
Determining The Role Of Radiation Oncologist Demographic Factors On Segmentation
Quality: Insights From A Crowd-Sourced Challenge Using Bayesian Estimation

Kareem A. Wahida,b, Onur Sahina, Suprateek Kunduc, Diana Lind, Anthony Alanisa, Salik
Tehamia, Serageldin Kamela, Simon Dukee, Michael V. Shererf, Mathis Rasmusseng, Stine
Korremang, David Fuentesb, Michael Cislod, Benjamin E. Nelmsh, John P. Christodouleasi,j,
James D. Murphyf, Abdallah S. R. Mohameda, Renjie Hea, Mohammed A. Nasera, Erin F.
Gillespiek*, Clifton D. Fullera*

aDepartment of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston,
Texas, USA.
bDepartment of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas,
USA.
cDepartment of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
dDepartment of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.
eDepartment of Radiation Oncology, Cambridge University Hospitals, Cambridge, UK.
fDepartment of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla,
CA, USA.
gDepartment of Oncology, Aarhus University Hospital, Denmark.
hCanis Lupus, LLC, Merrimac, WI, USA.
iDepartment of Radiation Oncology, The University of Pennsylvania Cancer Center, Philadelphia, PA,
USA.
jElekta, Atlanta, GA, USA.
kFred Hutchinson Cancer Center, Seattle, WA, USA.

* co-corresponding authors

Corresponding authors:

​​Erin F. Gillespie, MD
Fred Hutchinson Cancer Center,
100 Fairview Ave N, Seattle, WA 98109
Seattle, WA 98109
Email: efgillespie@ucsd.edu

Clifton D. Fuller, MD, PhD
Department of Radiation Oncology
The University of Texas MD Anderson Cancer Center
1515 Holcombe Blvd.
Houston, TX, 77030
Email: cdfuller@mdanderson.org

Funding Statement: KAW was supported by an Image Guided Cancer Therapy (IGCT) T32 Training
Program Fellowship from T32CA261856. CDF received/receives unrelated funding and salary support
from: NIH National Institute of Dental and Craniofacial Research (NIDCR) Academic Industrial
Partnership Grant (R01DE028290) and the Administrative Supplement to Support Collaborations to
Improve AIML-Readiness of NIH-Supported Data (R01DE028290-04S2); NIDCR Establishing Outcome
Measures for Clinical Studies of Oral and Craniofacial Diseases and Conditions award (R01DE025248);

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.08.30.23294786doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.08.30.23294786
http://creativecommons.org/licenses/by/4.0/


NSF/NIH Interagency Smart and Connected Health (SCH) Program (R01CA257814); NIH National
Institute of Biomedical Imaging and Bioengineering (NIBIB) Research Education Programs for Residents
and Clinical Fellows Grant (R25EB025787); NIH NIDCR Exploratory/Developmental Research Grant
Program (R21DE031082); NIH/NCI Cancer Center Support Grant (CCSG) Pilot Research Program Award
from the UT MD Anderson CCSG Radiation Oncology and Cancer Imaging Program (P30CA016672);
Patient-Centered Outcomes Research Institute (PCS-1609-36195) sub-award from Princess Margaret
Hospital; National Science Foundation (NSF) Division of Civil, Mechanical, and Manufacturing Innovation
(CMMI) grant (NSF 1933369). CDF receives grant and infrastructure support from MD Anderson Cancer
Center via: the Charles and Daneen Stiefel Center for Head and Neck Cancer Oropharyngeal Cancer
Research Program; the Program in Image-guided Cancer Therapy; and the NIH/NCI Cancer Center
Support Grant (CCSG) Radiation Oncology and Cancer Imaging Program (P30CA016672).

Conflict of Interest: CDF has received travel, speaker honoraria and/or registration fee waiver unrelated
to this project from: The American Association for Physicists in Medicine; the University of
Alabama-Birmingham; The American Society for Clinical Oncology; The Royal Australian and New
Zealand College of Radiologists; The American Society for Radiation Oncology; The Radiological Society
of North America; and The European Society for Radiation Oncology.

Acknowledgments: The authors thank Dr. Charles R. Thomas Jr. for helpful comments and discussions.

2

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.08.30.23294786doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.30.23294786
http://creativecommons.org/licenses/by/4.0/


Abstract

BACKGROUND: Medical image auto-segmentation is poised to revolutionize radiotherapy
workflows. The quality of auto-segmentation training data, primarily derived from clinician
observers, is of utmost importance. However, the factors influencing the quality of these
clinician-derived segmentations have yet to be fully understood or quantified. Therefore, the
purpose of this study was to determine the role of common observer demographic variables on
quantitative segmentation performance.

METHODS: Organ at risk (OAR) and tumor volume segmentations provided by radiation
oncologist observers from the Contouring Collaborative for Consensus in Radiation Oncology
public dataset were utilized for this study. Segmentations were derived from five separate
disease sites comprised of one patient case each: breast, sarcoma, head and neck (H&N),
gynecologic (GYN), and gastrointestinal (GI). Segmentation quality was determined on a
structure-by-structure basis by comparing the observer segmentations with an expert-derived
consensus gold standard primarily using the Dice Similarity Coefficient (DSC); surface DSC was
investigated as a secondary metric. Metrics were stratified into binary groups based on
previously established structure-specific expert-derived interobserver variability (IOV) cutoffs.
Generalized linear mixed-effects models using Markov chain Monte Carlo Bayesian estimation
were used to investigate the association between demographic variables and the binarized
segmentation quality for each disease site separately. Variables with a highest density interval
excluding zero — loosely analogous to frequentist significance — were considered to
substantially impact the outcome measure.

RESULTS: After filtering by practicing radiation oncologists, 574, 110, 452, 112, and 48
structure observations remained for the breast, sarcoma, H&N, GYN, and GI cases,
respectively. The median percentage of observations that crossed the expert DSC IOV cutoff
when stratified by structure type was 55% and 31% for OARs and tumor volumes, respectively.
Bayesian regression analysis revealed tumor category had a substantial negative impact on
binarized DSC for the breast (coefficient mean ± standard deviation: -0.97 ± 0.20), sarcoma
(-1.04 ± 0.54), H&N (-1.00 ± 0.24), and GI (-2.95 ± 0.98) cases. There were no clear recurring
relationships between segmentation quality and demographic variables across the cases, with
most variables demonstrating large standard deviations and wide highest density intervals.

CONCLUSION: Our study highlights substantial uncertainty surrounding conventionally
presumed factors influencing segmentation quality. Future studies should investigate additional
demographic variables, more patients and imaging modalities, and alternative metrics of
segmentation acceptability.
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Introduction

Segmentation (also termed contouring or delineation) of regions of interest (ROIs) on medical
images is crucial for contemporary radiotherapy treatment planning 1. Importantly, accurate
segmentation of organs at risk (OARs) and tumor-related structures are required to maximize
radiotherapeutic efficacy while minimizing harmful side effects. Segmentation for radiotherapy
treatment planning is often performed by highly trained clinicians, such as radiation oncologists.
However, clinician-derived manual segmentation is a time- and labor-intensive task subject to
significant inter-observer variation, thereby prompting the increasing development of artificial
intelligence (AI)-based methods for auto-segmentation 2.

The contouring collaborative for consensus in radiation oncology (C3RO), a large-scale
crowdsourcing challenge for radiotherapy segmentation, demonstrated that non-expert
consensus ROI segmentations could quantitatively approximate expert consensus ROI
segmentations in a variety of disease sites 3, thereby motivating the potential use of a large
number of lower-quality segmentations in place of a small number of high-quality segmentations
for AI auto-segmentation model training. Notably, segmentations were highly variable among the
participants of C3RO, pointing to the existence of underlying factors associated with the
resultant segmentation quality.

Despite AI advancements in auto-segmentation, human clinicians will likely be involved in the
radiotherapy segmentation process for the foreseeable future, both as suppliers of ground truth
segmentations for algorithmic training and as the final arbiters of auto-segmentation quality.
Understanding the characteristics of radiation oncologists associated with superior
segmentation performance is of utmost importance, as this knowledge can guide the training of
future professionals, inform the design of auto-segmentation tools, and ultimately improve the
quality of care provided to cancer patients. While some data do suggest that clinician
experience in a particular disease site is associated with improved radiotherapy outcomes 4–6,
no studies have directly examined underlying factors related to segmentation quality. Therefore,
we aim to investigate how demographic factors of a large number of practicing radiation
oncologists are associated with improved segmentation quality through a secondary analysis of
the C3RO data across several disease sites.
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Figure 1. Overview of study. Five cases from different disease sites (breast, sarcoma, head and
neck [H&N], gynecologic [GYN], and gastrointestinal [GI]) were investigated. Radiation
oncologist observers segmented organs at risk and tumor-related structures from these cases,
whereupon Bayesian regression analysis was performed to determine the relationship between
underlying demographic factors and segmentation quality.

Methods

Study participants and demographic variables:

Participants in C3RO were categorized as recognized experts or non-experts. Recognized
experts were identified by the C3RO organizers as board-certified physicians who participated
in the development of national guidelines and/or contributed to extensive scholarly activities
within a specific disease site. Non-experts were any participants not categorized as an expert
for that disease site. For this study, non-expert participants from each separate disease site of
the C3RO database, namely the breast, sarcoma, head and neck (H&N), gynecologic (GYN),
and gastrointestinal (GI) cases were selected for the analysis. Greater details on the publicly
available C3RO dataset can be found in the corresponding data descriptor 7. Self-reported
demographic variables of interest from the participants were initially collected through an intake
survey performed on REDCap 8. Demographic variables for this study included: practice
location, self-identified gender, self-identified race, academic affiliation, primary practice type,
number of radiation oncologist colleagues, presence of another radiation oncologist colleague
on clinic day, and if the observer actively treated the disease site of interest. Additionally, a new
demographic variable, years of practice, was calculated as the reported years since finishing
residency minus the year C3RO data collection took place, i.e., 2022. Table 1 shows the
demographic variables in detail with corresponding descriptions and possible values. Before use
in the analysis, non-expert participants were filtered out of the dataset if they were clinical
residents (i.e., trainees) or non-clinicians. In other words, only currently practicing radiation
oncologists were included in the analysis. Due to an imbalance between primary practice type
groups, the primary practice description variable was converted to a binary format by grouping
academic/university (academic) into one group and all others into a separate group
(non-academic).

Table 1. Demographic variables examined in this study.

Variable Description

Practice location Geographic location where participant actively
practices. Binary variable with possible values of United
States (US) or Non-US.

Gender Self-identified gender. Binary variable with possible
values of male or female. Original variable included
non-binary as an option but was not selected by any
participants.
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Race Self-identified race. Binary variable with possible values
of white or non-white.

Academic Affiliation Whether the participant actively holds an academic
affiliation or not. Binary variable with possible values of
yes or no.

Primary Practice Type Best self-identified description of primary practice where
participant actively practices. Categorical variables with
values of, academic/university, non-academic hospital,
private practice (solo or group), or other. Converted to a
binary variable with possible values of academic or
non-academic.

Number of Radiation Oncologist Colleagues The total estimated number of radiation oncologist
colleagues that work with the participant at their primary
clinical site (excluding themselves). Continuous
numerical variable with minimum value of 0.

Presence of Another Radiation Oncologist on Clinic Day Whether there is at least one additional radiation
oncologist when the participant is actively working in
their clinic (on most days). Binary variable with possible
values of yes or no.

Actively Treat Disease Site Whether the participant actively treats the disease site
under investigation, e.g., for the breast case do they
actively treat breast patients in their clinic? Binary
variable with possible values of yes or no.

Years of Practice Number of self-reported years since completing
residency (calculated relative to start of C3RO).
Continuous numerical variable with minimum value of 0.

Segmentation evaluation:

All ROIs from all disease sites in the C3RO dataset were used for this analysis. A complete list
of ROIs and their corresponding abbreviations and descriptions can be found in Appendix A.
For each non-expert ROI, we calculated segmentation quality by comparing the non-expert
segmentation to the consensus of experts as derived using the Simultaneous Truth and
Performance Level Estimation (STAPLE) algorithm 9 (Figure 2). The number of expert
observers used for each ROI consensus segmentation can be found in Appendix A. The
number of experts used to derive the consensus segmentation was variable depending on the
ROI; more information can be found in the corresponding data descriptor 7. Though “experts”
were subjectively determined in the original C3RO study, they demonstrated significantly
improved interobserver variability compared to non-expert counterparts 3. Therefore, the expert
STAPLE can be considered as a “gold standard” segmentation to be used for comparison
purposes. We utilized existing Neuroimaging Informatics Technology Initiative (NIfTI) structure
files for comparisons, which were originally converted from Digital Imaging and Communications
in Medicine to NIfTI format using DICOMRTTool 10. The Dice similarity coefficient (DSC) was
utilized as the main metric for comparison purposes due to its ubiquity in segmentation studies
1. We also investigated a metric of surface similarity, the surface DSC (SDSC) for additional
experiments; tolerance values for each ROI were determined from the pairwise average surface
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distance of the expert segmentations which can be found in the C3RO data descriptor 7. Metrics
were calculated using the surface-distances Python package v. 0.1 11 and in-house Python code
(Python v. 3.9.0).

In order to ensure metrics were comparable across ROIs, metrics were stratified into binary
groups based on previously established ROI-specific expert-derived interobserver variability
(IOV) cutoffs 7. Namely if the metric for a given ROI was greater than or equal to the
ROI-specific expert IOV, it was classified as a 1, while if it was less than the expert IOV it was
classified as a 0 (Figure 2). For example, if an observer scored a DSC of 0.95 for the ROI
“heart” whose expert IOV was 0.9, the binarized DSC value would be 1. Finally, for each ROI,
we calculated the percentage of observers that were able to cross the expert IOV cutoff.

Figure 2. Derivation of binarized structure segmentation quality for each observer. Each
observer could segment multiple structures, i.e., organs at risk and tumor volumes. Observer
segmentations (red volume) were compared to a “gold standard” derived from a consensus
segmentation of experts (green volume) using the Dice similarity coefficient (DSC).
Segmentation metrics were then stratified into being greater than or equal to (yes - 1) or below
(no - 0) a previously derived expert-derived interobserver variability (IOV) cutoff value for that
particular region of interest. In this example, the primary gross tumor volume structure for the
head and neck case is shown. A similar process was used to derive binarized values for surface
DSC.

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.08.30.23294786doi: medRxiv preprint 

https://paperpile.com/c/V1VQTq/0UfE
https://paperpile.com/c/V1VQTq/W2lmo
https://paperpile.com/c/V1VQTq/0UfE
https://doi.org/10.1101/2023.08.30.23294786
http://creativecommons.org/licenses/by/4.0/


Bayesian regression analysis:

Due to the repeated measures nature of our study, generalized linear mixed effects models with
Bayesian estimation were utilized to investigate the relationship between demographic variables
and binarized segmentation quality metrics for each disease site separately. A Bernoulli logistic
model was implemented due to the binary nature of our outcome variable. The stratified binary
segmentation quality metric (i.e., IOV thresholded metric of non-expert relative to expert
STAPLE) acted as the dependent variable for the models. The key independent variables (i.e.,
fixed effects) were practice location, primary practice type, number of radiation oncologist
colleagues, presence of another radiation oncologist on clinic day, actively treated the disease
site, and years of practice. Notably, exploratory correlative analysis (Appendix B) revealed high
relative correlation between academic affiliation and primary practice type; therefore academic
affiliation, the less initially granular of the two variables, was not included as a covariate in this
work to facilitate model parsimony. An additional binary categorical variable, ROI type, was
added as an additional independent variable to indicate if the ROI was an OAR or tumor
volume. Additionally, models were corrected for self-identified gender and self-identified race by
including them as independent variables in the models. A random intercept was used in the
models to account for the various observers who could segment multiple structures on the same
image (e.g., multiple OARs and tumor volumes). In other words, independent observers were
treated as groups for the mixed effect models. Any empty values for numerical variables,
namely number of radiation oncologist colleagues and years of practice, were imputed to the
median value relative to the total number of observations for that disease site. Finally, numerical
variables were Z-score normalized within each separate disease site to facilitate model
convergence and direct comparison of coefficient values.

The Python package Bambi v. 0.12.0 12, which is built on top of the robust Markov chain Monte
Carlo (MCMC) library PyMC3 13, was utilized for all regression analysis. For each disease site
(breast, sarcoma, H&N, GYN, or GI), the regression formula was defined as:

𝑌
𝑖𝑗

 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝
𝑖𝑗

),

𝑙𝑜𝑔𝑖𝑡(𝑝
𝑖𝑗

) =  β0 +  𝑢
𝑗
 + β1 * (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝑖𝑗
) +  β2 * (𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒_𝑡𝑦𝑝𝑒

𝑖𝑗
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𝑖𝑗
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β4 * (𝐶𝑜𝑙𝑙𝑒𝑎𝑔𝑢𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒
𝑖𝑗

) + β5 * (𝑇𝑟𝑒𝑎𝑡_𝑠𝑖𝑡𝑒
𝑖𝑗

) + β6 * (#𝑌𝑒𝑎𝑟𝑠_𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒
𝑖𝑗

) + β7 * (𝑅𝑂𝐼_𝑡𝑦𝑝𝑒
𝑖𝑗

) +  

,β8 * (𝐺𝑒𝑛𝑑𝑒𝑟
𝑖𝑗

) + β9 * (𝑅𝑎𝑐𝑒
𝑖𝑗

)

Where, is the dependent variable (either binarized DSC or SDSC) for observation nested𝑌
𝑖𝑗

𝑖

within observer which follows a Bernoulli distribution with success probability ; is𝑗 𝑝
𝑖𝑗

𝑙𝑜𝑔𝑖𝑡(𝑝
𝑖𝑗

)

the log-odds of the success probability; is the overall intercept; is the random intercept forβ0 𝑢
𝑗

observer ; , …, are the fixed effect coefficients for the predictors, which also have𝑗 β1 β9
interpretations in terms of odds ratios under a logistic regression framework. Number of

8

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.08.30.23294786doi: medRxiv preprint 

https://paperpile.com/c/V1VQTq/CzcC
https://paperpile.com/c/V1VQTq/effB
https://doi.org/10.1101/2023.08.30.23294786
http://creativecommons.org/licenses/by/4.0/


colleagues and number of years of practice were numerical variables, while all other
demographic variables were binary categorical variables.

For each MCMC Bayesian regression model, 10,000 samples were drawn from 4 chains with a
tuning set of 1500 iterations for a total of 46,000 samples drawn for each model. A random state
was set to ensure a reproducible model fitting procedure. Weakly informative priors as
determined by the Bambi package were intelligently generated for all model terms by loosely
scaling them to the observed data 12. Computations were performed across 6 cores of an Intel®
Core™ i7-8700 Processor. MCMC Bayesian regression model computation took between 1-4
hours for each model.

The ArviZ v. 0.15.1 14 Python library was used to derive summary data for the posterior
distribution. Point estimates (posterior means) and assessments of uncertainty (posterior
standard deviation) were calculated for each variable. Additionally, the 89% highest density
interval (HDI) — also referred to as the minimum width Bayesian credible interval — was
calculated; a value of 89% was selected as suggested by recent literature 15,16. ArviZ computes
the HDI using an empirical method based on the sorted posterior samples; additional
information on ArviZ calculations can be found in the corresponding documentation and source
code 14. When an HDI does not contain zero, it suggests that the true value of the parameter is
either entirely positive or negative. Therefore, demographic variables for which the HDI did not
include zero were considered to have a substantial impact on the outcome measure of interest
and could be interpreted as loosely analogous to the frequentist notion of statistical significance.

Data and code availability:

All C3RO data, including the original demographic factors and segmentation data are available
on Figshare (DOI = doi.org/10.6084/m9.figshare.21074182). All Python code used for
generating and analyzing the data for this study is available on GitHub (URL =
https://github.com/kwahid/C3RO_demographics_analysis). Corresponding newly created data
and spreadsheets generated for this study can also be found on Figshare (DOI =
doi.org/10.6084/m9.figshare.24021591).

Results

Study participants:

Flow diagrams of the number of structures and number of clinician observers investigated for
each disease site are shown in Figure 3. After filtering out structures from non-eligible
observers, 574, 110, 452, 112, and 48 ROI structure observations from practicing radiation
oncologist observers remained for the analysis for the breast, sarcoma, H&N, GYN, and GI
cases, respectively.
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Figure 3. Flow diagrams showing the final number of structures evaluated for each disease site.
Breast, sarcoma, H&N, GYN, and GI cases are shown in panels (A), (B), (C), (D), and (E),
respectively. Abbreviations: H&N = head and neck, GYN = gynecologic, GI = gastrointestinal, N
= number of non-expert structure segmentations, O = number of unique non-expert observers.

Individual observer performance:

Figure 4 shows the DSC scores for each observer relative to the expert consensus
segmentation stratified by ROI; the percentage of observations that were able to cross the
expert IOV cutoff are also shown. The highest percentages per case were BrachialPlex_L
(82%), Genitals (44%), Glnd_Submand_L (76%), GTV_n (70%), and Bag_Bowel (73%) for
breast, sarcoma, H&N, GYN, and GI respectively. The lowest percentages per case were
CTV_IMN (36%), CTV (18%), GTVn (24%), CTVn_4500 (26%), and CTV_4500 (29%) for
breast, sarcoma, H&N, GYN, and GI respectively. Aggregated median percentage values when
stratified by ROI type were 55% (interquartile range [IQR] = 35%) and 31% (IQR = 15%) for
OARs and tumor volumes, respectively. Analogous bar plots using SDSC as a metric are shown
in Appendix C. SDSC values mirrored DSC values for most ROIs; aggregated SDSC median
percentage values when stratified by ROI type were 36% (IQR = 32%) and 30% (IQR = 30%)
for OARs and tumor volumes, respectively.
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Figure 4. Barplots of individual observer segmentation performance vs. gold standard. Pink,
red, blue, purple, and green plots correspond to breast, sarcoma, head and neck, gynecologic,
and gastrointestinal regions of interest, respectively. The gold standard segmentation is the
consensus segmentation of all experts as derived from the Simultaneous Truth and
Performance Level Estimation algorithm. Black dotted lines indicate median expert
interobserver dice similarity coefficient (DSC) for a corresponding region of interest. The
percentage of observers that crossed the expert interobserver variability (IOV) cutoff is shown in
red above each plot.
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Bayesian regression models:

Mixed effects regression results using binarized DSC and binarized SDSC as the outcome
variables are shown in Table 2 and Table 3, respectively. For the breast case, tumor category
for both DSC (mean±SD: -0.97±0.20) and SDSC (-1.24±0.20) had HDIs that excluded zero. For
the sarcoma case, tumor category for both DSC (-1.04±0.54) and SDSC (-2.74±0.81) had HDIs
that excluded zero. For the H&N case, the DSC tumor category (-1.00±0.24) and DSC white
racial self-identification (0.66±0.41) had HDIs that excluded zero. For the GYN case, only SDSC
academic practice type (-1.30±0.79) had an HDI that excluded zero. For the GI case, DSC
tumor category (-2.95±0.98) and DSC colleague presence (2.21±1.40) had HDIs that excluded
zero. Model convergence parameters estimated for each variable are presented in Appendix D.
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Table 2. Generalized linear mixed-effects models with Bayesian estimation results using binarized Dice similarity coefficient as the
outcome variable. Model coefficient values are shown for each variable. Reference variable for categorical variables are shown in
brackets next to variable name. Sign value in posterior mean indicates positive or negative correlation of variable with outcome.
Posterior standard deviation (SD) indicates uncertainty around posterior mean. 89% highest density interval (HDI) is shown in
parenthesis after posterior mean. * Bolded variables indicate HDI does not contain zero and is considered to have a substantial
impact on the outcome measure of interest.

Breast Sarcoma Head and Neck Gynecologic Gastrointestinal

Variables Mean (HDI) SD Mean (HDI) SD Mean (HDI) SD Mean (HDI) SD Mean (HDI) SD

Intercept 0.90 (0.08,1.69) 0.51 0.76 (-1.30,2.93) 1.35 -0.46 (-1.85,0.87) 0.86 -0.10 (-2.02,1.78) 1.21 -3.28 (-7.34,1.08) 2.67

ROI category [Tumor] -0.97 (-1.29,-0.65)* 0.20 -1.04 (-1.91,-0.19)* 0.54 -1.00 (-1.39,-0.62)* 0.24 -0.09 (-0.92,0.72) 0.51 -2.95 (-4.44,-1.36)* 0.98

Location [US] -0.54 (-1.15,0.06) 0.38 0.55 (-1.16,2.21) 1.07 0.07 (-0.92,1.06) 0.62 0.08 (-1.52,1.66) 1.01 4.24 (-0.69,9.36) 3.22

Gender [Female] -0.10 (-0.51,0.31) 0.26 0.66 (-0.60,1.91) 0.80 -0.26 (-1.01,0.47) 0.47 -0.13 (-1.15,0.88) 0.64 0.55 (-1.25,2.35) 1.14

Years of practice -0.06 (-0.25,0.13) 0.12 -0.44 (-1.07,0.18) 0.41 -0.23 (-0.56,0.11) 0.21 -0.25 (-0.78,0.24) 0.33 -0.33 (-1.49,0.83) 0.74

Practice type [Academic] -0.37 (-0.74,0.02) 0.24 -0.01 (-1.24,1.21) 0.79 0.13 (-0.48,0.75) 0.39 -0.37 (-1.34,0.59) 0.62 -1.37 (-3.87,1.12) 1.58

# of Colleagues -0.02 (-0.22,0.18) 0.12 -0.15 (-0.82,0.53) 0.43 0.22 (-0.15,0.58) 0.23 -0.13 (-0.61,0.36) 0.31 0.01 (-1.51,1.59) 0.98

Colleague presence [Yes] 0.28 (-0.21,0.77) 0.31 -1.13 (-2.60,0.37) 0.95 0.24 (-0.62,1.07) 0.53 0.23 (-1.06,1.57) 0.83 2.21 (0.03,4.43)* 1.40

Race [White] -0.30 (-0.68,0.09) 0.24 -0.77 (-2.06,0.53) 0.83 0.66 (0.02,1.33)* 0.41 0.47 (-0.47,1.36) 0.58 0.89 (-0.91,2.70) 1.15

Treat disease site [Yes] 0.53 (-0.14,1.20) 0.42 -0.39 (-1.62,0.84) 0.82 -0.13 (-1.33,1.02) 0.74 -0.42 (-1.76,0.92) 0.85 3.02 (-0.34,6.26) 2.09

Random effect variance 0.57 (0.27,0.90) 0.19 1.44 (0.18,2.47) 0.74 1.03 (0.67,1.39) 0.23 0.73 (0.00,1.31) 0.46 0.78 (0.00,1.58) 0.64
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Table 3. Generalized linear mixed-effects models with Bayesian estimation results using binarized surface Dice similarity coefficient
as the outcome variable. Model coefficient values are shown for each variable. Reference variable for categorical variables are
shown in brackets next to variable name. Sign value in posterior mean indicates positive or negative correlation of variable with
outcome. Posterior standard deviation (SD) indicates uncertainty around posterior mean. 89% highest density interval (HDI) is shown
in parenthesis after posterior mean. * Bolded variables indicate HDI does not contain zero and is considered to have a substantial
impact on the outcome measure of interest.

Breast Sarcoma Head and Neck Gynecologic Gastrointestinal

Variables Mean (HDI) SD Mean (HDI) SD Mean (HDI) SD Mean (HDI) SD Mean (HDI) SD

Intercept 0.70 (-0.13,1.50) 0.51 2.30 (-1.17,5.80) 2.25 -1.34 (-2.53,-0.13) 0.76 -0.28 (-2.65,2.14) 1.51 2.79 (-1.67,7.20) 2.85

ROI category [Tumor] -1.24 (-1.54,-0.91)* 0.20 -2.74 (-3.97,-1.44)* 0.81 -0.37 (-0.77,0.00) 0.24 0.56 (-0.38,1.46) 0.58 -0.16 (-1.48,1.23) 0.86

Location [US] -0.33 (-0.95,0.25) 0.38 0.93 (-1.77,3.66) 1.73 -0.28 (-1.15,0.60) 0.55 -0.47 (-2.44,1.49) 1.24 0.70 (-3.10,4.66) 2.52

Gender [Female] -0.30 (-0.69,0.10) 0.25 0.75 (-1.26,2.93) 1.33 -0.24 (-0.87,0.40) 0.40 -0.06 (-1.34,1.27) 0.83 -0.42 (-2.40,1.69) 1.30

Years of practice -0.01 (-0.19,0.18) 0.12 0.10 (-0.78,0.99) 0.57 -0.25 (-0.55,0.03) 0.18 -0.54 (-1.18,0.13) 0.42 0.94 (-0.40,2.31) 0.86

Practice type [Academic] -0.37 (-0.75,0.01) 0.24 -0.53 (-2.58,1.48) 1.29 0.40 (-0.15,0.92) 0.34 -1.30 (-2.52,-0.04)* 0.79 -1.49 (-4.41,1.42) 1.85

# of Colleagues -0.03 (-0.23,0.17) 0.13 -0.06 (-1.17,1.07) 0.71 0.09 (-0.22,0.40) 0.20 -0.34 (-1.01,0.34) 0.43 1.18 (-0.68,3.00) 1.17

Colleague presence [Yes] 0.16 (-0.34,0.63) 0.30 -2.10 (-4.61,0.31) 1.58 0.38 (-0.36,1.14) 0.47 0.27 (-1.39,1.98) 1.07 1.61 (-0.71,3.99) 1.53

Race [White] -0.17 (-0.54,0.20) 0.23 -0.81 (-2.95,1.32) 1.36 0.22 (-0.34,0.78) 0.36 0.65 (-0.50,1.80) 0.73 -0.30 (-2.61,1.88) 1.45

Treat disease site [Yes] 0.67 (-0.01,1.34) 0.43 -1.11 (-3.17,1.00) 1.33 0.05 (-1.02,1.07) 0.66 -0.66 (-2.39,1.09) 1.10 -1.75 (-5.09,1.35) 2.08

Random effect variance 0.58 (0.29,0.89) 0.19 2.93 (1.11,4.60) 1.14 0.78 (0.42,1.14) 0.23 1.15 (0.08,1.94) 0.59 1.30 (0.00,2.60) 1.06

14

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.08.30.23294786doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.30.23294786
http://creativecommons.org/licenses/by/4.0/


Discussion

Auto-segmentation, primarily based on deep learning, is primed to play a major role in
radiotherapy workflows of the future. It is well established that training these auto-segmentation
algorithms requires high-quality curated segmentation data derived from clinician observers.
Thus far, the underlying factors of what makes a “good” clinician segmenter in a quantitative
sense are unknown. In this study, we utilized generalized linear mixed effects models with
Bayesian estimation to determine the relationship of practicing radiation oncologist demographic
variables with radiotherapy-related segmentation quality as derived from quantitative metrics.
Our study is the first to investigate the role of demographic variables on segmentation quality
using a large set of clinician observers and OAR/tumor structures.

To date, there are limited objective and standardized measures to evaluate radiotherapy-related
segmentation quality. Nissen et al. recently proposed the utilization of the Jaccard Index, a close
analog to the DSC, for longitudinal quantitative radiation oncology resident evaluation 17.
However, the inherent quality discerned from these metrics in their raw numerical form often
varies based on the specific ROI. For example, a DSC of 0.80 for a particularly “simple” OAR
may be less desirable than a DSC of 0.80 for a particularly “difficult” tumor volume, and thus raw
metrics may not be immediately clinically useful. However, stratification of evaluation metrics, as
we have performed in our study, allows for ROI-specific thresholds that act as rough measures
of clinical acceptability. Notably, our ROI-specific thresholds are derived from “gold standard”
measurements provided by recognized experts within particular disease sites, which were
established to have significantly improved segmentation consistency compared to non-experts
in previous work 3. When stratified by previously defined expert IOV cutoffs, the ROIs with the
lowest percentage of observers that were able to cross cutoffs were often tumor volumes. This
is consistent with the generally held notion that tumor volumes, which often require
domain-specific knowledge, are inherently more difficult to segment than OARs and are prone to
high variation 18,19; these results are echoed in our previous work 3. Consistent with the
aforementioned results, Bayesian regression analysis demonstrated that tumor-related ROI
categories adversely affected segmentation performance. This impact was evident for most
disease sites using DSC and several sites using SDSC.

Interestingly, results were inconsistent and mostly non-substantial for the majority of
demographic variables across disease sites. However, the extensive uncertainties associated
with the various demographic variables, even those that excluded zero in their HDIs, are clearly
illustrated by correspondingly large standard deviation values and HDI widths. Historically,
greater institutional support has been perceived to be important for radiotherapy quality 20.
Therefore, our mostly negative results for proxy variables intuitively linked to greater institutional
resource support, such as academic practice and factors related to radiation oncologist
colleagues, are particularly surprising. While existing literature regarding observer demographic
impact on radiotherapy-related tasks is sparse, it warrants mentioning that one of the few
studies in this area found no significant relationship between demographic factors and the
resultant quality of radiotherapy plans 21. Outside of radiotherapy applications, a similar study
that focused on crowdsourcing radiologic annotations of lung diseases demonstrated no impact
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of observer demographics on segmentation quality 22. These studies echo our mostly null
results.

While most of the investigated demographic variables were non-substantial with large degrees
of uncertainties, there were a few notable results that we believe warrant further discussion.
Academic practice in the GYN case was substantially negatively associated with SDSC
performance; a non-substantial negative association was echoed in most of the disease sites.
This could imply, perhaps contrary to common assumptions, that community clinicians produce
segmentations more closely aligned with our gold standard and, presumably, more consistent
with contouring guidelines. Moreover, white racial self-identification was substantially positively
associated with DSC performance in the H&N case, which exhibited conflicting relationships in
other disease sites. It's crucial to emphasize that the association between racial
self-identification — a complex social construct which has been drastically simplified in this
binary variable — and segmentation performance likely reflects broader institutional or regional
conformance to contouring guidelines, rather than a reductive racial skill disparity. Notably, US
and European organizations, which would have overrepresentation of white racial
self-identification, have the largest proportion of contouring guideline endorsements 23. The
heterogeneity within C3RO's categorization of non-U.S. observers may have confounded these
relationships in our analysis. Additionally, the presence of a radiation oncologist colleague was
substantially positively associated with DSC performance in the GI case; this positive
relationship seemed to hold for most disease sites. These results suggest that clinicians who
likely participate in consensus decision-making (e.g., peer-review) tend to create segmentations
closer to our gold standard, and thus are likely to adhere to guidelines. Perplexingly, years of
practice was found to have a consistently negative (though non-substantial) impact on DSC
performance across the various disease sites. This may be because recent clinician graduates
are more likely to adhere to contouring guidelines. Finally, our study did not show that treatment
of a particular disease site was substantially associated with superior segmentation quality; in
fact, it often demonstrated a negative correlation. This seemingly challenges previous findings
highlighting the significant role of clinician experience in treatment quality 4–6. However, the
variable did not assess treatment frequency for the specific site, thereby potentially introducing
heterogeneity in its interpretation and ultimately diminishing its utility.

Our study is not without limitations. Firstly, we relied on an existing dataset with inherent
constraints. While boasting an unprecedented number of individual radiation oncologist
observers (>200), C3RO only principally utilized a single imaging modality (computed
tomography) from one representative patient per disease site. While this provides a dedicated
reference standard, the demographic relationships could change depending on a variety of
underlying patient-related factors (e.g., disease complexity, image modality availability).
Moreover, the C3RO intake survey — from which demographic variables for our models were
derived — was self-reported and requested limited demographic information. For example,
direct indicators of treatment volume, which have been shown in previous studies to be strongly
correlated to patient outcomes in several disease sites 4 were not collected due to the high
potential for recall bias. Similarly, variables related to the routine use of contour guidelines in
clinician workflows would have also likely been highly informative but were not collected.
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Secondly, we have relied exclusively on conventional geometry-based metrics of segmentation
quality (e.g., DSC, SDSC), which have been noted to have significant flaws in the assessment
of radiotherapy-related structures 1. Future studies should investigate metrics more closely tied
to relevant patient outcomes, such as dose-volume histogram measures. On a related note,
how to best define segmentation quality in a quantitative manner, and subsequently how to
improve it, remains an open question. We hope to mitigate some of these issues by binarizing
our outcome segmentation quality variable, and thus calibrating the value relative to a gold
standard baseline (i.e., expert interobserver variability). We fully acknowledge that this
methodology has flaws, principally in that “edge cases” may be unfairly penalized or rewarded.
However, in the context of educational tools, we believe these methods may be useful for initial
quantitative assessment; we might recommend combining cutoff values of complementary
metrics, such as DSC and SDSC, to gauge segmentation initial “passability”. Naturally, further
refinement of metric utilization will likely be necessary and be context-specific, such as
prioritizing the minimization of false negatives for tumor-related volumes. A final limitation of our
study lies in our reliance on weakly informative priors for our Bayesian analysis, primarily due to
insufficient existing data to extract meaningful priors from this under-researched topic.
Nevertheless, our current data can serve as valuable priors for future Bayesian analyses.

Conclusion

In summary, we utilized an extensive number of practicing radiation oncologist observers in
several disease sites to probe trends between common demographic variables and
segmentation quality using generalized linear mixed effects models with Bayesian estimation.
Tumor-related structures were, as expected, more difficult to segment than organs at risk.
However, results for demographic factors were mixed and exhibited high uncertainty as evident
by large posterior standard deviations and wide highest density intervals. Surprisingly, there
were no obvious recurring relationships for conventionally presumed factors influencing
segmentation quality (e.g., measures of greater institutional resource support or actively treating
the disease site). While stark variations in quantitative performance among observers compared
to our gold standard segmentations can be observed, it is still unclear if and how demographic
factors influence segmentation quality. Given the anticipated scenario that auto-segmentation
algorithms will still require humans in the loop in some capacity, these factors are still likely
important to understand. By tapping into a large public dataset that supports repeat analyses
and data pooling, our study lays the foundation for further investigations into the factors that
influence human segmentation performance. Future studies should investigate a greater
number of demographic variables (e.g., direct indicators of treatment volume), a greater number
of patients and imaging modalities, and alternative metrics of segmentation acceptability (e.g.,
dosimetric indicators).
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Appendix A: Additional C3RO descriptive information.

Table A1. A complete list of the regions of interest (ROIs) used in this study for each disease
site with the corresponding number of expert and non-expert segmentations available for each
ROI. More information on these structures and the C3RO dataset as a whole can be found in
the corresponding data descriptor (https://doi.org/10.1038/s41597-023-02062-w).

Disease site Type of ROI ROI Definition(s) Number of expert
segmentations

Number of
non-expert

segmentations

Breast

Target volumes

CTV_Ax
Clinical target

volume of axillary
region

8 115

CTV_Chestwall
Clinical target

volume of chest
wall

8 117

CTV_IMN
Clinical target

volume of internal
mammary nodes

8 118

CTV_Sclav_LN

Clinical target
volume of

supraclavicular
lymph nodes

8 119

OARs

BrachialPlex_L Brachial plexus left 6 88

Heart Heart 7 121

A_LAD Left anterior
descending artery 7 88

Sarcoma

Target volumes

GTV Gross tumor
volume 5 60

CTV Clinical tumor
volume 5 48

OARs Genitals Genitalia 4 51

Head and Neck

Target volumes

GTVp
Gross tumor

volume primary -
right tonsillar fossa

14 59

GTVn

Gross tumor
volume of nodes -
nodal spread to

level II/III on
ipsilateral side

(with
sternocleidomastoi
d muscle invaded)

and no
contralateral nodal

involvement

13 60

CTV1 Clinical target 9 45
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volume (high-risk)

CTV2
Clinical target
volume (low to

intermediate risk)
9 49

OARs

Brainstem Brainstem 13 58

Glnd_Submand_L Submandibular
gland left 13 57

Glnd_Submand_R Submandibular
gland right 12 52

Larynx Larynx 12 57

Musc_Constrict

All pharyngeal
constrictor

muscles (superior,
middle, and

inferior)

11 43

Parotid_L Parotid left 13 59

Parotid_R Parotid right 13 58

Gynecologic
Target volumes

GTVn

Gross tumor
volume of the
involved right
common iliac
lymph node

5 42

CTVn_4500

Clinical target
volume for the
elective nodal
volumes at risk

that will receive 45
Gy

5 40

CTVp_4500

Clinical target
volume primary

will receive 45 Gy.
This is the

combination of
“ctv1” and “ctv2”

used in many
RTOG protocols

5 41

OARs Bowel_Small Small bowel 4 35

Gastrointestinal

Target volumes

CTV_4500
Clinical target

volume that will
receive 45 Gy

4 25

CTV_5400
Clinical target

volume that will
receive 54 Gy

4 23

OARs Bag_Bowel Small and large
bowel 4 23
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Appendix B: Additional descriptive statistics and exploratory variable analysis.

We calculated descriptive statistics for the radiation oncologist observers used in this study,
including median and interquartile range values for numerical variables (total years of practice,
number of colleagues) and percentages of binary categorical data (location, self-identified
gender, practice type, self-identified race, treat site, academic affiliation, colleague presence).
Values for each disease site were calculated separately, using observational data points at the
region of interest level, which most accurately reflect the data pertinent to our analysis. Empty
values for numerical values were ignored for these calculations. Descriptive statistics are shown
in Table B1.

Table B1. Descriptive statistics of demographic variables used in our analysis. Breast, sarcoma,
head and neck (H&N), gynecologic (GYN), and gastrointestinal (GI) values were calculated
separately. Median (interquartile range) values are shown for numerical variables. Percentages
for a given binary class (indicated in parenthesis next to variable) are shown for the categorical
variables.

Variable Breast Sarcoma H&N GYN GI

Total years of practice 6.00 (3.00,10.00) 7.00 (3.00,11.50) 6.50 (2.25,11.00) 6.50 (4.00,12.50) 8.50 (4.00,15.25)

# of Colleagues 5.00 (2.00,11.00) 4.00 (2.00,10.00) 5.00 (2.00,10.00) 5.00 (2.00,10.25) 4.00 (2.00,10.00)

Location (US) 12.8 % 19.0 % 14.0 % 9.4 % 11.8 %

Gender (F) 39.4 % 42.9 % 56.0 % 37.5 % 52.9 %

Practice type (Academic) 54.3 % 54.8 % 54.0 % 53.1 % 47.1 %

Race white (yes) 43.6 % 42.9 % 46.0 % 34.4 % 47.1 %

Treat site (yes) 91.5 % 69.0 % 92.0 % 84.4 % 82.4 %

Academic affiliation (yes) 47.9 % 54.8 % 64.0 % 65.6 % 64.7 %

Colleague presence (yes) 80.9 % 78.6 % 76.0 % 81.3 % 82.4 %

Using the demographic variables, we then performed an exploratory analysis to determine if any
variables exhibited high correlations. A Spearman’s rank correlation was utilized since it could
be utilized to analyze continuous numerical values and binary data simultaneously. Correlation
heatmaps for each disease site are shown for each disease site in Figures B1-B5. After the
exploratory analysis, academic affiliation was chosen to be excluded from the regression
analysis due to its high correlation with practice type to enable greater model parsimony.
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Figure B1. Correlation heatmap for the breast case.

Figure B2. Correlation heatmap for the sarcoma case.
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Figure B3. Correlation heatmap for the head and neck (HN) case.

Figure B4. Correlation heatmap for the gynecologic (GYN) case.
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Figure B5. Correlation heatmap for the gastrointestinal (GI) case.
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Appendix C: Additional plots.

Figure C1. Barplots of individual observer segmentation performance vs. gold standard for the
breast case using surface Dice similarity coefficient (SDSC). The gold standard segmentation is
the consensus segmentation of all experts as derived from Simultaneous Truth and
Performance Level Estimation (STAPLE). Black dotted lines indicate median expert
interobserver SDSC for a corresponding region of interest. The percentage of observers that
were able to cross the expert interobserver variability (IOV) cutoff are also shown in red above
each plot.
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Figure C2. Barplots of individual observer segmentation performance vs. gold standard for
sarcoma case using surface Dice similarity coefficient (SDSC). The gold standard segmentation
is the consensus segmentation of all experts as derived from Simultaneous Truth and
Performance Level Estimation (STAPLE). Black dotted lines indicate median expert
interobserver SDSC for a corresponding region of interest. The percentage of observers that
were able to cross the expert interobserver variability (IOV) cutoff are also shown in red above
each plot.
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Figure C3. Barplots of individual observer segmentation performance vs. gold standard for
head and neck case using surface Dice similarity coefficient (SDSC). The gold standard
segmentation is the consensus segmentation of all experts as derived from Simultaneous Truth
and Performance Level Estimation (STAPLE). Black dotted lines indicate median expert
interobserver SDSC for a corresponding region of interest. The percentage of observers that
were able to cross the expert interobserver variability (IOV) cutoff are also shown in red above
each plot.
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Figure C4. Barplots of individual observer segmentation performance vs. gold standard for
gynecologic case using surface Dice similarity coefficient (SDSC). The gold standard
segmentation is the consensus segmentation of all experts as derived from Simultaneous Truth
and Performance Level Estimation (STAPLE). Black dotted lines indicate median expert
interobserver SDSC for a corresponding region of interest. The percentage of observers that
were able to cross the expert interobserver variability (IOV) cutoff are also shown in red above
each plot.

Figure C5. Barplots of individual observer segmentation performance vs. gold standard for
gastrointestinal case using surface Dice similarity coefficient (SDSC). The gold standard
segmentation is the consensus segmentation of all experts as derived from Simultaneous Truth
and Performance Level Estimation (STAPLE). Black dotted lines indicate median expert
interobserver SDSC for a corresponding region of interest. The percentage of observers that
were able to cross the expert interobserver variability (IOV) cutoff are also shown in red above
each plot.
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Appendix D: Additional information on Bayesian regression.

Markov chain Monte Carlo convergence metric summary values were calculated for each
model. Tables D1-D10 display the Monte Carlo Standard Error of the mean (msce_mean),
Monte Carlo Standard Error of the standard deviation (msce_sd), Effective Sample Size for the
bulk of the distribution (ess_bulk), Effective Sample Size for the tail of the distribution (ess_tail),
and the Gelman-Rubin statistic (r_hat) for each variable.
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Table D1. Convergence parameters for the breast case using binarized DSC as the dependent variable.

Case Metric Variable mcse_mean mcse_sd ess_bulk ess_tail r_hat

Breast DSC_binary Intercept 0.003 0.002 29568 22936 1

Breast DSC_binary C(ROI_category)[Tumor] 0.001 0.001 39951 24478 1

Breast DSC_binary C(Location)[US] 0.002 0.002 24293 20372 1

Breast DSC_binary C(Gender, Treatment("Male"))[Female] 0.002 0.001 25101 19633 1

Breast DSC_binary Total_years_of_practice 0.001 0.001 24629 19463 1

Breast DSC_binary C(Practice_type, Treatment("Non-academic"))[Academic] 0.001 0.001 25523 18624 1

Breast DSC_binary Colleague_num 0.001 0.001 27153 23344 1

Breast DSC_binary C(Colleague_presence, Treatment("No"))[Yes] 0.002 0.002 26875 21606 1

Breast DSC_binary C(Race_white, Treatment("Unchecked"))[Checked] 0.001 0.001 25907 18128 1

Breast DSC_binary C(Treat_site_Breast, Treatment("Unchecked"))[Checked] 0.003 0.002 26558 21617 1

Breast DSC_binary 1|Record_ID_sigma 0.002 0.002 8348 10181 1
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Table D2. Convergence parameters for the breast case using binarized SDSC as the dependent variable.

Case Metric Variable mcse_mean mcse_sd ess_bulk ess_tail r_hat

Breast SDSC_binary Intercept 0.002 0.002 55399 31595 1

Breast SDSC_binary C(ROI_category)[Tumor] 0.001 0.001 63876 28492 1

Breast SDSC_binary C(Location)[US] 0.002 0.002 50284 31121 1

Breast SDSC_binary C(Gender, Treatment("Male"))[Female] 0.001 0.001 50534 31443 1

Breast SDSC_binary Total_years_of_practice 0 0.001 54594 32974 1

Breast SDSC_binary C(Practice_type, Treatment("Non-academic"))[Academic] 0.001 0.001 50801 31170 1

Breast SDSC_binary Colleague_num 0.001 0.001 50473 30704 1

Breast SDSC_binary C(Colleague_presence, Treatment("No"))[Yes] 0.001 0.001 51137 30348 1

Breast SDSC_binary C(Race_white, Treatment("Unchecked"))[Checked] 0.001 0.001 51749 31319 1

Breast SDSC_binary C(Treat_site_Breast, Treatment("Unchecked"))[Checked] 0.002 0.002 50551 30016 1

Breast SDSC_binary 1|Record_ID_sigma 0.002 0.001 9414 10873 1
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Table D3. Convergence parameters for the sarcoma case using binarized DSC as the dependent variable.

Case Metric Variable mcse_mean mcse_sd ess_bulk ess_tail r_hat

Sarcoma DSC_binary Intercept 0.013 0.012 12890 8384 1

Sarcoma DSC_binary C(ROI_category)[Tumor] 0.004 0.003 21729 17369 1

Sarcoma DSC_binary C(Location)[US] 0.009 0.007 14397 7301 1

Sarcoma DSC_binary C(Gender, Treatment("Male"))[Female] 0.006 0.006 16230 12533 1

Sarcoma DSC_binary Total_years_of_practice 0.008 0.01 5516 2137 1

Sarcoma DSC_binary C(Practice_type, Treatment("Non-academic"))[Academic] 0.013 0.018 5460 2422 1

Sarcoma DSC_binary Colleague_num 0.006 0.005 5777 2949 1

Sarcoma DSC_binary C(Colleague_presence, Treatment("No"))[Yes] 0.012 0.011 8407 4670 1

Sarcoma DSC_binary C(Race_white, Treatment("Unchecked"))[Checked] 0.011 0.009 6580 2933 1

Sarcoma DSC_binary C(Treat_site_Sarcoma, Treatment("Unchecked"))[Checked] 0.017 0.018 4992 2352 1

Sarcoma DSC_binary 1|Record_ID_sigma 0.015 0.014 3533 1683 1
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Table D4. Convergence parameters for the sarcoma case using binarized SDSC as the dependent variable.

Case Metric Variable mcse_mean mcse_sd ess_bulk ess_tail r_hat

Sarcoma SDSC_binary Intercept 0.018 0.015 16091 15281 1

Sarcoma SDSC_binary C(ROI_category)[Tumor] 0.006 0.004 17377 21681 1

Sarcoma SDSC_binary C(Location)[US] 0.014 0.011 14959 16472 1

Sarcoma SDSC_binary C(Gender, Treatment("Male"))[Female] 0.01 0.008 17795 17283 1

Sarcoma SDSC_binary Total_years_of_practice 0.004 0.003 19510 20071 1

Sarcoma SDSC_binary C(Practice_type, Treatment("Non-academic"))[Academic] 0.011 0.008 16177 17390 1

Sarcoma SDSC_binary Colleague_num 0.006 0.005 16206 15753 1

Sarcoma SDSC_binary C(Colleague_presence, Treatment("No"))[Yes] 0.014 0.011 14643 12760 1

Sarcoma SDSC_binary C(Race_white, Treatment("Unchecked"))[Checked] 0.01 0.009 17995 17831 1

Sarcoma SDSC_binary C(Treat_site_Sarcoma, Treatment("Unchecked"))[Checked] 0.01 0.009 17504 14253 1

Sarcoma SDSC_binary 1|Record_ID_sigma 0.014 0.01 6153 10127 1

36

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.08.30.23294786doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.30.23294786
http://creativecommons.org/licenses/by/4.0/


Table D5. Convergence parameters for the head and neck case using binarized DSC as the dependent variable.

Case Metric Variable mcse_mean mcse_sd ess_bulk ess_tail r_hat

HN DSC_binary Intercept 0.004 0.004 37705 30054 1

HN DSC_binary C(ROI_category)[Tumor] 0.001 0.001 65671 30350 1

HN DSC_binary C(Location)[US] 0.004 0.003 31102 25877 1

HN DSC_binary C(Gender, Treatment("Male"))[Female] 0.003 0.002 33725 26508 1

HN DSC_binary Total_years_of_practice 0.001 0.001 34766 28060 1

HN DSC_binary C(Practice_type, Treatment("Non-academic"))[Academic] 0.002 0.002 35287 29790 1

HN DSC_binary Colleague_num 0.001 0.001 31819 26266 1

HN DSC_binary C(Colleague_presence, Treatment("No"))[Yes] 0.003 0.002 33815 28420 1

HN DSC_binary C(Race_white, Treatment("Unchecked"))[Checked] 0.002 0.002 32625 27214 1

HN DSC_binary C(Treat_site_Head__Neck, Treatment("Unchecked"))[Checked] 0.004 0.004 33875 26945 1

HN DSC_binary 1|Record_ID_sigma 0.002 0.001 13010 19892 1
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Table D6. Convergence parameters for the head and neck case using binarized SDSC as the dependent variable.

Case Metric Variable mcse_mean mcse_sd ess_bulk ess_tail r_hat

HN SDSC_binary Intercept 0.005 0.004 28560 24200 1

HN SDSC_binary C(ROI_category)[Tumor] 0.001 0.001 50955 27532 1

HN SDSC_binary C(Location)[US] 0.004 0.003 23345 19662 1

HN SDSC_binary C(Gender, Treatment("Male"))[Female] 0.003 0.002 23809 20550 1

HN SDSC_binary Total_years_of_practice 0.001 0.001 25764 21664 1

HN SDSC_binary C(Practice_type, Treatment("Non-academic"))[Academic] 0.002 0.002 24808 21228 1

HN SDSC_binary Colleague_num 0.001 0.001 23480 21336 1

HN SDSC_binary C(Colleague_presence, Treatment("No"))[Yes] 0.003 0.003 22892 19482 1

HN SDSC_binary C(Race_white, Treatment("Unchecked"))[Checked] 0.002 0.002 25718 22428 1

HN SDSC_binary C(Treat_site_Head__Neck, Treatment("Unchecked"))[Checked] 0.004 0.004 26493 21941 1

HN SDSC_binary 1|Record_ID_sigma 0.002 0.002 9903 15345 1
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Table D7. Convergence parameters for the gynecologic case using binarized DSC as the dependent variable.

Case Metric Variable mcse_mean mcse_sd ess_bulk ess_tail r_hat

GYN DSC_binary Intercept 0.009 0.008 19783 16063 1

GYN DSC_binary C(ROI_category)[Tumor] 0.003 0.003 39118 24318 1

GYN DSC_binary C(Location)[US] 0.008 0.007 14987 12676 1

GYN DSC_binary C(Gender, Treatment("Male"))[Female] 0.005 0.005 15205 13749 1

GYN DSC_binary Total_years_of_practice 0.003 0.004 13143 8731 1

GYN DSC_binary C(Practice_type, Treatment("Non-academic"))[Academic] 0.005 0.006 15083 11035 1

GYN DSC_binary Colleague_num 0.002 0.002 17355 17195 1

GYN DSC_binary C(Colleague_presence, Treatment("No"))[Yes] 0.007 0.006 15862 12871 1

GYN DSC_binary C(Race_white, Treatment("Unchecked"))[Checked] 0.004 0.003 21056 17800 1

GYN DSC_binary C(Treat_site_Gynecologic, Treatment("Unchecked"))[Checked] 0.007 0.006 16107 13609 1

GYN DSC_binary 1|Record_ID_sigma 0.006 0.004 6940 8262 1
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Table D8. Convergence parameters for the gynecologic case using binarized SDSC as the dependent variable.

Case Metric Variable mcse_mean mcse_sd ess_bulk ess_tail r_hat

GYN SDSC_binary Intercept 0.012 0.01 18014 12241 1

GYN SDSC_binary C(ROI_category)[Tumor] 0.003 0.004 31914 19393 1

GYN SDSC_binary C(Location)[US] 0.01 0.008 16197 15236 1

GYN SDSC_binary C(Gender, Treatment("Male"))[Female] 0.007 0.007 14827 12270 1

GYN SDSC_binary Total_years_of_practice 0.004 0.003 13708 9130 1

GYN SDSC_binary C(Practice_type, Treatment("Non-academic"))[Academic] 0.007 0.006 14715 10401 1

GYN SDSC_binary Colleague_num 0.004 0.003 13786 8826 1

GYN SDSC_binary C(Colleague_presence, Treatment("No"))[Yes] 0.009 0.008 13839 12240 1

GYN SDSC_binary C(Race_white, Treatment("Unchecked"))[Checked] 0.007 0.006 13981 10601 1

GYN SDSC_binary C(Treat_site_Gynecologic, Treatment("Unchecked"))[Checked] 0.009 0.008 14948 10891 1

GYN SDSC_binary 1|Record_ID_sigma 0.008 0.006 5396 8252 1
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Table D9. Convergence parameters for the gastrointestinal case using binarized DSC as the dependent variable.

Case Metric Variable mcse_mean mcse_sd ess_bulk ess_tail r_hat

GI DSC_binary Intercept 0.015 0.013 32625 22474 1

GI DSC_binary C(ROI_category)[Tumor] 0.004 0.003 54623 28418 1

GI DSC_binary C(Location)[US] 0.02 0.016 26614 22297 1

GI DSC_binary C(Gender, Treatment("Male"))[Female] 0.007 0.007 28502 21852 1

GI DSC_binary Total_years_of_practice 0.005 0.004 20796 21685 1

GI DSC_binary C(Practice_type, Treatment("Non-academic"))[Academic] 0.011 0.009 20980 21353 1

GI DSC_binary Colleague_num 0.007 0.005 22249 23536 1

GI DSC_binary C(Colleague_presence, Treatment("No"))[Yes] 0.008 0.007 31745 22070 1

GI DSC_binary C(Race_white, Treatment("Unchecked"))[Checked] 0.007 0.006 31258 23044 1

GI DSC_binary C(Treat_site_Gastrointestinal, Treatment("Unchecked"))[Checked] 0.013 0.01 28288 24776 1

GI DSC_binary 1|Record_ID_sigma 0.006 0.004 13999 15694 1
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Table D10. Convergence parameters for the gastrointestinal case using binarized SDSC as the dependent variable.

Case Metric Variable mcse_mean mcse_sd ess_bulk ess_tail r_hat

GI SDSC_binary Intercept 0.036 0.033 7032 5243 1

GI SDSC_binary C(ROI_category)[Tumor] 0.006 0.006 17715 14551 1

GI SDSC_binary C(Location)[US] 0.036 0.043 6230 5212 1

GI SDSC_binary C(Gender, Treatment("Male"))[Female] 0.016 0.014 7018 5575 1

GI SDSC_binary Total_years_of_practice 0.013 0.011 5192 4085 1

GI SDSC_binary C(Practice_type, Treatment("Non-academic"))[Academic] 0.024 0.017 6509 6451 1

GI SDSC_binary Colleague_num 0.017 0.018 5321 4717 1

GI SDSC_binary C(Colleague_presence, Treatment("No"))[Yes] 0.028 0.021 3998 3269 1

GI SDSC_binary C(Race_white, Treatment("Unchecked"))[Checked] 0.018 0.018 7561 5900 1

GI SDSC_binary C(Treat_site_Gastrointestinal, Treatment("Unchecked"))[Checked] 0.028 0.022 6095 4637 1

GI SDSC_binary 1|Record_ID_sigma 0.022 0.021 3506 2309 1
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