individual state increased the odds of long illness (**Figure 3**). However, Considered per-symptom, with identical covariates: rep
baseline increased the odds of long illness (Figure 3). Ho
between long illness and baseline cutaneous symptoms
adjustment for prior comorbidities (Model 2) and prior baseline increased the odds of long illness (**Figure 3**). However, no evidence of association was seer
between long illness and baseline cutaneous symptoms (red welts, 'blisters', alopecia), and, after
adjustment for prior baseline increased the odds of long illness (Figure 3). However, no evidence of association was seen
between long illness and baseline cutaneous symptoms (red welts, 'blisters', alopecia), and, after
adjustment for prior c between long inners and baseliness are graphed (red welts), and the person, and graphed adjustment for prior comorbidities (Model 2) and prior mental health diagnoses (Model 3), anore:
('low appetite').
Symptom concordanc

Symptom concordance over time

adjustment for prior (Model 2) and the prior of the symptom concordance over time
adjustment for prior compares symptoms during baseline or post-COVID periods, in individuals with long or
short illness (categories: stayed ('low appetite').
 Symptom concordance over time
 Figure 4 compares symptoms during **baseline or post-COVID periods,** in individuals with long or

short illness (categories: stayed absent/appeared/disappeared/stayed pr Figure 4 compares symptoms during baseline or post-COVID periods, in individuals with long or
short illness (categories: stayed absent/appeared/disappeared/stayed present). Importantly, our
inclusion criteria meant individ inclusion criteria meant individuals with long illness had at least one symptom during the post-COVID period, whereas individuals with short illness had returned to asymptomatic for at least or
week within four weeks of de COVID-19 (though they might subsequently report symptoms
again).
In individuals with long illness, individual symptoms were more likely in the post-COVID period if
present at baseline, with exceptions of some cutaneous man

inclusion criteria meant individuals with long illness had at least one symptom during the postagain).
again).
In individuals with long illness, individual symptoms were more likely in the post-COVID period if
present at baseline, with exceptions of some cutaneous manifestations (Figure 5). Adjusting for
baseline co again).
In indiv
present
baselin In the present at baseline, with exceptions of some cutaneous manifestations (**Figure 5**). Adjusting for
baseline comorbidities (Model 2) and prior mental health diagnosis (Model 3) made minimal
difference.
For comparison, present at baseline, with exceptions of some cutaneous manifestations (Figure 5). Adjusting for
baseline comorbidities (Model 2) and prior mental health diagnosis (Model 3) made minimal
difference.
For comparison, and as e

difference.
For comparison, and as expected given our inclusion criteria, fewer symptoms were reported
post-COVID period in individuals with short illness, considered overall (Suppl. Fig S1) and by k
individual symptom (Su For compar
post-COVID
individual s
COVID peri For comparison, and individuals with short illness, considered overall (Suppl. Fig S1) and by baseline

individual symptom (Suppl. Fig S2). Symptoms more likely to be present during baseline and post-

COVID periods in thi post-COVID period in individuals with short illness, considered overall (Suppl. Fig S1) and by baseline
individual symptom (Suppl. Fig S2). Symptoms more likely to be present during baseline and post-
COVID periods in this Individual symptom (Suppl. Fig S2). Symptoms more incry to be present during baseline and post-
COVID periods in this group included several upper respiratory symptoms (tinnitus, sore throat,
rhinorrhoea, sneezing, hoarse Thinorrhoea, sneezing, hoarse voice) and some systemic symptoms (headache, lymphadenopath
dizziness, myalgia, rigors, and fatigue). Adjusting for baseline comorbidities (Model 2) reduced
significance for the rarest symptom dizziness, myalgia, rigors, and fatigue). Adjusting for baseline comorbidities (Model 2) reduced
significance for the rarest symptoms; adjusting further for prior mental health diagnosis (Model 3)
did not alter these resul dignificance for the rarest symptoms; adjusting further for prior mental health diagnosis (Model 2) reduced id
did not alter these results substantially. s did not alter these results substantially. did not alter these results substantially.

Symptom reporting by sex.

Symptom prevalence during both baseline and post-COVID periods varied numerically by sex,
whether illness was of long or short duration. Most symptoms were more commonly reported by
females than males (descriptive data: Fi symptom prevalences appeared least for post-COVID symptoms in individuals with long illness Fable S3 (baseline symptoms) and Suppl. Table S4 (post-COVID symptoms). Sex differences in
symptom prevalences appeared least for post-COVID symptoms in individuals with long illness
(Figure 6, lower right panel), and for Table 33 (baseline symptoms) and Suppl. Table 34 (post-COVID symptoms). Sex differences in
symptom prevalences appeared least for post-COVID symptoms in individuals with long illness
(Figure 6, lower right panel), and for symptom prevalences appeared visitive previously symptoms in individuals with short illness (Figure
upper left panel). These findings should be interpreted descriptively as we did not formally test
an interaction between s (Figure 6, lower right panel), and for baseline symptoms in individuals with short liness (Figure 6, upper left panel). These findings should be interpreted descriptively as we did not formally test for
an interaction betw

Symptom severity over time

upper left panel). These finalligs should be interpreted descriptively as we did not formally test for
an interaction between symptoms and sex.
Symptom severity over time
Considering individuals with long illness and fatig an interaction between symptoms and sex.
 Symptom severity over time

Considering individuals with long illness and fatigue at baseline (176 individuals): 101 (57%) reported

unchanged, 45(26%) improved, and 30 (17%) wor Considering individuals with

long illness with dyspnoea at baseline (35 individuals): 22 (65%) reported unchanged, 11(31%)

improved, and 2 (6%) worsened severity (**Suppl. Table S1; Suppl. Fig. S3**).

For comparison, indi long illness with dyspnoea at baseline (35 individuals): 22 (65%) reported unchanged, 11(31%)
improved, and 2 (6%) worsened severity (**Suppl. Table S1; Suppl. Fig. S3**).
For comparison, individuals with short illness durat

long illness with dysplaced at baseline (35 individuals): 22 (33), improved, and 2 (6%) worsened severity (**Suppl. Table S1; Suppl. Fig. S3)**.
For comparison, individuals with short illness duration showed improvement or r

For comparison, individuals with short illness duration showed improvement symptom if reported at baseline, noting again the bias imposed by our inc
Considering the 22 individuals with asthma/lung disease reporting dyspno
 For comparison, individuals with anti-random short interesting to unrinduction criteria.
Considering the 22 individuals with asthma/lung disease reporting dyspnoea at baseline
(independent of disease duration): 1 (4.5%) re symptom is a bias in the considering the 22 individuals with asthma/lung disease reporting dyspnoea at baseline
(independent of disease duration): 1 (4.5%) reported worsening, 13 (59%) unchanged; are
decreasing or resolved Considering the 22 individuals with asthma, rang at taxos reporting a, species at a at successing
(independent of disease duration): 1 (4.5%) reported worsening, 13 (59%) unchanged; an
decreasing or resolved dyspnoea.
Base

Baseline symptoms and seasonality

(independent of disease duration): 1 (institution): 1 (institution): 1 (1997) unchanged; and a correlation)
decreasing or resolved dyspnoea.
Individuals with long illness were more likely to be asymptomatic at baseline if Baseline symptoms and seasonali
Individuals with long illness were reprinting May-September vs. other the Reciprocally, the odds ratio for exp Individuals with long since the more likely to be asymptomate in a baseline into period steams of during May-September vs. other times of year (280 of 910 [30.8%] vs. 97 of 440 [22.0%], p=0.002).
Reciprocally, the odds rat Reciprocally, the odds ratio for experiencing some specific symptoms at baseline was higher in
November-March vs. May-September (for low mood, headache, rhinorrhoea, lymphadenopathy,
chest pain, sneezing, sore throat, and Reciprocally, the odds ratio for experiencing some specific symptoms of anticiating ratio for November-March vs. May-September (for low mood, headache, rhinorrhoea, lymphadenopath
chest pain, sneezing, sore throat, and oph November-March view of the method of the method with sheet pain, sneezing, sore throat, and ophthalmodynia), after correcting for all Model 3 covariates
(data not shown).
Individuals with short illness also appeared to hav

chest pain, sneezing, see sinest, and ophthalmodynia), after correcting for all Model 3 comments
(data not shown).
Individuals with short illness also appeared to have more rhinorrhea, sneezing, and headache at
baseline be (and not shown).
Individuals with sh
baseline symptom

Baseline symptoms in individuals with long illness

Individuals with short and March, though not significantly after FDR adjustment.
Baseline symptoms in individuals with long illness
In individuals with long illness, 440 (32.6%) reported at least one symptom at baseline wh Baseline symptoms in individuals with long illness
In individuals with long illness, 440 (32.6%) reported at least one symptom at baseline w
(67.4%) were asymptomatic. In individuals with long index, 440 (22.40%) were asymptomatic.

(67.4%) were asymptomatic. (67.4%) were asymptomatic.

p=0.0004); younger (54 years [46; 62] vs. 59 years [52; 65], p<0.0001); have allergic rhinitis (248 of 440 [56.4%] vs. 404 of 910 [44.3%], p<0.0001) and/or a prior mental health diagnosis (141 of 440 [32.0%] vs. 230 of 91 p=0.0001); younger (1991); younger (1991); younger (1981); younger (1981); younger (1988); younger (1988); you

[32.0%] vs. 230 of 910 [25.7%], p=0.011). Thirty-six of 507 (7.1%) symptomatic and 61 of 1088 (5.69)

asymptom 440 [32.0%] vs. 230 of 910 [25.7%], p=0.011). Thirty-six of 507 (7.1%) symptomatic and 61 of 1088 (5.6
asymptomatic individuals were health care workers (p=0.29)).
Post-COVID symptom burden was higher in individuals with l

asymptomatic individuals were health care workers (p=0.29)).
Post-COVID symptom burden was higher in individuals with long illness who were symptomatic (vs.
asymptomatic) at baseline (median [IQR] symptom burden (6 [3; 9] asymptomatic individuals were health care workers (p=0.29)).
Post-COVID symptom burden was higher in individuals with lo
asymptomatic) at baseline (median [IQR] symptom burden (6
symptom burden was associated with post-COV asymptomatic) at baseline (median [IQR] symptom burden (6 [3; 9] vs. 4 [2; 7], p<0.0001). Baseline
symptom burden was associated with post-COVID symptom burden (p<0.0001; β=+5.6% CI [4.4; 6.8]
per additional baseline symp baseline burden was associated with post-COVID symptom burden (p<0.0001; β =+5.6% CI [4.4; 6.8
per additional baseline symptom) after adjustment for all initial matching criteria.
Baseline symptomatic status (here, any

symptom burden was associated with post-COVID symptom burden (p<0.0001; β=+5.6% CI [4.4; 6.8]
per additional baseline symptom) after adjustment for all initial matching criteria.
Baseline symptomatic status (here, any sym per additional baseline symptom (here, any symptom) did not affect the odds of exper
COVID symptoms of cutaneous manifestations, palpitations, dyspnoea, cough, tinr
fever, rigors, anorexia, or dizziness. All other post-COV From Covid Symptoms were more common in

individuals with long illness and any symptom at baseline, with the exception of anosmia/dysosmia

which was less likely post-COVID (OR=0.75 [0.58; 0.96], p=0.022) (Figure 7)

Influ individuals with long illness and any symptom at baseline, with the exception of anosmia/dy
which was less likely post-COVID (OR=0.75 [0.58; 0.96], p=0.022) (Figure 7)
Influence of prior comorbidities on baseline and post-

Influence of prior comorbidities on baseline and post-COVID symptoms

individuals with long interesting and any symptom and anosismicy such the exception of anosing which was less likely post-COVID (OR=0.75 [0.58; 0.96], p=0.022) (Figure 7)
Influence of prior comorbidities on baseline and po Influence of prior comorbidities on baseline and post-COVID symptoms
Having at least one prior comorbidity (here, including prior mental health d
common in individuals with long vs. short illness (926 of 1350 (68.6%) indi Frammon in individuals with long vs. short illness (926 of 1350 (68.6%) individuals with long illne
668 of 1350 (49.5%) individuals with short illness; p<0.001). Individuals with long illness duration
at least one prior c common in individuals with short illness; p<0.001). Individuals with long illness duration and
at least one prior comorbidity (vs. those without) were more likely to have baseline symptoms (here,
any symptom) (326 out of 9 at least one prior comorbidity (vs. those without) were more likely to have baseline symptoms (here,
any symptom) (326 out of 926 [35.2%] vs. 114 out of 424 [26.9%], p=0.003); and experienced greater
post-COVID symptom bur any symptom) (326 out of 926 [35.2%] vs. 114 out of 424 [26.9%], p=0.003); and experienced greater
post-COVID symptom burden (5 [2; 9] vs. 3 [2; 6], p<0.0001) (**Figure 8**).
Odds ratios for individual symptoms experienced

any symptom) (326 surfaces (30.2%) (31.2%) or 32.4% (30.0001) (Figure 8).
post-COVID symptom burden (5 [2; 9] vs. 3 [2; 6], p<0.0001) (Figure 8).
Odds ratios for individual symptoms experienced during baseline and post-COV post-COVID symptom burden (5 [2; 9] vs. 5 [2; 0], p<0.0001) (Figure 8).
Odds ratios for individual symptoms experienced during baseline and pindividuals with at least one prior comorbidity, per comorbidity, are sho
Sensiti

Sensitivity analysis

Individuals with at least one prior comorbidity, per comorbidity, are shown in **Suppl. Fig S4**.
Sensitivity analysis
Easing logging regularity to fortnightly-minimum reporting and (consequently) defining end o
as two wee Sensitivity analysis
Sensitivity analysis
Easing logging regularity to fortnightly-minimum reporting and (consequently) defining end
as two weeks of healthy reports, then reselecting individuals for the matched study, gave Easing regularity to fortning in y minimum reporting and (consequently) at minimum cases and the matched study, gave

remarkably stable results. Samples sizes increased to 2496 individuals per group. Prevalence of

baselin as two weeks of healthy reports, then reselecting individuals for the matched study, gave
remarkably stable results. Samples sizes increased to 2496 individuals per group. Prevalence of
baseline symptoms in individuals wit remarkably stable results. Samples stable results and the sixtem per group. The again nearly twist
that of individuals with short illness (794 [31.8%] vs 441 [17.7%]). The five commonest symptom
baseline were unchanged, an baseline were unchanged, and again the same in both groups, in slightly different order and
baseline were unchanged, and again the same in both groups, in slightly different order and
proportions (data not shown). As previ that committed that the intervention (1994) process (1911). The five the commence symptoms in
baseline were unchanged, and again the same in both groups, in slightly different order and
proportions (data not shown). As pre baseline were unchanged, and again the same in both groups, in signit, interest order and
proportions (data not shown). As previously, all comorbidities (except kidney disease and ca
and a prior mental health diagnosis wer proportions (data not shown). As previously, all comorbiditations (encopt kidney discussed and cancer),
and a prior mental health diagnosis were more common in individuals with long illness. Suppl. Fig
the same of the stat and a prior mental health diagnosis were more common in individuals with long illness. Suppl. Fig S5

presents ray in the constraints rate of symptom consistency between baseline and follow-up in individuals with short and long duration respectively.

Iong duration respectively.

Discussion STR duration respectively.
Signal duration respectively.
There we have shown a relationship between symptoms before COVID-19 and subsequent illness

Discussion

long duration respectively.
Discussion
Here we have shown a relationship between symptoms before COVID-19 and subsequent illness
duration. Overall, individuals with long illness were nearly twice as likely to report sympto Here we have shown a relationship between ying term is triveled to the convergent interest.
Here weeks before SARS-CoV-2 infection than individuals with short illness (32.5% vs. 18.0%). Howeve
two-thirds of individuals wit duration. The sets before SARS-CoV-2 infection than individuals with short illness (32.5% vs. 18.0%). However
two-thirds of individuals with long illness were asymptomatic before COVID-19.
The odds of long illness increase

Wo-thirds of individuals with long illness were asymptomatic before COVID-19.
The odds of long illness increased for any baseline symptom, and for most individual symptoms.
Baseline and post-COVID individual symptoms corre two-thrids of individuals with long illness were asymptomatic before COVID-15.
The odds of long illness increased for any baseline symptom, and for most indivi
Baseline and post-COVID individual symptoms correlated closely The case is a controlled for any parameter property and for incrementation cymperical Baseline and post-COVID individual symptoms correlated closely in individuals with long illness, I
evident in individuals with short ill

Baseliant in individuals with short illness, acknowledging the bias created by our selection criteria.
Commonest baseline symptoms, regardless of illness duration, were rhinorrhea, sneezing, sore
throat, fatigue and headac Commonest baseline symptoms, regardless of illness duration, were rhinorrhea, sneezing, sore
throat, fatigue and headache, each with higher prevalence in individuals with subsequent long (vs.
short) illness. The cause of t Commontant Artigue and headache, each with higher prevalence in individuals with subsequent long

Short) illness. The cause of these baseline non-specific symptoms is unclear, noting here low UK

Circulation of respiratory throat, fatigue and headaches, parameters in individuals with the cause of these baseline non-specific symptoms is unclear, noting here low UK
circulation of respiratory viruses beyond SARS-CoV-2 during the time period of short)
Circulation of respiratory viruses beyond SARS-CoV-2 during the time period of this study [19] an
that health care workers (with possibly greater workplace exposure to respiratory viruses) did no
differ in baseline charactery consisting the same of respiratory circulation of that health care workers (with possibly greater workplace exposure to respiratory viruses) did not
differ in baseline symptom status. Baseline symptoms might ref differ in baseline symptom status. Baseline symptoms might reflect non-infectious comorbidities
and individuals with several prior comorbidities (most commonly: allergic rhinitis, asthma/lung
disease, and a prior mental he and individuals with several prior comorbidities (most commonly: allergic rhinitis, asthma/lung
disease, and a prior mental health diagnosis) were more likely to report symptoms during baseline
and post-COVID periods (Figu disease, and a prior mental health diagnosis) were more likely to report symptoms during basel
and post-COVID periods (Figure 8) though no clear differential symptom pattern within these g
was evident (Suppl. Figure S4).
D and post-COVID periods (**Figure 8**) though no clear differential symptom pattern within these group
was evident (**Suppl. Figure S4**).
Despite higher UK pollen counts in May-September, individuals with long illness were les

and post-COVID periods (Figure 8) though no clear differential symptom pattern within these groups
was evident (Suppl. Figure 84).
Despite higher UK pollen counts in May-September, individuals with long illness were less l was evident (**Suppl. Figure S4**).
Despite higher UK pollen counts in May-September, individuals with long illness were less likely to
have baseline symptoms during this time. Several symptoms, including low mood, were more Despite higher en pentalisation thanks, experiment, inatitation thanks in the optical and the baseline symptoms during this time. Several symptoms, including low mood, were more common in individuals with long illness and common in individuals with long illness and November-March baselines, noting seasonal affec
disorder was not solicited in the mental health questionnaire [15].
Our data suggests that some post-COVID symptoms, particularly

disorder was not solicited in the mental health questionnaire [15].
Our data suggests that some post-COVID symptoms, particularly in individuals with prior
comorbidities, may reflect other, serious, non-COVID illness(es). discree was not solid in the mental health question of $\frac{1}{2}$.
Our data suggests that some post-COVID symptoms, particularly in
comorbidities, may reflect other, serious, non-COVID illness(es). If s
OSC/PCS might cause Comorbidities, may reflect other, serious, non-COVID illness(es). If so, symptom misattrib
OSC/PCS might cause suboptimal management of these other illness(es), with persistence
worsening of the other condition consequentl COSC/PCS might cause suboptimal management of these other illness(es), with persistence and/or
worsening of the other condition consequently. Alternatively, individuals with these comorbiditie
might be at greater risk of S Worsening of the other condition consequently. Alternatively, individuals with these comorbidities
might be at greater risk of SARS-CoV-2 infection, or of more severe COVID-19 [3]); their underlying
comorbidities might be might be at greater risk of SARS-CoV-2 infection, or of more severe COVID-19 [3]); their underlying
comorbidities might be exacerbated by SARS-CoV-2 infection; and/or they may be more vulnerable
comorbidities might be exac comorbidities might be exacerbated by SARS-CoV-2 infection; and/or they may be more vulnerable
comorbidities might be exacerbated by SARS-CoV-2 infection; and/or they may be more vulnerable comorbidities might be exactly by SARS-CoV-2 infection; and
and α infection; and α infection; and α individuals with asthma might represent usual asthma, post-viral asthma exacerbation, and/or
superimposed pathologies specific to SARS-CoV-2 infection such as post-pneumonitis fibrosis or
pulmonary microembolism (pertinent superimposed pathologies specific to SARS-CoV-2 infection such as post-pneumonitis fibrosis o
pulmonary microembolism (pertinently, our data did not support worsening dyspnoea in indivi
with asthma/lung disease; and recent superimposed pathologies specific to state of a simulation of properties proposed in individual
with asthma/lung disease; and recent systematic reviews and meta-analyses show asthma was
associated with lower risk of SARS-C with asthma/lung disease; and recent systematic reviews and meta-analyses show asthma was
associated with lower risk of SARS-CoV-2 infection or of severe COVID-19 [20]. Lastly, altered
pandemic health-care access might dis associated with lower risk of SARS-CoV-2 infection or of severe COVID-19 [20]. Lastly, altered
pandemic health-care access might disproportionately affect individuals with prior comorbiditie
however, there was no evidence pandemic health-care access might disproportionately affect individuals with prior comorbidit
however, there was no evidence of such differential access to UK primary care during the pane
Our data concord with two large re

however, there was no evidence of such differential access to UK primary care during the pandem
Our data concord with two large retrospective studies using primary care data [10,21]. As
mentioned, a large UK study of commu our data concord with two large retrospective studies using primary care data [10,21]. As
mentioned, a large UK study of community-managed adults with (n=486,149) and without
(n=1,944,580) SARS-CoV-2 infection showed moder Our data concern with the large retrospective stands and primary care data [10,101] and without
(n=1,944,580) SARS-CoV-2 infection showed moderately higher symptom prevalences in in
with (vs. without) SARS-CoV-2 twelve wee (n=1,944,580) SARS-CoV-2 infection showed moderately higher symptom prevalences in in
with (vs. without) SARS-CoV-2 twelve weeks after index event, though this difference narro
time [10]. Similar to our analysis, longer s with (vs. without) SARS-CoV-2 twelve weeks after index event, though this difference narrowed over
time [10]. Similar to our analysis, longer symptom duration associated with female sex, younger age
and several prior comor time [10]. Similar to our analysis, longer symptom duration associated with female sex, younger age,
and several prior comorbidities including respiratory illnesses and mental health diagnoses; in
contrast to our analysis, and several prior comorbidities including respiratory illnesses and mental health diagnoses; in
contrast to our analysis, this study did not compare pre- vs. post-infection symptoms per-individual
[10]. A German study of 5 contrast to our analysis, this study did not compare pre- vs. post-infection symptoms per-indiv

[10]. A German study of 51,630 general practice patients with COVID-19 reported PCS prevale

8.3% (without comparison populat contrast to our analysis, the study of 51,630 general practice patients with COVID-19 reported PCS prevalence o
8.3% (without comparison population), associated with female sex, comorbidities of asthma and
several mental h Engineer Comparison population), associated with female sex, comorbidities of asthma and
several mental health disorders, and, in contrast to our data, older age; prior symptoms (as opposed
to prior co-morbidities) were no several mental health disorders, and, in contrast to our data, older age; prior symptoms (as oppo
to prior co-morbidities) were not assessed [21]. Our data also concord with a study of three
longitudinal cohorts (54960 par sexercy in the section prior co-morbidities) were not assessed [21]. Our data also concord with a study of three
longitudinal cohorts (54960 participants, 3193 testing positively for SARS-CoV-2, of whom 1403
developed OSC/ to prior co-morbidity, the correlation (21). Our data also concord with a study of more longitudinal cohorts (54960 participants, 3193 testing positively for SARS-CoV-2, of whom 14
developed OSC/PCS), which showed pre-infe developed OSC/PCS), which showed pre-infection psychological distress associated with increas
risk of post-COVID symptoms [22]. Pertinently, the UK lockdown abrupt increased mental distre
particularly in females, younger a risk of post-COVID symptoms [22]. Pertinently, the UK lockdown abrupt increased mental distress,
particularly in females, younger adults, individuals with young children, and individuals with pre-
existing mental health co particularly in females, younger adults, individuals with young children, and individuals with pre-
existing mental health conditions [23]; and lockdown had a disproportionate effect on symptom
experience in individuals wi

prospectively collected symptom data across the pandemic. Symptoms were considered pre- and experience in individuals with pre-existing mental health vulnerabilities [24].
Our data also concord with a sub-study of the observational Dutch Lifelines cohort [25], which
prospectively collected symptom data across the experience in individuals with a sub-study of the observational Dutch Lifelines corrospectively collected symptom data across the pandemic. Symptoms were post-infection (out to 90-150 days after illness onset, or matched t prospectively collected symptom data across the pandemic. Symptoms were considered pre- a
post-infection (out to 90-150 days after illness onset, or matched time point) in 4231 individual
COVID-19 (both community- and hosp post-infection (out to 90-150 days after illness onset, or matched time point) in 4231 individuals w
COVID-19 (both community- and hospital-managed individuals) and 8462 controls. Symptom
severity worsened more in the COVI post-infection (out to 90-150) and hospital-managed individuals) and 8462 controls. Symptom
severity worsened more in the COVID-19 group (vs. uninfected controls), both during acutely and
during days 90-150, for several sy Severity worsened more in the COVID-19 group (vs. uninfected controls), both during acutely
during days 90-150, for several symptoms including breathlessness, chest pain, myalgias, ano
and fatigue: overall, 21.4% of cases severity interting more in the COVID-19 group (ver annualized controls) wentering acutely and
during days 90-150, for several symptoms including breathlessness, chest pain, myalgias, anosmia
and fatigue: overall, 21.4% of and fatigue: overall, 21.4% of cases (vs. 8.7% of controls) had substantial symptom increases 90-150
days after infection compared with pre-infection, an increased symptom severity burden of 12.7%
above background. Again, days after infection compared with pre-infection, an increased symptom severity burden of 12.7%
above background. Again, a gender effect was evident: females reported greater symptom severity
14 above background. Again, a gender effect was evident: females reported greater symptom severity above background. Again, a gender effect was evident: females reported greater symptom severity burden of 12.7% above background. Again, a gender effect was evident: females reported greater symptom severity

and individuals with confirmed COVID-19, although our baseline pre-infection data also provide
insights into background community symptom prevalences during the pandemic.
Lastly, nocebo effects need consideration. Media co

insights into background community symptom prevalences during the pandemic.
Lastly, nocebo effects need consideration. Media commentary regarding OSC/PSC has been
widespread, often featuring 'floating numerators'. Individu Lastly, nocebo effects need consideration. Media commentary regarding OSC/PS
widespread, often featuring 'floating numerators'. Individuals with anxiety and ps
are particularly vulnerable to nocebo effects for pain [26]; w undespread, often featuring 'floating numerators'. Individuals with anxiety and psychological
are particularly vulnerable to nocebo effects for pain [26]; whether applicable to the pandem
experience is unknown. Relevantly, where pread, security transmiting the analysis and the transmitted with annually and psychological antitions
are particularly vulnerable to nocebo effects for pain [26]; whether applicable to the pandemic
experience is unk experience is unknown. Relevantly, a high nocebo effect was observed post-SARS-CoV-2 vaccin
[27].
Se**x and age effects**
In both short and long illness groups, both sexes were similarly assiduous and persistent in repc

Sex and age effects

experience is unknown. Relevantly, a high noce both the statistic post-statistic is a calculation
[27].
In both short and long illness groups, both sexes were similarly assiduous and persistent in reporting
(data not shown [27].
Sex a
In bo
(data In a since the shown), contributed to by study design. Nonetheless, whether ultimately experiencing
Iong or short illness, individuals with baseline symptoms were more likely to be female, and younger,
Ihan their asymptoma (d) ong or short illness, individuals with baseline symptoms were more likely to be female, and your
than their asymptomatic counterparts. Our results concord with previous studies showing higher
symptom reporting by femal In their asymptomatic counterparts. Our results concord with previous studies showing higher
symptom reporting by females vs. males for many conditions, including symptom prevalence in daily
life [28] and post-acute infect symptom reporting by females vs. males for many conditions, including symptom prevalence in diffe [28] and post-acute infection syndromes [11]. Sex differences in illness presentation are increasingly recognised, with pote symptom reporting by females variables virining conditions, including symptom prevalence in daily
life [28] and post-acute infection syndromes [11]. Sex differences in illness presentation are
increasingly recognised, with Increasingly recognised, with potential for differential gender-discriminatory healthcare. Our
also concord with previous studies showing decreased symptom reporting (particularly stress
related symptoms) with age [29].
St increased symptom reporting (particularly stress-
increased symptoms) with age [29].
Strengths and Limitations
Our study used prospective, dense, and granular symptom reporting by each person in a large coh

Strengths and Limitations

over an extended time period, across confirmed SARS-CoV-2 infection, irrespective of ultimate Framer Fymptoms, Jamerage [29].
Strengths and Limitations
Our study used prospective, dense
over an extended time period, acr
illness duration, with each person over an extended time period, across confirmed SARS-CoV-2 infection, irrespective of ultimate
illness duration, with each person serving as their own control. Our design and matching approach
limited reporter bias, with no illness duration, with each person serving as their own control. Our design and matching appro
limited reporter bias, with no (or minimal) difference in logging frequency, duration, or
assiduousness by baseline status or b ilmited reporter bias, with no (or minimal) difference in logging frequency, duration, or
assiduousness by baseline status or by illness duration. Although predominant circulating SARS-Co\
2 variants altered during this st limited reporter bias, with no (or minimal) difference in logging frequency, duration, or
assiduousness by baseline status or by illness duration. Although predominant circulating SARS-CoV-
2 variants altered during this s anyone with self-defined long COVID of more than four weeks $[8]$ -Lastly, our data are from 2 variants altered during this every, with during the streng interest variant [16], we
controlled for this by matching by testing week. We have avoided the phrase 'Long COVID': \
not have health records access and individu not have health records access and individuals were not asked about this diagnosis formally. Thus,
our data are agnostic to self-identification, in contrast to ONS data that included in their definitions
anyone with self-d not have health records actes and individuals in contrast to ONS data that included in their definitions
anyone with self-defined long COVID of more than four weeks [8]. Lastly, our data are from
individuals with community anyone with self-defined long COVID of more than four weeks [8]. Lastly, our data are from
individuals with community-managed COVID-19, whereas most papers interrogating long symptom
duration post-COVID-19 are dominated by andividuals with community-managed COVID-19, whereas most papers interrogating long syr
duration post-COVID-19 are dominated by data from hospitalised individuals in whom mechi
underlying symptom duration are likely to be individuals with community-managed COVID-19, managed COVID-19, whereas most papers interrogating long symptom
duration post-COVID-19 are dominated by data from hospitalised individuals in whom mechanisms
underlying symptom duration post-COVID-19 are dominated by data from hospitalised individuals in which included
underlying symptom duration are likely to be different. underlying symptom duration are likely to be different.

Which may affect symptom experience (for example, varying personal/regional lockdown
requirements resulting in varying exposure to other (i.e., non SARS-Cov-2) viruses [19]; varying
extent and duration of social isolation requirements resulting in varying exposure to other (i.e., non SARS-Cov-2) viruses [19]; values than divided to social isolation and loneliness; differential home-schooling responsionally experienced by women and associate requirements resulting in varying experience cancel (i.e., normalize to a pyrameter (i.e.), varying
extent and duration of social isolation and loneliness; differential home-schooling responsibiliti
which burden was dispro extending which burden was disproportionally experienced by women and associated with markedly increas
psychological distress [15].
The requirement for one week's asymptomatic logging record prior to COVID-19 symptom onset

which burden was disproportionally experienced by a single and associated with markedly increased
psychological distress [15].
The requirement for one week's asymptomatic logging record prior to COVID-19 symptom onset (to
 provide the requirement for one w
Primable illness duration to b
less affected by pre-existing
symptoms and comorbidition The requirement for one weekending regaing record prior to COVID-19 and the relationship of prior symptoms and comorbidities with subsequent illness duration. Additionally, all individuals had community-managed COVID-19; o less affected by pre-existing co-morbidities, resulting in underestimation of the relationship of prio
symptoms and comorbidities with subsequent illness duration. Additionally, all individuals had
community-managed COVIDless affects and comorbidities with subsequent illness duration. Additionally, all individuals had
community-managed COVID-19; our data cannot be extrapolated to hospitalised individuals.
Although the direct symptom questi

symmunity-managed COVID-19; our data cannot be extrapolated to hospitalised individuals.
Although the direct symptom questions expansion from November 2020 was informed by feed
from individuals experiencing OSC/PCS, pertin community-managed COVID-19; our data cannot be entropolated to hospitalised individuals
Although the direct symptom questions expansion from November 2020 was informed by fee
from individuals experiencing OSC/PCS, pertinen From individuals experiencing OSC/PCS, pertinent symptoms may have been missed - although our direct questions covered the symptom groups in other PCS studies [10,21,25]. Further, all but two symptom questions were binary from individuals experiencing OSC/PCS, permission, proposition, yindividuals and there, all but two
symptom questions were binary (yes/no) with no available quantitative assessment or health record
linkage.
Our analysis us direct questions were binary (yes/no) with no available quantitative assessment or health reco

linkage.

Our analysis used data from the first reported SARS-CoV-2 positive result and subsequent illness

duration. Evidence

symptom and integrals in the first of the binary of the
Surranalysis used data from the first reported SARS-CoV-2 positive result and subsequent illness
duration. Evi ی
Our anal
duration
group); ł
Overall, Our also know the first report of the first reported and the first reported in the first report of the group); however, as it transpired, only one illness episode was included per participant.
Overall, ZOE/CSS app users ar

group); however, as it transpired, only one illness episode was included per participant.
Overall, ZOE/CSS app users are not representative of the UK population (younger, more female,
higher educational status, lower ethni group); however, as it transpired, only one interest per a matter per participant.
Overall, ZOE/CSS app users are not representative of the UK population (younger, more
higher educational status, lower ethnic diversity, ov Migher educational status, lower ethnic diversity, over-representative of healthcare workers).

Moreover, individuals had to log assiduously, at length, which might bias our data towards

individuals with specific app usag higher educational status, lower ethnic diversity, over-representative of healthcare workers).
Moreover, individuals had to log assiduously, at length, which might bias our data towards
individuals with specific app usage individuals with specific app usage behaviours and potentially exclude individuals with app
fatigue. To assess this we compared our study participants to all ZOE app symptomatic test
users, across the same time period: our fatigue. To assess this we compared our study participants to all ZOE app symptomatic test-positive
users, across the same time period: our cohort were more persistent than positive ZOE app users
overall (time between symp factors across the same time period: our cohort were more persistent than positive ZOE app users
overall (time between symptom commencement and last report: median 206 days [IQR: 140;292] fo
our cohort vs. 99 days [IQR: 15 overall (time between symptom commencement and last report: median 206 days [IQR: 140;292]
our cohort vs. 99 days [IQR: 15;159] for test-positive symptomatic ZOE app users overall); and app
fatigue was not evident but the our cohort vs. 99 days [IQR: 15;159] for test-positive symptomatic ZOE app users overall); and app
fatigue was not evident but the opposite, with strong correlation (Spearman rho 0.465, p<0.00001)
in all symptomatic test-p fatigue was not evident but the opposite, with strong correlation (Spearman rho 0.465, p<0.00001
in all symptomatic test-positive app users between symptom duration and continuing app usage
(both calculated from date of sy Fatigue in all symptomatic test-positive app users between symptom duration and continuing app usage
(both calculated from date of symptom onset). Although we cannot comment more granularly (e.g., possible differential dr In an experiment test-positive app users a sinter-positive and an example and comment more granularly (e
possible differential drop-out of individuals with particular symptoms) these data do not support
fatigue; and pertin possible differential drop-out of individuals with particular symptoms) these data do not support app
fatigue; and pertinently, two-thirds of our long illness group had symptoms for ≥12 weeks. fatigue; and pertinently, two-thirds of our long illness group had symptoms for ≥12 weeks.
16 fatigue; and pertinently, two-thirds of our long illness group had symptoms for α 12 weeks.

Our inclusion criteria required participation in the mental health questionnaire in early 2021 [15]. Of 1,257,278 million app users at the time, 715,324 (56.8%) participated; whether participation was affected by presence/ 1,257,278 affected by presence/absence of a prior mental health diagnoses cannot be determined. Howeve
1,257,232,257,278 censoring for mental health survey participation only significantly affected the male/female ratio
1, affected by presence, absorber a protonomial and angular summanded be male/female ratio
(females more likely to participate; data not shown).
We considered the impact of stringent logging frequency possibly precluding indi

censoring for more likely to participate; data not shown).
Character mental health survey participate is the mand/or more severe illness. However, our sensitivity analysis with loosened stringency did not
change our result (females of stringent logging freque

(female) we considered the impact of stringent logging freque

and/or more severe illness. However, our sensitivity

change our results significantly (**Supp. Fig. S5-S7**).

Lastly, we Merceman considered the impact of stringent logging frequency precluintly precluing in an analoger
and/or more severe illness. However, our sensitivity analysis with loosened stringency did not
change our results significa

change our results significantly (Supp. Fig. S5-S7).
Lastly, we cannot exclude an effect of app participation *per se* on symptom reporting (regardle:
disease duration), noting that use of symptom tracking apps can inflate change our results significantly (Supp. Fig. 35-S7).
Lastly, we cannot exclude an effect of app particip
disease duration), noting that use of symptom trad
individuals [30].
Conclusion Lastly, we cannot exclude an effect of app participation *per se* on symptom reporting (regardless of
disease duration), noting that use of symptom tracking apps can inflate symptom reporting in some
individuals [30].
Symp

Conclusion

individuals [30].
Conclusion
Symptoms prevalence before SARS-CoV-2 infection differed in individuals who subsequently
manifest long vs. short illness, with correlation of symptom burden and specific symptom experience **Conclusion
Symptoms preva
manifest long vs
between baselin** Symptoms previously and start of the american interest in individuals and specific symptom explotive beforeen baseline and post-COVID periods. At least some of this risk is influenced by prior comorbidities. However, the m between baseline and post-COVID periods. At least some of this risk is influenced by prior
comorbidities. However, the majority of individuals with post-COVID symptoms were asymptomatic
before SARS-CoV-2 infection. Our dat between baseline and post-COVID symptoms were asym
before SARS-CoV-2 infection. Our data highlight the importance of parsing symptoms relate
COVID-19 vs. other diseases – but also the difficulties of this. Genetic studies before SARS-CoV-2 infection. Our data highlight the importance of parsing symptoms related to
COVID-19 vs. other diseases – but also the difficulties of this. Genetic studies in OSC/PCS, including
Mendelian randomization a before SARS-COVID-19 vs. other diseases – but also the difficulties of this. Genetic studies in OSC/PCS, includ
Mendelian randomization approaches, may prove unbiased means of disentangling association f
causation. Practic COVID-19 Mendelian randomization approaches, may prove unbiased means of disentangling association fron
Causation. Practically speaking, the clinical implications are unchanged: an open and holistic
approach is needed to m Mendelian randomization approaches, may prove unbiased means of disentangling assessmental randomization.

Practically speaking, the clinical implications are unchanged: an open and holistic

approach is needed to manage p approach is needed to manage post-COVID symptoms, whatever their aetiology.

An open and holistical inputs are unchanged: and holistical implications are unchanged: and holistical implications are unchanged: $\frac{1}{2}$ in t approach is needed to manage post-COVID symptoms, whatever the intervals \mathcal{O}_I .

Acknowledgements

Data sharing statement

We actizen science enabling this research.
 Data sharing statement

Data collected in the COVID Symptom Study smartphone app can be shared with other health

researchers through the UK National Health Service-funded Heal The citizen science enabling the cleared.

Data collected in the COVID Symptom Stresearchers through the UK National Head

Anonymised Information Linkage consort

UK). Anonymised data are available to be

mublic interact h The Covid-Bird in the COVID Symptom Study Service - The COVID States and Secure Research UK and Secure Anonymised Information Linkage consortium, housed in the UK Secure Research Platform (Swatch UK). Anonymised data are a Anonymised Information Linkage consortium, housed in the UK Secure Research Platform (Swans
UK). Anonymised data are available to be shared with researchers according to their protocols in
public interest <u>https://web.www.</u> Anonymised Information Linking Constraintly, it also the UK Secure Research Platform (Straintly, 2000)
UK). Anonymised Infar are available to be shared with researchers according to their protocols in the
public interest <u></u> public interest <u>https://web.www.healthdatagateway.org/dataset/594cfe55-96e3-45ff-874c-</u>
2c0006eeb881.
Conflict of Interest
Tim Spector and Jonathan Wolf are co-founders and founder shareholders of ZOE Ltd. Christina Hu,

Conflict of Interest

and Joan Capdevila Pujol are employees of ZOE Ltd. Claire J Steves and Sebastien Ourselin ha **COMPTERTIFY**
 COMPTERT COMPTERT

Tim Spector and

and Joan Capder

consulted for ZC $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ and Joan Capdevila Pujol are employees of ZOE Ltd. Claire J Steves and Sebastien Ourselin have
consulted for ZOE Ltd. All other authors (CHS, EM, LSC, NJC, AH, ELD, HVB, KR) declare no conflict of
interest.
This work is su

Funding declaration.

consulted for ZOE Ltd. All other authors (CHS, EM, LSC, NJC, AH, ELD, HVB, KR) declare no conflicinterest.

Funding declaration.

This work is supported by the Wellcome Engineering and Physical Sciences Research Council C
 consulted for ZOE Ltd. All other and Consumer (CHS) 2007, ALL of ALL of ALL ONES An

Funding declaration.

This work is supported by the Wellcome Engineering and Physical Sciences Research Council Centr

for Medical Engine merest.
Funding
This worl
for Med
Innovatic
the UK D for Medical Engineering at King's College London (WT 203148/Z/16/Z), the UK Research and
Innovation London Medical Imaging & Artificial Intelligence Centre for Value-Based Healthcare, and
the UK Department of Health and So For Michael Engineering at Times Corresponsive Limitary (12021-12), 2012), the Collection Condon Medical Imaging & Artificial Intelligence Centre for Value-Based Healthcare, and
the UK Department of Health and Social Care, Innovation London Medical Institute for Health Research

Innovational Institute for Health Research

(NIHR)- funded BioResource, Clinical Research Facility and comprehensive Biomedical Research

Centre (BRC) award to Guy's (NIHR)- funded BioResource, Clinical Research Facility and comprehensive Biomedical Research
Centre (BRC) award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College
London and King's College Hospit (NIHR)- Funded Biomarchical Research Council Centre (BRC) award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College
London and King's College Hospital NHS Foundation Trust. This research was also London and King's College Hospital NHS Foundation Trust. This research was also funded in part by
the Wellcome Trust grant [215010/Z/18/Z]. Investigators also received support from the Chronic
Disease Research Foundation (the Wellcome Trust grant [215010/Z/18/Z]. Investigators also received support from the Chronic
Disease Research Foundation (CDRF), HMT/UKRI/MRC COVID-19 Longitudinal Health and Wellbeing -
National Core Study (LHW-NCS) (MC The Wellcome Trust grant (CDRF), HMT/UKRI/MRC COVID-19 Longitudinal Health and Wellbeing -
National Core Study (LHW-NCS) (MC_PC_20030, MC_PC_20059 and NIHR COV-LT-0009), Medical
Research Council (MRC), British Heart Founda National Core Study (LHW-NCS) (MC_PC_20030, MC_PC_20059 and NIHR COV-LT-0009), Medical
Research Council (MRC), British Heart Foundation (BHF), Alzheimer's Society, European Union. ZOE
Limited provided in-kind support for a National Council (MRC), British Heart Foundation (BHF), Alzheimer's Society, European Union. ZOE
Limited provided in-kind support for all aspects of building, running, and supporting the app and
service to users worldwide. Research Council (MRC), British Heart Council (MRC), Align, Timing, and supporting the app and
service to users worldwide. SO was supported by the French government, through the 3IA Côte
d'Azur Investments in the Future pr Exercice to users worldwide. SO was supported by the French government, through the 3IA Côte
d'Azur Investments in the Future project managed by the National Research Agency (ANR) with the
reference number ANR-19-P3IA-0002 d'Azur Investments in the Future project managed by the National Research Agency (ANR) with the
reference number ANR-19-P3IA-0002. EM received funds from the Medical Research Council UK
(Skills Development Scheme) and from reference number ANR-19-P3IA-0002. EM received funds from the Medical Research Council UK
(Skills Development Scheme) and from the National Institute for Health Research UK (grant
n.134293).
For the purpose of Open Access, reference number Andrew Presh Presh Presh Presh Path and the Medical Research UK (grant
n.134293).
For the purpose of Open Access, the author has applied a CC BY public copyright licence to any
Author Accepted Manuscript (

(Skills Development Scheme) and from the National Institute for Nethin Nethinal Institute for

n.134293).

For the purpose of Open Access, the author has applied a CC BY public copyright licence to any

Author Accepted Man

n.134293).
For the purpose of Open Access, the author has applied a CC BY public copyright licence to any
Author Accepted Manuscript (AAM) version arising from this submission.
Contribution statement
ELD and CHS conceptu For the purpose of purpose of purpose of operator of purpose of purpose of purpose of any purpose of A .
 Contribution statement

ELD and CHS conceptualised the study design. MA, BM, JCP, CHS contributed to data curatio Contribution statement
ELD and CHS conceptualised the study design. MA, BM, JCP, CHS contribut
associated software tools. CJS, TS contributed to acquisition design. CHS p
verified the underlying data. CHS interpreted the r (Fi t (i l ELD and CHS conceptualised the study design. MA, BM, JCP, CHS contributed to data curation and ELD and CHS contributed to acquisition design. CHS performed the analysis are verified the underlying data. CHS interpreted the results with ELD who supervised the study. ELD a CHS drafted the manuscript. TDS, SO and CJS a verified the underlying data. CHS interpreted the results with ELD who supervised the study. ELD and
CHS drafted the manuscript. TDS, SO and CJS acquired funding. All authors contributed to
interpretation of data and criti verified the underlying and the undependent of the underlying and change. All authors contributed to interpretation of data and critical revision of the manuscript.
Interpretation of data and critical revision of the manus CHS drafted the manuscript. The manuscript. The manuscript. The manuscript. interpretation of data and critical revision of the manuscript.

Transparency statement

The lead and a manuscript is an interest of the study have been omitted; and that any
discrepancies from the study as planned have been explained.
Webpages studiscrepancies from the study as planned have been explained.
Studies of the study aspects of the study have been omitted; and the study of th discrepancies from the study as planned have been explained.

Webpages

References

- |
|
|
- with COVID-19-related death using OpenSAFELY. Nature 2020;584:430–6.
https://doi.org/10.1038/s41586-020-2521-4.
[2] Gardashkhani S, Ajri-Khameslou M, Heidarzadeh M, Rajaei Sedigh SM. Post-Intensive Care
Syndrome in Covid-1 with COVID-19-related death using OpenSAFELY. Nature 2020;584:430–6.
https://doi.org/10.1038/s41586-020-2521-4.
Gardashkhani S, Ajri-Khameslou M, Heidarzadeh M, Rajaei Sedigh SM. Post-Intensive Care
Syndrome in Covid-19 Pa https://doi.org/10.1038/s41586-020-2521-4.
Gardashkhani S, Ajri-Khameslou M, Heidarzad
Syndrome in Covid-19 Patients Discharged Fre
2021;23:530–8. https://doi.org/10.1097/NJH.
Sudre CH, Murray B, Varsavsky T, Graham MS
pre
- Syndrome in Covid-19 Patients Discharged From the Intensive Care Unit. J Hosp Palliat Nur
2021;23:530–8. https://doi.org/10.1097/NJH.0000000000000789.
[3] Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, Syndrome in Correction Correction Covid-19 Patients Discharged From the International Covid-2021;23:530–8. https://doi.org/10.1097/NJH.00000000000000789.
Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, e Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer
predictors of long COVID. Nat Med 2021;27:626–31. https://doi.org
01292-y.
Evans RA, McAuley H, Harrison EM, Shikotra A, Singapuri A, Sereno
cognitive, and men
- predictors of long COVID. Nat Med 2021;27:626–31. https://doi.org/10.1038/s41591-021-
01292-y.
[4] Evans RA, McAuley H, Harrison EM, Shikotra A, Singapuri A, Sereno M, et al. Physical,
cognitive, and mental health impacts 01292-y.

Evans RA, McAuley H, Harrison EM, Shikotra A, Singapuri A, Sereno M, et al. Physical,

cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK

multicentre, prospective cohort s Evans RA, McAuley H, Harrison EM, Shikotra A, Singapuri A, Sereno M, et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID
multicentre, prospective cohort study. Lancet Respir Med 2021;9:1275–87.
https://doi.org/10.1016/S2213-2600(21)00383-0.
[5] A clinical cas
- multicentre, prospective cohort study. Lancet Respir Med 2021;9:1275–87.
https://doi.org/10.1016/S2213-2600(21)00383-0.
A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021
n.d. https https://doi.org/10.1016/S2213-2600(21)00383-0.
A clinical case definition of post COVID-19 condition by a Delphi consensus,
n.d. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVI
Clinical_case_definition-2021 A clinical case definition of post COVID-19 condition.d. https://www.who.int/publications/i/item/WH
Clinical_case_definition-2021.1 (accessed July 10,
Boscolo-Rizzo P, Polesel J, Spinato G, Fabbris C, Ca
Predominance of an
- m.d. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-
Clinical_case_definition-2021.1 (accessed July 10, 2022).
[6] Boscolo-Rizzo P, Polesel J, Spinato G, Fabbris C, Calvanese L, Menegaldo A, Boscolo-Rizzo P, Polesel J, Spinato G, Fabbris C, Calvanese
Predominance of an altered sense of smell or taste amon
with mildly symptomatic COVID-19* n.d. https://doi.org/
Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche
- Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Fredominance of an altered sense of smell or taste among long-lasting symptom
with mildly symptomatic COVID-19* n.d. https://doi.org/10.4193/Rhin20.263.
[7] Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B Predominal Symptomatic COVID-19* n.d. https://doi.org/10.4193/Rhin20.263.
Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B. Global Prevalence of
Post-Coronavirus Disease 2019 (COVID-19) Condition or Long C Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B. Global Prost-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-A
Systematic Review. J Infect Dis 2022. https://doi.org/10.1093/infdis/jia
- For Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and
Systematic Review. J Infect Dis 2022. https://doi.org/10.1093/infdis/jiac136.
[8] Prevalence of ongoing symptoms following coronavirus (C Systematic Review. J Infect Dis 2022. https://doi.org/10.1093/infdis/jiac136.
Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK -
Office for National Statistics n.d.
https://www.ons.gov.uk Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK -
Office for National Statistics n.d.
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsan
ddiseases/bulle Coffice for National Statistics n.d.

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditional

diseases/bulletins/prevalence of ongoing symptoms following coronavirus covid 19 infection euk/30 m https://www.ons.gov.uk/peopler
https://www.ons.gov.uk/peopler
ddiseases/bulletins/prevalenceof
euk/30march2023 (accessed Mar
Thompson EJ, Williams DM, Wall
burden and risk factors in 10 UK
Commun 2022;13:3528. https://
- ddiseases/bulletins/prevalenceofongoingsymptomsfollowing coronavirus covid19infectioninth
euk/30march2023 (accessed May 10, 2023).
Thompson EJ, Williams DM, Walker AJ, Mitchell RE, Niedzwiedz CL, Yang TC, et al. Long COVID euk/30march2023 (accessed May 10, 2023).
Thompson EJ, Williams DM, Walker AJ, Mitchell RE, Niedzwiedz CL, Yang TC, et al. Long COVID
burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat
 euk/30march2023 (accession CDM, Walker AJ, Mitch
2023 (accession 2022;13:3528. https://doi.org/10.10
2023:13:3528. https://doi.org/10.10
2023:13:3528. https://doi.org/10.10 burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat
Commun 2022;13:3528. https://doi.org/10.1038/s41467-022-30836-0.
19 0 Commun 2022;13:3528. https://doi.org/10.1038/s41467-022-30836-0.

Electronic health records. National studies and electronic health records. National studies and electronic he

Studies and the correction of the correctio Commun 2022;13:3528. https://doi.org/10.1038/s41467-022-30836-0.

- Symptoms and risk factors for long COVID in non-hospitalized adults. Nat Med 2022;28
14. https://doi.org/10.1038/s41591-022-01909-w.
[11] Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndrome
- 14. https://doi.org/10.1038/s41591-022-01909-w.
Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndromes. Nat
Med 2022;28:911–23. https://doi.org/10.1038/s41591-022-01810-6.
Jason LA, Katz B, G
- 14. https://doi.org/10.1038/s41
14. https://doi.org/10.1038/s41
14. https://doi.org/10.1038/s41
14. https://doi.org/10.1038/s41
14. https://doi.org/10.1038/s41
14. https://doi.org/10.1038/s41
14. https://doi.org/10.1038/s4
- Med 2022;28:911–23. https://doi.org/10.1038/s41591-022-01810-6.

[12] Jason LA, Katz B, Gleason K, McManimen S, Sunnquist M, Thorpe T. A Prospective Study of

Infectious Mononucleosis in College Students. Int J Psychiatry Med 2022;28:911–23. https://doi.org/10.1038/s41591-022-01810-6.
Jason LA, Katz B, Gleason K, McManimen S, Sunnquist M, Thorpe T. A Prospective Study of
Infectious Mononucleosis in College Students. Int J Psychiatry (Overl Infectious Mononucleosis in College Students. Int J Psychiatry (Overl Park) 2017;2:1–14.

[13] Klem F, Wadhwa A, Prokop LJ, Sundt WJ, Farrugia G, Camilleri M, et al. Prevalence, Risk

Factors, and Outcomes of Irritable Bow Infermal Monometer Mononucleon Mononucleon Mononucleon Mononucleon Risk
Infectors, and Outcomes of Irritable Bowel Syndrome After Infectious Enteritis: A Systema
Review and Meta-analysis. Gastroenterology 2017;152:1042-105 Factors, and Outcomes of Irritable Bowel Syndrome After Infectious Enteritis: A System:

Review and Meta-analysis. Gastroenterology 2017;152:1042-1054.e1.

https://doi.org/10.1053/j.gastro.2016.12.039.

[14] Yong SJ. Long Review and Meta-analysis. Gastroenterology 2017;152:1042-1054.e1.
https://doi.org/10.1053/j.gastro.2016.12.039.
Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, an
treatments. Infect D
-
- Review Meta-analysis. Julie 2016.12.039.
Review SJ. Long COVID or post-COVID-19 syndrome: putative pathophysitreatments. Infect Dis 2021;53:737–54. https://doi.org/10.1080/23744
Klaser K, Thompson EJ, Nguyen LH, Sudre CH, Mapper, Marchel, 2012-19, 30.000 MM SV and SV appression symptoms after COVID-19 infection
In Neurol Neuros after COVID-19 infection
In Neurol Neurosurg treatments. Infect Dis 2021;53:737–54. https://doi.org/10.1080/23744235.2021.1924397.

[15] Klaser K, Thompson EJ, Nguyen LH, Sudre CH, Antonelli M, Murray B, et al. Anxiety and

depression symptoms after COVID-19 infectio The Masser K, Thompson EJ, Nguyen LH, Sudre CH, Antonelli M, Murray B, et al. Anxiety and
depression symptoms after COVID-19 infection: results from the COVID Symptom Study ap
J Neurol Neurosurg Psychiatry 2021;92:1254–8.
- depression symptoms after COVID-19 infection: results from the COVID Symptom Study

J Neurol Neurosurg Psychiatry 2021;92:1254–8. https://doi.org/10.1136/jnnp-2021-327

Kläser K, Molteni E, Graham M, Canas LS, Österdahl MF depression symptoms after COVID-19 in Neurol Neurosurg Psychiatry 2021;92:1254-8. https://doi.org/10.1136/jnnp-2021-327565.
Kläser K, Molteni E, Graham M, Canas LS, Österdahl MF, Antonelli M, et al. COVID-19 due to
the B.1 Maser K, Molteni E, Graham M, Canas LS, Österdahl MF, Antonelli M, et al. COVID-19 due to
the B.1.617.2 (Delta) variant compared to B.1.1.7 (Alpha) variant of SARS-CoV-2: a
prospective observational cohort study. Sci Rep 2 the B.1.617.2 (Delta) variant compared to B.1.1.7 (Alpha) variant of SARS-CoV-2: a
prospective observational cohort study. Sci Rep 2022;12:10904.
https://doi.org/10.1038/s41598-022-14016-0.
[17] Canas LS, Österdahl MF, Den
- prospective observational cohort study. Sci Rep 2022;12:10904.
https://doi.org/10.1038/s41598-022-14016-0.
Canas LS, Österdahl MF, Deng J, Hu C, Selvachandran S, Polidori L, et al. Disentangl
vaccination symptoms from earl prospective org/10.1038/s41598-022-14016-0.

https://doi.org/10.1038/s41598-022-14016-0.

Canas LS, Österdahl MF, Deng J, Hu C, Selvachandran S, Polidori I

vaccination symptoms from early COVID-19. EClinicalMedicine 2

ht https://doi.org/10.1038/s41598-022-14016-0.
Canas LS, Österdahl MF, Deng J, Hu C, Selvachandran S, Polidori L, et al. Disentangling post-
vaccination symptoms from early COVID-19. EClinicalMedicine 2021;42.
https://doi.org
-
- [19] National flu and COVID-19 surveillance reports GOV.UK n.d.
https://www.gov.uk/government/statistics/national-flu-and-covid-19-surveillance-reports vaccination symptoms for the 2021.101212.
https://doi.org/10.1016/j.eclinm.2021.101212.
Kuhn HW. The Hungarian method for the assignment problem. Naval Re.
Quarterly 1955;2:83–97. https://doi.org/10.1002/nav.3800020109.
Na Quarterly 1955;2:83–97. https://doi.org/10.1002/nav.3800020109.
National flu and COVID-19 surveillance reports - GOV.UK n.d.
https://www.gov.uk/government/statistics/national-flu-and-covid-1
(accessed August 18, 2022). (18) Quarterly 1955;2:83–97. https://doi.org/10.1002/nav.3800020109.

[19] National flu and COVID-19 surveillance reports - GOV.UK n.d.

https://www.gov.uk/government/statistics/national-flu-and-covid-19-surveillance-repor National flu and COVID-19 surveillance reports - GOV.UK n.d.
https://www.gov.uk/government/statistics/national-flu-and-covid-1
(accessed August 18, 2022).
Sunjaya AP, Allida SM, Di Tanna GL, Jenkins C. Asthma and risk of i
- https://www.gov.uk/government/statistics/national-flu-and-o

(accessed August 18, 2022).

[20] Sunjaya AP, Allida SM, Di Tanna GL, Jenkins C. Asthma and risl

ICU admission and mortality from COVID-19: Systematic revie

As (accessed August 18, 2022).
Sunjaya AP, Allida SM, Di Tanna GL, Jenkins C. Asthma and risk of infection, hospitalization,
ICU admission and mortality from COVID-19: Systematic review and meta-analysis. Journal
Asthma 2022; (accessed AP, Allida SM, Di Tar
ICU admission and mortality
Asthma 2022;59:866–79. htt
Kostev K, Smith L, Koyanagi
Coronavirus Disease 2019 (C
- [21] CU admission and mortality from COVID-19: Systematic review and meta-analysis. Journal
Asthma 2022;59:866–79. https://doi.org/10.1080/02770903.2021.1888116.
[21] Kostev K, Smith L, Koyanagi A, Jacob L. Prevalence of a ICU Admin 2022;59:866–79. https://doi.org/10.1080/02770903.2021.1888116.
ICONID-19: Systematic Review and Meta-Coronavirus Disease 2019 (COVID-19) Condition in the 12 Months After the Diagnosis of
COVID-19 in Adults Follow Asthma 2022;59:866–79. https://doi.org/10.1080/02770903.2021.1888116.
Kostev K, Smith L, Koyanagi A, Jacob L. Prevalence of and Factors Associated With Post-
Coronavirus Disease 2019 (COVID-19) Condition in the 12 Months A
- Post-COVID-19 Conditions. JAMA Psychiatry 2022. COVID-19 in Adults Followed in General Practices in Germany. Open Forum Infect Dis 20:
https://doi.org/10.1093/ofid/ofac333.
Wang S, Quan L, Chavarro JE, Slopen N, Kubzansky LD, Koenen KC, et al. Associations of
Depression https://doi.org/10.1093/ofid/ofac333.
Wang S, Quan L, Chavarro JE, Slopen N, Kubzansky LD, Koenen KC, et al. Associations of
Depression, Anxiety, Worry, Perceived Stress, and Loneliness Prior to Infection With Risk of
Post Wang S, Quan L, Chavarro JE, Slopen N,
Depression, Anxiety, Worry, Perceived
Post-COVID-19 Conditions. JAMA Psych
https://doi.org/10.1001/jamapsychiatr Depression, Anxiety, Worry, Perceived Stress, and Loneliness Prior to Infection With Risl
Post-COVID-19 Conditions. JAMA Psychiatry 2022.
https://doi.org/10.1001/jamapsychiatry.2022.2640. Depression, Analytical Prior, Anxiet British, and Loneliness, and Loneliness Post-COVID-19 Conditions. JAMA Psychiatry 2022.
https://doi.org/10.1001/jamapsychiatry.2022.2640.
https://doi.org/10.1001/jamapsychiatry.2022.264 https://doi.org/10.1001/jamapsychiatry.2022.2640
https://doi.org/10.1001/jamapsychiatry.2022.2640
https:// https://doi.org/10.1001/jamapsychiatry.2022.2640.

-
- the COVID-19 pandemic: a longitudinal probability sample survey of the UK population.

Lancet Psychiatry 2020;7:883–92. https://doi.org/10.1016/S2215-0366(20)30308-4.

[24] Ben-Ezra M, Hamama-Raz Y, Goodwin R, Leshem E, Le Lancet Psychiatry 2020;7:883–92. https://doi.org/10.1016/S2215-0366(20)30308-4.
Ben-Ezra M, Hamama-Raz Y, Goodwin R, Leshem E, Levin Y. Association between menta
health trajectories and somatic symptoms following a second Ben-Ezra M, Hamama-Raz Y, Goodwin R, Leshem E, Levin Y. Association between me
health trajectories and somatic symptoms following a second lockdown in Israel: A
longitudinal study. BMJ Open 2021;11:1–9. https://doi.org/10.
- health trajectories and somatic symptoms following a second lockdown in Israel: A
longitudinal study. BMJ Open 2021;11:1-9. https://doi.org/10.1136/bmjopen-2021-0504
[25] Ballering A V., van Zon SKR, olde Hartman TC, Rosma health trajectories and somations. Here, the sometime is and sometime sometimes a selecting A V., van Zon SKR, olde Hartman TC, Rosmalen JGM. Persistence of somations for a second symptoms after COVID-19 in the Netherlands Ballering A V., van Zon SKR, olde Hartman TC, Rosmalen JGM. Persistence of somatic
symptoms after COVID-19 in the Netherlands: an observational cohort study. The Lancet
2022;400:452–61. https://doi.org/10.1016/S0140-6736(2 Symptoms after COVID-19 in the Netherlands: an observational cohort study. The Lartman 2022;400:452–61. https://doi.org/10.1016/S0140-6736(22)01214-4.
[26] Manai M, Van Middendorp H, Veldhuijzen D, Huizinga T, Evers A. Eff
-
- symptoms after Covid-19 in the Netherlands and COV22;400:452-61. https://doi.org/10.1016/S0140-6736(22)01214-4.
Manai M, Van Middendorp H, Veldhuijzen D, Huizinga T, Evers A. Effects in Pain ?: a Narra
Review on Mechanisms Manai M, Van Middendorp H, Veldhuijzen D, Huizinga T, Evers A. Effe
Review on Mechanisms , Predictors , and Interventions. Pain Rep 201
Haas JW, Bender FL, Ballou S, Kelley JM, Wilhelm M, Miller FG, et al. I
Events in the Example 19 Manual M, Van Middelp M, Van Middelp H, Veldhuisen D, Valdendorp 1, 2019;4:1–10.

[27] Maas JW, Bender FL, Ballou S, Kelley JM, Wilhelm M, Miller FG, et al. Frequency of Adverse

Events in the Placebo Arms of CO Review on Mechanisms , Predictors , and Interventions. Pain Rep 2019;4:1–10.

Haas JW, Bender FL, Ballou S, Kelley JM, Wilhelm M, Miller FG, et al. Frequency of Adverse

Events in the Placebo Arms of COVID-19 Vaccine Trial
- Events in the Placebo Arms of COVID-19 Vaccine Trials. JAMA Netw Open 2022;5:e2143955
https://doi.org/10.1001/jamanetworkopen.2021.43955.
[28] Bardel A, Wallander MA, Wallman T, Rosengren A, Johansson S, Eriksson H, et al. Eventy/doi.org/10.1001/jamanetworkopen.2021.43955.
Bardel A, Wallander MA, Wallman T, Rosengren A, Johansson S, Eriksson H, et al. Age and se:
related self-reported symptoms in a general population across 30 years: Pattern
- and secular trend. PLoS One 2019;14. https://doi.org/10.1371/journal.pone.0211532.
Bardel A, Wallander M-A, Wallman T, Rosengren A, Johansson S, Eriksson H, et al. Age an
sex related self-reported symptoms in a general pop related self-reported symptoms in a general population across 30 years: Patterns of reporting
and secular trend. PLoS One 2019;14. https://doi.org/10.1371/journal.pone.0211532.
[29] Bardel A, Wallander M-A, Wallman T, Rose related self-reported. PLoS One 2019;14. https://doi.org/10.1371/journal.pone.0211532.
Bardel A, Wallander M-A, Wallman T, Rosengren A, Johansson S, Eriksson H, et al. Age and
sex related self-reported symptoms in a genera and secular trend. Products on the property and secular trend. Parally Sardel A, Wallander M-A, Wallman T, Rosengren A, Johansson S, Eriksson H, et al. Age
sex related self-reported symptoms in a general population across sex related self-reported symptoms in a general population across 30 years: Patterns of
reporting and secular trend. PLoS One 2019;14:e0211532.
https://doi.org/10.1371/journal.pone.0211532.
[30] MacKrill K, Groom KM, Petri reporting and secular trend. PLoS One 2019;14:e0211532.
https://doi.org/10.1371/journal.pone.0211532.
MacKrill K, Groom KM, Petrie KJ. The effect of symptom-tracking apps on symptom repo
Br J Health Psychol 2020;25:1074–85
- https://doi.org/10.1371/journal.pone.0211532.
MacKrill K, Groom KM, Petrie KJ. The effect of symptom-tra
Br J Health Psychol 2020;25:1074–85. https://doi.org/10.1.
. MacKrill K, Groom KM, Petrie KJ. The effect of sy
Br J Health Psychol 2020;25:1074–85. https://do
Thealth Psychol 2020;25:1074–85. https://do $[30]$ Machine, Groom May, Petric Machine Street of Symptom-tracking appearing appearing.
Br J Health Psychol 2020;25:1074-85. https://doi.org/10.1111/bjhp.12459. Br J Health Psychol 2020;25:1074–85. https://doi.org/10.1111/bjhp.12459.

TABLES

Table 1: Demographic data for study participants. $\mathbb B$ indicates that the variable was used in the
matching process. Continuous variables were compared using the paired Wilcoxon test; categorical
variables were compared variables were compared using the chi-squared test. * indicates significant difference between the
two groups. § included here: self-reported categories of: mania, hypomania, bipolar, manic
depression, schizophrenia, psych two groups. § included here: self-reported categories of: mania, hypomania, bipolar, manic
depression, schizophrenia, psychosis, psychotic illness. Smoking refers to currently smoking. IMD
(index of multiple deprivation) i the groups. Schizophrenia, psychosis, psychotic illness. Smoking refers to currently smoking.
(index of multiple deprivation) is ordered from 1 (most deprived) to 10 (least deprived). Met
illness duration was calculated <u>w</u> (index of multiple deprivation) is ordered from 1 (most deprived) to 10 (least deprived). Median
illness duration was calculated <u>without</u> considering the possibility of right-censoring at 12 weeks is
the group with long i illness duration was calculated <u>without</u> considering the possibility of right-censoring at 12 weeks
the group with long illness duration. Right censoring occurred for 338 individuals who were still
logging as unhealthy at illness duration. Right censoring occurred for 338 individuals who were still
logging as unhealthy at the time of study cut-off and for 166 individuals who stopped logging while
still unhealthy.
Matched individuals
with sh the group with short illness

dogging as unhealthy at the time of study cut-off and for 166 individuals who stopped logging where still unhealthy.

Matched individuals

with short illness

Individuals with long

[IQR]) 20[16; 23] 20[15; 23] Z20 [16;23]

FIGURES

Figure 1: Flowchart for Study Participant Selection. LFT - lateral flow test. PCR - polymerase chain reaction test. MH – mental health. Weekly logging – at least one health report logged weekly from 8 weeks before 12 weeks after commencement of COVID-19. Invalid demographics: BMI < 15 or BMI > 55; age >100 years or age < 18 years, no possibility to extract index of multiple deprivation.

Figure 2: Symptom prevalence during the baseline period in individuals with long illness vs. short

illness (descriptive data only, unadjusted for comorbidities, week of testing, prior infection,

vaccination status, smoking or index of multiple deprivation).

Figure 3: Odds ratios from conditional logistic regression of individual symptoms for long illness vs. short illness (reference group), according to baseline symptom reporting. Model 1: no adjustment; Model 2: additionally adjusted for any comorbidity reported at registration; Model 3: additionally adjusted for prior mental health diagnosis. Circle size represents baseline symptom prevalence in individuals with short (gold) vs. long (purple) illness duration; circle scale is shown at the bottom in grey. Odds ratios are shown as dots with 95% confidence intervals as lines: results in red are significant after adjustment for multiple comparisons.

Figure 4: Concordance of symptoms between baseline and post-COVID periods, in individuals with short (left image) vs. long (right image) illness (n=1350 in each group).

Figure 5: Odds ratios of symptom concordance (i.e., present in the post-COVID period, if reported at baseline [reference period]) in individuals with long illness. Model 1: adjusted for age, sex, BMI, vaccination number, prior infection, week of testing, smoking and index of multiple deprivation; Model 2: additionally adjusted for comorbidities reported at registration; Model 3: additionally adjusted for prior mental health diagnosis. Circle size refers to symptom prevalence during baseline (gold) and post-COVID (purple) periods; scale is shown at bottom of figure. Symptoms are ordered by decreasing prevalence at baseline. Odds ratios are shown as dots with CI (lines); results in red are significant after adjustment for multiple comparisons.

Figure 6: Symptom prevalence by sex, considered during baseline (left two panels) and post-COVID (right two panels) periods, in individuals with short (upper two panels) and long (lower two panels) illness.

Figure 7: Symptom prevalence in individuals with long illness according to baseline symptom reporting (any symptom reported vs. no symptom); odds ratios of each individual symptom in the post-COVID period according to baseline symptom reporting (any reported symptom vs. no symptom). Red lines indicate significantly increased odds. Symptoms are ordered by decreasing prevalence at baseline.

Percentage of individuals reporting at least once
iven symptom in the post period according to baseline reporting

Figure 8 Symptom prevalence in individuals with long illness duration, comparing individuals with respiratory illness (asthma and/or 'lung disease', allergic rhinitis), mental health diagnosis, heart disease or diabetes to individuals without any comorbidity, during baseline (left panel) and post-COVID (right panel) periods. MH: prior mental health diagnosis. Symptoms are ordered by decreasing prevalence at baseline.

