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KEY POINTS 

 

Question: What are the causal variants and corresponding effector genes conferring pediatric 

obesity susceptibility in different cellular contexts? 

 

Findings: Our method of assessing 3D genomic data across a range of cell types revealed 

heritability enrichment of childhood obesity variants, particularly within pancreatic alpha cells. 

The mapping of putative causal variants to cis-regulatory elements revealed candidate effector 

genes for cell types spanning metabolic, neural, and immune systems. 

 

Meaning: We gain a systemic view of childhood obesity genomics by leveraging 3D techniques 

that implicate regulatory regions harboring causal variants, providing insights into the disease 

pathogenesis across different cellular systems. 
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ABSTRACT 

Importance: The prevalence of childhood obesity is increasing worldwide, along with the 

associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. 

Motivated by evidence for a strong genetic component, our prior genome-wide association study 

(GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the 

mechanism of action of these loci remains to be elucidated. 

Objective: To molecularly characterize these childhood obesity loci we sought to determine the 

underlying causal variants and the corresponding effector genes within diverse cellular contexts.  

Design: Integrate childhood obesity GWAS summary statistics with our existing 3D genomic 

datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-

C, ATAC-seq, and RNA-seq, in order to apply stratified LD score regression and calculate the 

proportion of genome-wide SNP heritability attributable to cell type-specific features. 

Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant 

childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes. 

Results: Pancreatic alpha cells revealed the most statistically significant enrichment of 

childhood obesity variants. Subsequent chromatin contact-based fine-mapping yielded the most 

abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18 and 

FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel 

implicated effector gene, ALKAL2 – an inflammation-responsive gene in nerve nociceptors – 

was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this 

observation was also supported through colocalization analysis using expression quantitative 

trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an 

inflammatory and neurologic component to the pathogenesis of childhood obesity.  

Conclusions and Relevance: Our comprehensive appraisal of 3D genomic datasets generated 

in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis. 
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INTRODUCTION 

The prevalence of obesity has risen significantly worldwide1, especially among children and 

adolescents2. Obesity is associated with chronic diseases, such as diabetes, cardiovascular 

diseases, and certain cancers3-6, along with mechanical issues including osteoarthritis and sleep 

apnea7.  

Modern lifestyle factors, including physical inactivity, excessive caloric intake, and 

socioeconomic inequity, along with disrupted sleep and microbiome, represent environmental 

risk factors for obesity pathogenesis. However, genetics also play a significant role, with the 

estimated heritability ranging from 40% to 70%8-10. Studies show that body weight and obesity 

remain stable from infancy to adulthood11-14, but variation between individuals does exisit15. 

Genome-wide association studies (GWAS) have improved our understanding of the genetic 

contribution to childhood obesity16-21. However, the functional consequences and molecular 

mechanisms of identified genetic variants in such GWAS efforts are yet to be fully elucidated. 

Efforts are now being made to predict target effector genes and explore potential drug targets 

using various computational and experimental approaches22-26, which subsequently warrant 

functional follow-up efforts.  

With our extensive datasets generated on a range of different cell types, by combining 3D 

chromatin maps (Hi-C, Capture-C) with matched transcriptome (RNA-seq) and chromatin 

accessibility data (ATAC-seq), we investigated heritability patterns of pediatric obesity-

associated variants and their gene-regulatory functions in a cell type-specific manner. This 

approach yielded 94 candidate causal variants mapped to their putative effector gene(s) and 

corresponding cell type(s) setting. In addition, using methods comparable to our prior efforts in 

other disease contexts27-34, we also uncovered new variant-to-gene combinations within specific 

novel cellular settings, most notably in immune cell types, which further confirmed the 

involvement of the immune system in the pathogenesis of obesity in the early stages of life. 
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METHODS 

Data and resource: Datasets used in prior studies are listed in eTable 1. ATAC-seq, RNA-seq, 

Hi-C, and Capture-C library generation for each cell type is provided in their original published 

study and their pre-processing pipelines and tools can be found in eMethods. 

 

Definition of cis-Regulatory Elements (cREs): We intersected ATAC-seq open chromatin 

regions (OCRs) of each cell type with chromatin conformation capture data determined by Hi-

C/Capture-C of the same cell type, and with promoters (-1,500/+500bp of TSS) defined by 

GENCODE v30. 

 

Childhood obesity GWAS summary statistics: Data on childhood obesity from the EGG 

consortium was downloaded from www.egg-consortium.org. We used 8,566,179 European 

ancestry variants (consisting of 8,613 cases and 12,696 controls in stage 1,921 cases and 

1,930 controls in stage 2), representing ~55% of the total 15,504,218 variants observed across 

all ancestries in the original study35. The sumstats file was reformatted by munge_sumstats.py 

to standardize with the weighted variants from HapMap v3 within the LDSC baseline, which 

reduced the variants to 1,217,311 (7.8% of total). 

 

Cell type specific partitioned heritability: We used LDSC (http://www.github.com/bulik/ldsc) 

v.1.0.1 with --h2 flag to estimate SNP-based heritability of childhood obesity within 4 defined 

sets of input genomic regions: (1) OCRs, (2) OCRs at gene promoters, (3) cREs, and (4) cREs 

with an expanded window of ±500 bp. The baseline model LD scores, plink filesets, allele 

frequencies and variants weights files for the European 1000 genomes project phase 3 in hg38 

were downloaded from the provided link 

(https://alkesgroup.broadinstitute.org/LDSCORE/GRCh38/). The cREs of each cell type were 
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used to create the annotation, which in turn were used to compute annotation-specific LD 

scores for each cell types cREs set.  

 

Genetic loci included in variant-to-genes mapping: 19 sentinel signals that achieved 

genome-wide significance in the trans-ancestral meta-analysis study35 were leveraged for our 

analyses. Proxies for each sentinel SNP were queried using TopLD36 and LDlinkR tool37 with 

the GRCh38 Genome assembly, 1000 Genomes phase 3 v5 variant set, European population, 

and LD threshold of r2>0.8, which resulted in 771 proxies, including the 21 SNPs from the 99% 

credible set of the original study (eTable 2). 

 

GWAS-eQTL colocalization: The summary statistics for the European ancestry subset from 

the EGG consortium GWAS for childhood obesity was used. Common variants (MAF�≥�0.01) 

from the 1000 Genomes Project v3 samples were used as a reference panel. We used non-

overlapped genomic windows of ±250,000 bases extended in both directions from the median 

genomic position of each of 19 sentinel loci as input. We used ColocQuiaL38 to test genome-

wide colocalization of all possible variants included in each inputted window against GTEx v.8 

eQTLs associations for all 49 tissues available from https://www.gtexportal.org/home/datasets. 

A conditional posterior probability of colocalization of 0.8 or greater was imposed. 
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RESULTS 

Enrichment assessment of childhood obesity variants across cell types  

To explore the enrichment of childhood obesity GWAS variants across cell types, we carried 

out Partitioned Linkage Disequilibrium Score Regression (LDSR)39 on all ATAC-seq-defined 

OCRs for each cell type (Fig. 1A). We observed that 41 of 57 cell types – including 22 

metabolic, 21 immune, 7 neural cell types and 7 independent cell lines (eTable 1) – showed at 

least a degree of directional enrichment with the total set of OCRs (Fig. 1B.a). However, only 

four cell types – two pancreatic alpha and two pancreatic beta cell-based datasets – had 

statistically significant enrichments (P<0.05). These enrichments were less pronounced when 

focusing on promoter OCRs only (Fig. 1B.b). To further limit the LD enrichment assessment to 

just those OCRs that can putatively regulate gene expression via chromatin contacts with gene 

promoters, we used the putative cREs27,29. This reduced the number of cell types showing at 

least nominal enrichment (31 of 57), enlarged the dispersion of enrichment ranges across 

different cell types, increased the 95% confidence intervals (CI) of enrichments, and hence 

increased the P-value of the resulting regression score. cREs from pancreatic alpha cells 

derived from single-cell ATAC-seq were the only dataset that remained statically significant 

(Fig. 1B.c).  

The original reported LDSR method analyzed enrichment in the 500bp flanking regions of 

their regulatory categories39. However, when we expanded our analysis to the ±500bp window 

for our cREs, albeit incorporating more weighted variants into the enrichment (represented by 

larger dots in Fig. 1B.d), this resulted in a decrease in the number of cell types yielding at least 

nominal enrichment (26 cell types), the enrichment range across cell types, the 95% CI, and 

level of significance. The pancreatic alpha cell observation also dropped below the bar for 

significance with this expanded window definition. 

 

Consistency and diversity of childhood obesity proxy variants mapped to cREs  
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Despite the enrichments above only being limited to just a small number of cell types, it is 

likely that individual loci have differing levels of contributions in various cellular contexts and 

could not be detected at the genome wide assessment scale. As such we elected to further 

explore the candidate effector genes that are directly affected by cREs harboring childhood 

obesity-associated variants by systematically mapping the genomic positions of the LD proxies 

onto each cell type’s cREs, resulting in several scenarios, as illustrated in Fig. 2A,B. The 

resulting 94 proxies clustered at 13 original loci (eTable 3). eFig. 1A outlines the number of 

signals at each locus included or excluded based on the criteria we defined for our regions of 

interest. The TMEM18 locus yielded the most variants through cREs mapping, with 46 proxies 

for the two lead independent variants, rs7579427 and rs62104180. The second most abundant 

locus was ADCY3, with 21 proxies for lead variant rs4077678 (Fig. 2C). The higher number of 

variants at one locus did not correlate with implicating more genes or cell types through 

mapping. The mapping frequency of various variants within a specific locus exhibited substantial 

differences. 

Inspecting individual variants regardless of their locus, we found that 28 of 94 proxies 

appeared in cREs across multiple cell types, with another 66 observed in just one cell type (Fig. 

2D). 45 variants of these 66 just contacted one gene promoter, such as at the GPR1 and 

TFAP2B loci (eFig. 2).  

Overall, the number of cell types in which a variant was observed in open chromatin 

correlated with the number of genes contacted via chromatin loops (eFig. 3A). However, we 

also observed that some variants found in cREs in multiple cell types were more selective with 

respect to their candidate effector genes (eFig. 3B-red arrow), or conversely, more selective 

across given cell types but implicated multiple genes (eFig. 3B-blue arrow). eFig. 4 outlines 

our observations at the TMEM18 locus – an example locus involved in both scenarios. 
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Implicated genes cluster at loci strongly associated with childhood obesity consistently 

across multiple cell types 

Mapping the variants across all the cell types resulted in a total of 111 implicated childhood 

obesity candidate effector genes (Table 1). Among these, 45 genes were specific to just one 

cell type (eFig. 5A), including 13 in myotubes and 7 in natural killer cells. Conversely and 

notably, BDNF appeared across 42 different cell types. Across the metabolic, neural, and 

immune systems and seven other cell lines, there were 9 genes consistently implicated in all 

four categories (top panel Fig. 3 – red stars, eFig. 5B: “all”), while 5 genes were consistently 

implicated in metabolic, neural, and immune systems (top panel Fig. 3 – blue stars, eFig. 5B: 

“all_main”). Two genes, ADCY3 and BDNF, had variants both at their promoters and contacted 

variants in cREs via chromatin loops (eFig. 6).  

At the TMEM18 locus on chr 2p25.3, a highly significant human obesity locus that has long 

been associated with both adult and childhood obesity, we obeserved differing degrees of 

evidence for 16 genes, but noted that rs6548240, rs35796073, and rs35142762 consistently 

contacted the SH3YL1, ACP1, and ALKAL2 promoters across multiple cell types (Fig. 2D-third 

and fourth column). 

At the chr 2p23 locus, ADCY3 yielded the most contacts (i.e. many proxies contacting the 

same gene via chromatin loops), suggesting this locus acts as a regulatory hub. However, we 

observed a similar composition in cell types for four other genes: DNAJC27, DNAJC27-AS1 

(both previously implicated in obesity and/or diabetes traits40), AC013267.1, and SNORD14 

(RF00016). ITSN2, NCOA1, and EFR3B were three genes within this locus that were only 

implicated in immune cell types. NCOA1 encodes a prominent meta-inflammation factor41 

known to reduce adipogenesis and shift the energy balance between white and brown fat, and 

its absence known to induce obesity42. 

CALCR was the most frequently implicated gene at its locus, supported by 20 cell types 

across all systems. While within the BDNF locus, METTL15 and KIF18A – two non-cell-type-
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specific genes - plus some lncRNA genes, were contacted by childhood obesity-associated 

proxies within the same multiple cell types as BNDF, again suggesting the presence of a 

regulatory hub.   

At the FAIM2 locus on chr 12q13.12, we observed known genes associated with obesity, 

eating patterns, and diabetes-related traits, including ASIC1, AQP2, AQP5, AQP6, RACGAP1, 

and AC025154.2 (AQP5-AS1) along with FAIM2 (Table 1). These genes were harbored within 

PIR-OCRs of astrocytes, neural progenitors, hypothalamic neurons, and multiple metabolic cell 

types. Plasmacytoid and CD1c+ conventional dendritic cells were the only two immune cell 

types that harbored such proxies within their cREs, implicating ASIC1, PRPF40B, RPL35AP28, 

TMBIM6, and LSM6P2 at the FAIM2 locus.  

The independent ADCY9 and FTO loci are both located on chromosome 16. Genes at the 

ADCY9 locus were only implicated in a subset of immune cell types. Interestingly, genes at the 

FTO locus were only implicated in Hi-C datasets (as opposed to Capture C), including 6 

metabolic cell types and astrocytes. Most genes at the FTO locus were implicated in skeletal 

myotubes, differentiated osteoblasts, and astrocytes, namely FTO and IRX3; while IRX5, 

CRNDE, and AC106738.1 were also implicated in adipocytes and hepatocytes. 

 

The most implicated cell types by two sets of analyses 

EndoC-BH1 and myotubes are the two cell types in which we implicated the most effector 

genes, with 38 and 42, respectively – Fig. 3 side panel. This phenomenon is likely proportional 

in the case of myotubes, given the large number of cREs identified by overlapped Hi-C contact 

data and ATAC-seq open regions (Fig. 1A), but not for EndoC-BH1. Albeit harboring an 

average number of cREs compared to other cell types, EndoC-BH1 cells were consistently 

among the top-ranked heritability estimates for the childhood obesity variants resulting from the 

EGG consortium GWAS (Fig. 1) and harbored a significant number of implicated genes by the 

mapping of proxies. Interestingly, the pancreatic alpha cell type – shown above to be the most 
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significant for heritability estimate by LDSC – revealed only 6 implicated genes contacted by the 

defined proxies, namely BDNF and five lncRNA genes. 

 

Pathway analysis  

Of the 111 implicated genes in total, PubMed query revealed functional studies for 66 

genes. The remaining were principally lncRNA and miRNA genes with currently undefined 

functions (Table 1). To investigate how our implicated genes could confer obesity risk, we 

performed several pathway analyses keeping them either separated for each cell type or 

pooling into the respective metabolic, neural, or immune system sets. eFig. 7 shows simple 

Gene Ontology (GO) biological process terms enrichment results. 

Leveraging the availability of our expression data generated via RNA-seq (available for 46 of 

57 cell types), we performed pathway analysis. Given that our gene sets from the variant-to-

gene process was stringently mapped, the sparse enrichment from normal direct analyses is not 

ideal for exploring obesity genetic etiology. Thus, we incorporated two methods from the 

pathfindR package43 and our customized SPIA (details in eMethods). The result of 60 enriched 

KEGG terms is shown in eFig. 8 (eTable 4), with 13 genes in 14 cell types for pathfindR and 39 

enriched KEGG terms shown in eFig. 9 (eTable 5), with 10 genes in 42 cell types for 

customized SPIA. There were 20 overlapping pathways between the two approaches (yellow 

rows in eTable 4&5) including many signaling pathways such as the GnRH (hsa04912), cAMP 

(hsa04024), HIF-1 (hsa04066), Glucagon (hsa04922), Relaxin (hsa04926), Apelin (hsa04371), 

and Phospholipase D (hsa04072) signaling pathways. They were all driven by one or more of 

these 5 genes: ADCY3, ADCY9, CREBBP, MMP2, and NCOA1. Interestingly, we observed the 

involvement of natural killer cells in nearly all the enriched KEGG terms from pathfindR due to 

the high expression of the two adenylyl cyclase encoded genes, ADCY3 and ADCY9, along with 

CREBBP. The SPIA approach disregarded the aquaporin genes (given they appear so 

frequently in so many pathways that involve cellular channels) but highlighted the central role of 
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BDNF which single-handedly drove four signaling pathways: the Ras, Neurotrophin, PI3K-Akt, 

and MAPK signaling pathways. This also revealed the role of TRAP1 in neurodegeneration. 

These two approaches did not discount the role of FAIM2 and CALCR. However, their 

absence was mainly due to the content of the current KEGG database. On the other hand, 

these approaches accentuated the role of the MMP2 gene at the FTO locus in skeletal 

myotubes, given its consistency within the GnRH signaling pathway (eFig. 10), which is in line 

with previous studies linking its expression with obesity44-46. 

 

Supportive evidence by colocalization of target effector genes with eQTLs 

The GTEx consortium has characterized thousands of eQTLs, albeit in heterogeneous bulk 

tissues47. To assess how many observed gene-SNP pairs agreed with our physical variant-to-

gene mapping approach in our multiple separate cellular settings, we performed colocalization 

analysis using ColocQuiaL38.  

282 genes were reported to be associated with the variants within 13 loci from our variant-

to-genes analysis. We found 114 colocalizations for ten of our loci that had high conditioned 

posterior probabilities (cond.PP.H4.abf ≥ 0.8), involving 44 genes and 41 tissues among the 

eQTLs. We extracted the posterior probabilities for each SNP within each colocalization and 

selected the 95% credible set as the likely causal variants (complete list in eTable 6). Despite 

sensitivity differences and varying cellular settings, when compared with our variant-to-gene 

mapping results, colocalization analysis yielded consistent identification for 21 pairs of SNP-

gene interactions when considering the analyses across all our cell types, composed of 20 

SNPs and 7 genes. Details of these SNP-gene pairs are shown in Fig. 4A and B. 

Of these 20 SNPs, 15 were at the ADCY3 locus, in LD with sentinel variant rs4077678, and 

all implicated ADCY3 as the effector gene in 29 cell types – 15 metabolic, 6 immune, 4 neural 

cell types and 4 independent cell lines (Fig. 4C). Indeed, missense mutations have been 
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previously reported for this gene in the context of obesity48,49 while another member of this gene 

family, ADCY5, has also been extensively implicated in metabolic traits50.  

 

Predicting transcription factors (TFs) binding disruption at implicated genes contributing 

to obesity risk 

TFs regulate gene expression by binding to DNA motifs at enhancers and silencers, where 

any disruption by a SNP can potentially cause dysregulation of a target gene. Thus, we used 

motifbreakR (R package) to predict such possible events at the loci identified by our variant-to-

gene mapping. Each variant was predicted to disrupt the binding of several different TFs, thus 

requiring further literature cross-examination to select the most probable effects. For example, 

rs7132908 (consistently contacting FAIM2 in 25 cell types) was predicted to disrupt the binding 

of 12 different transcription factors. Among them, SREBF1 (eFig. 11A) was the only TF that 

concurred with evidence that it regulates AQP2 and FAIM2 at the same enhancer51. The full 

prediction list can be found in eTable 7. 

To narrow down the list of putative TF binding sites at each variant position, we leveraged 

the ATAC-seq footprint analysis using the RGT suite52. The final set of Motif-Predicted Binding 

Sites (MPBS) within each cell type ATAC-seq footprints was used to overlap with the genomic 

locations of the OCRs, and then overlapped with our obesity variants, resulting in annotated 29 

variants. Mosaic plot in eFig. 11B shows the number and proportions of variants predicted by 

motifbreakR and/or overlapped with MPBS. Insignificant P-value from Fisher’s exact test 

indicated the independence of the two analyses. Only seven variants were found within the 

cREs for the same TF motifs predicted to be disrupted by motifbreakR (eFig. 11C). eFig. 12 

outlines the seven variants that motifbreakR and ATAC-seq footprint analysis agreed on the TF 

bindings they might disrupt.  
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DISCUSSION 

Given the challenge of uncovering the underlying molecular mechanisms driving such a 

multifactorial disease as obesity, our approach leveraging GWAS summary statistics, RNA-seq, 

ATAC-seq, and promoter Capture C / Hi-C offers new insights. This is particularly true as it is 

becoming increasingly evident that multiple effector genes can operate in a temporal fashion at 

a given locus depending on cell state, including at the FTO locus53. Our approach offers an 

opportunity to implicate relevant cis-regulatory regions across different cell types contributing to 

the genetic etiology of the disease. By assigning GWAS signals to candidate causal variants 

and corresponding putative effector genes via open chromatin and chromatin contact 

information, we enhanced the fine-mapping process with an experimental genomic perspective 

to yield new insights into the biological pathways influencing childhood obesity. 

LD score regression is a valuable method that estimates the relationship between linkage 

disequilibrium score and the summary statistics of GWAS SNPs to quantify the separate 

contributions of polygenic effects and various confounding factors that produce SNP-based 

heritability of disease. The general positive heritability enrichment across our open chromatin 

features spanning multiple cell types (Fig. 1B.a) reinforces the notion that obesity etiology 

involves many systems in our body.  

While obesity has long been known to be a risk factor for pancreatitis and pancreatic cancer, 

the significant enrichment of pancreatic alpha and beta cell related 3D genomic features for 

childhood obesity GWAS signals demonstrates the bidirectional relationship between obesity 

and the pancreas; indeed, it is well established that insulin has obesogenic properties. 

Moreover, the comorbidity of obesity and diabetes (either causal or a result of the overlap 

between SNPs associated with these two diseases) is tangible. When focusing on genetic 

annotation of the cREs only, the association with obesity became more diverse across cell 

types, especially in metabolic cells. Interestingly, the lack of enrichment (only 8 of 57 cell types 

yielded no degree of enrichment) of obesity SNPs heritability in open gene promoters (Fig. 
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1B.b) reveals that cRE regions harboring obesity SNPs are more involved in gene regulation 

than disruption, and therefore potentially contributing more weight to the manifestation of the 

disease.  

Of course, we should factor in the effective sample sizes of the GWAS efforts that are wide-

ranging (2,000-24,000 – given that the N for each variant is different within a single dataset, 

thus contributing to the weights and P-value of each SNP when the algorithm calculates the 

genome-wide heritability), which could result in noise and negative enrichment observed in the 

analysis – a methodology limitation of partial linkage regression that has been extensively 

discussed in the field54. Thus, it is crucial to interpret the enrichment (or lack thereof) of disease 

variants in a certain cellular setting with an ad hoc biological context.  

From mapping the common proxies of 19 independent sentinel SNPs that were genome-

wide significantly associated with childhood obesity to putative effector genes through chromatin 

contacting cREs, one striking finding was the several potential “hubs” of putatively core effector 

genes, whose occurrence spread across three human physiological systems. With the data 

available from so many cell types, our approach connected new candidate causal variants to 

known obesity-related genes and new implications of cell modality for previously known 

associations.  

A potential application of this association could be to fine-tune the effect of a drug toward 

controlling appetite. An example of bringing new aspects to the old is for the signal within the 

FTO locus that contacted IRX3 and IRX5: previous studies have suggested these obesogenic 

effects operate in adipocytes55, brain56, or pancreas57; here we confirmed this association in 

adipocytes and uncover the presence of distal chromatin contacts in myotubes for the first time.  

Besides the above-mentioned genes with known associations with obesity, we discovered 

newly implicated genes. For example, the LRRIQ3 gene at the TNNI3K locus had its open 

promoter contacted by two SNPs, rs1040070 and rs10493544, in NTERA2 cells only. The 

published studies58,59 that associated LRRIQ3 with major depressive disorder and opioid usage 
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acknowledged the overlapping promoter of this gene, albeit in the opposite direction, with a run-

through transcript of FPGT-TNNI3K – previously shown to be associated with BMI in 

European60 and Korean populations61.   

It is apparent that not all the implicated genes we report would contribute equally to the 

susceptibility of obesity pathogenesis. Each locus comprises genes whose functions are 

obviously related to obesity or similar traits like BMI, fat weight, etc., while other genes are not 

so directly obvious in their relation to these traits.  

It is encouraging that for implicated genes within these multi-cell-type loci across different 

physiological systems we could find previous associations to the corresponding cell types or 

systems. Examples are the two aforementioned genes at the TMEM18 locus (SH3YL1 and 

ACP1)62-66 with the broad spectrum of their functions, HEPACAM2 implicated in the NCIH716 

cell line at the CALCR locus67,68, and LRRIQ3 in the NTERA2 cell line at theTNNI3K locus69. 

Chronic inflammation is an essential characteristic of obesity pathogenesis. Adipose tissue-

resident immune cells have been observed, leading to an increased focus in recent years on 

their potential contribution to metabolic dysfunction. On the other hand, neurological or 

psychological conditions, such as stress, induce the secretion of both glucocorticoids (increase 

motivation for food) and insulin (promotes food intake and obesity). Pleasure feeding then 

reduces activity in the stress-response network, reinforcing the feeding habit. It has been shown 

that voluntary behaviors, stimulated by external or internal stressors or pleasurable feelings, 

memories, and habits, can override the basic homeostatic controls of energy balance70. The 

potential link between the immune system and metabolic disease, and moreover, through the 

neural system, was tangible in our findings.  

Two of the three SNPs which ranked the third most consistent in our variant-to-gene 

mapping (Fig. 2C) – rs35796073 and rs35142762 – contacted the ALKAL2 promoter (supported 

by GTEx evidence to colocalize with ALKAL2 expression). The anaplastic lymphoma kinase 

(encoded by ALK gene) is a receptor tyrosine kinase, belongs to the insulin receptor family, and 
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has been reported to promote nerve cell growth and differentiation71,72. Despite ALKAL2 (ALK 

and LTK ligand 2) being studied principally in the context of immunity, a recent study using the 

EGCUT biobank GWAS identified ALK as a candidate thinness gene and genetic deletion 

showed that its expression in hypothalamic neurons acts as a negative regulator in controlling 

energy expenditure via sympathetic control of adipose tissue lipolysis73. ALKAL2 – encoding a 

high-affinity agonist of ALK/LTK receptors – which has been reported to enhance expression in 

response to inflammatory pain in nociceptors74,75 - has been recently implicated as a novel 

candidate gene for childhood BMI by transcriptome-wide association study76, and achieved 

genome-wide significance in a GWAS study contrasting persistent healthy thinness with severe 

early-onset obesity using the STILTS and SCOOP cohorts77. The finding that overexpression of 

ALKAL2 could potentiate neuroblastoma progression in the absence of ALK mutation78 echoes 

the relationship between ADCY3 and MC4R79, where a peripheral gene, ADCY3, can 

regulate/impair the function of a core gene, i.e. MC4R, within the energy-regulating 

melanocortin signaling pathway80. 

Our approach implicates putative target genes based on a mechanism of regulation for 

these variants to alter gene expression – through regulator TF(s) that bind to these contact 

sites. A potential limitation of the predictions from motifbreakR and matching TF motifs to ATAC-

seq footprint by the RGT toolkit is that they were both based on the position probability matrixes 

of Jaspar and Hocomoco, which come from public motif databases. The ATAC-seq footprint 

analysis also carries sequence bias that can lead to false positive discovery. Thus, our attempt 

to call such regulators by predicting TF binding disruption can only serve as nominations – but 

warrant further functional follow up. 

Another limitation of this work is the diversity in data quality among different samples, since 

different datasets were sampled and collected at different time points, from different patients, 

using different protocols, with libraries sequenced at different depths and qualities, and initially 

preprocessed with different pipelines and parameters. Thus, it is crucial to keep in mind that the 
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discrepancy in data points might have resulted from variations in data quality. Importantly, any 

association discovered must be validated functionally before effector genes of the genetic 

variants can be leveraged to develop new therapies. Their putative function(s) must be 

characterized, together with the mechanism whereby the given variant's alleles differentially 

affect the expression of the targeted genes. The next step is to explore how the target genes 

affect the trait of interest more directly.  

Our results have provided a set of leads for future exploratory experiments in specific 

cellular settings in order to further expand our knowledge of childhood obesity genomics and 

hence equip us with more effective means to overcome the burden of this systematic disease. 

 

CONCLUSION 

Our approach of combining RNA-seq, ATAC-seq, and promoter Capture C/Hi-C datasets 

with GWAS summary statistics offers a systemic view of the multi-cellular nature of childhood 

obesity, shedding light on potential regulatory regions and effector genes. By leveraging 

physical properties, such as open chromatin status and chromatin contacts, we enhanced the 

fine-mapping process and gained new insights into the biological pathways influencing the 

disease. Although further functional validation is required, our findings provide valuable leads 

together with their cellular contexts for future research and the development of more effective 

strategies to address the burden of childhood obesity. 
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TABLE AND FIGURE LEGENDS 

Figure 1: Partitioned Linkage Disequilibrium Score Regression analysis for open 

chromatin regions of all cell types. 

A. Bar-plot shows total number of open chromatin regions (OCRs) identified by 

ATAC-seq for each cell type on bulk cells - blue, or on single cell – red; and portion of 

OCRs that fall within promoter-interacting region (PIR-OCRs) identified by hi-C – 

green, or by capture-C – orange. 

B. 4 panels of dot-plots show heritability enrichment by LDSC analysis for each cell 

type, with standard error whiskers. Dots’ colors corresponding to p-values, dots with 

white asterisk are significant p-value<0.05, dots’ sizes corresponding to proportion of 

SNP contribute for heritability. Dash line at 1, i.e., no enrichment.  

a) Analysis done on whole OCRs set of each cell type (whiskers colors match with 

bulk/single cell from bar-plot A);  

b) On only OCRs that overlapped with promoters (whiskers’ colors match with 

bulk/single cell from bar-plot A); 

c) On the putative cREs of each cell type (whiskers’ colors match with hi-

C/capture-C from bar-plot A); 

d) On the same PIR-OCRs as middle panel with their genomic positions 

expanded ±500 bases on both sides (whiskers’ colors match with hi-C/capture-

C from bar-plot A). 

 

Figure 2: Mapping 771 proxies to the open chromatin regions of each cell type 

A. Schematic shows 4 different ways OCRs can be subset due to overlapping with 

chromatin contact sites and gene promoters, colors of sets of OCRs applied for the 

areas in B panel. 

B. Venn diagram shows how 771 proxies mapped onto the OCRs: 

• Blue area: 758 proxies were located within contact regions of at least one cell 

type regardless of chromatin state; 

• Red area: 417 proxies were located within contact regions marked as open by 

overlapping with OCR; 

• Yellow area: If we only considered open chromatin regions, 178 proxies were 

included; 
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• Green area: To focus on just those variants residing within open chromatin and 

contacting promoter regions in any cell type, we overlapped the genomic 

positions of these proxies with each cell type’s cRE set, yielding 90 variants (3 

from the 99% credible set) directly contacting open gene promoters (eTable 3), 

with 10 located within a promoter of one gene but contacting another different 

gene promoter. There were an additional 4 variants located within gene 

promoters but in chromatin contact with promoter(s) of nearby transcript(s) of the 

same gene. 

C. Bar-plot shows number of proxies, cell types and target genes mapped at each 

locus. 

D. The upSet plot shows the degree of overlap across cell types of the variants; ranked 

from the most common variant (red) – rs61888800 from BDNF locus, a well-known 5' 

untranslated region variant of this gene that is associated with anti-depression and 

therapeutic response81,82 – appeared in 39 cell types, to the group of variants (grey) 

which appeared in only one cell type. 

 

Figure 3: Profiles of 111 implicated genes by 94 proxies through cREs of each cell 

type 

Main panel: Bubble plot show corresponding expression level (size) and number of 

variants (color) target each implicated gene of each cell type. Squares represent genes 

with variants at their promoters. Circles represent genes with variants contacted 

through chromatin loops. Some genes were implicated by both types, these “double 

implications” are represented as diamond shapes, and were identified across several 

cell types: two cell types (plasmacytoid dendritic cells and pre-differentiated adipocytes) 

for ADCY3 gene, and five for BDNF (human embryonic stem cells - hESC, 

differentiated human fetal osteoblast cells - hFOB_Diff, neural progenitor cells derived 

from induced pluripotent stem cells - NPC_iPSC, PANC-1, and NCIH716 cell lines) 

Genes with expression undetected in our arrays are shown as triangles. 

Top panel: bar-plot shows numbers of cell types each gene was implicated within, color-

coded by which systems the cell types belong to. 

Right panel: bar-plot shows numbers of genes implicated by the variants with each cell 

type. 

 

Figure 4: Colocalization of target effector genes with eQTLs 
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A. Venn diagram shows the overlaps between sets of genes yielded by ColocQuiaL and the 

variant-to-gene mapping process. 

B. Circos plot of the 10 loci demonstrates the differences in the ranges of associations between 

the two approaches, with long-ranged chromatin contacts between obesity variants and 

target genes displayed as orange links and short-range eQTLs colocalizations as green 

links. 

Two SNPs – rs35796073, and rs35142762 within the TMEM18 locus, in linkage 

disequilibrium with rs7579427 – were estimated with high probability (cond.PP.H4=0.78) of 

colocalizing with the expression of ALKAL2 gene in subcutaneous adipose tissue.  These 

pairs of SNP-gene were also identified by our variant-to-gene mapping approach in natural 

killer cells, plasmacytoid dendritic cells, unstimulated PBMC naïve CD4 T cells and 

astrocytes. 

The rs7132908 variant at the FAIM2 locus colocalized with the expression of AQP6 in 

thyroid tissue and with ASIC1 in prostate tissue, not only with high cond.PP.H4 but also with 

high individual SNP causal probability (SNP.PP.H4 > 0.95). rs7132908 was the second most 

consistent observation in our variant-to-gene mapping, namely across 25 different cell types 

(Figure 2C) and all three systems plus the other independent cell lines. The pair of 

rs7132908-contacting-AQP6 was observed in 15 different cell types - 8 metabolic and 4 

neural cell types, and 3 independent cell lines. The pair of rs7132908-contacting-ASIC1 was 

observed in 11 different cell types - 8 metabolic and 2 neural cell types, and plasmacytoid 

dendritic cells. 

The other eQTL signals that overlapped with our variant-to-gene mapping results were: 

BDNF at the METTL15 locus with its promoter physically contacted by rs11030197 in 4 cell 

types and its expression significantly colocalized (cond.PP.H4=0.82) in tibial artery; ADCY9 

at its locus with its promoter physically contacted by rs2531995 in natural killer cells and its 

expression significantly colocalized in skin tissue (“Skin_Not_Sun_Exposed_Suprapubic”, 

cond.PP.H4=0.97). And ADCY3 in the C panel. 

C. ColocQuiaL estimated that these SNPs highly colocalize with the expression of ADCY3 in 

11 different tissues, where the overlapping with the 16 cell types is represented, color-coded 

by the proxies rs numbers. 

 

Table 1 – PubMed-query known functions for 111 genes implicated by obesity variants. 

Locus Implicated 
genes Obesity or related traits Different traits 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.30.23294092doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.30.23294092
http://creativecommons.org/licenses/by-nc-nd/4.0/


TNNI3K 

LRRIQ3 (NA) 
Associated with opioid usage 
[PMID:34728798] and MDD 
[PMID: 31748543] 

FPGT 
Predict BMI in Korean pop.[PMID: 
28674662] 

(NA) 
FPGT-
TNNI3K 

Associated with MDD [PMID: 
31748543] 

LRRC53 
Associated with high BMI 
increased risk heart attack [PMID: 
32471361] 

(NA) 

ASTN1 Identified as obesity QTL in rat 
[PMID: 35729251] 

Associated with 
neurodevelopmental traits [PMID: 
24381304] and variety of cancers 
[PMID: 32945491] 

BRINP2 (NA) 
Associated with 
neurodevelopmental traits [PMID: 
34267256] 

SEC16B 
AL122019.1 

(NA) 
AL162431.1 

TMEM18 

FAM110C (NA) 

Overexpression induces 
microtubule aberrancies [PMID: 
17499476], involved in cell 
spreading and migration [PMID: 
19698782] 

SH3YL1 
Associated with BMI in type 2 
diabetes nephropathy [PMID: 
33223406] 

Influence on T cell activation 
[PMID: 31427643], involved in 
different cancer types [PMID: 
26305679,24508479] 

ACP1 

Associated with early-onset 
obesity [PMID: 24129437], 
correlated with cardiovascular 
risks [PMID: 19570551], drive 
adipocyte differentiation via control 
of pdgfrα signaling [PMID: 
33615467] 

Associated with bipolar disorder 
[PMID: 31830721] 

ALKAL2 Associated with childhood BMI 
[PMID: 33627773] 

Enhance expression in response 
to inflammatory pain in 
nociceptors [PMID: 35608912, 
35610945] 

MYT1L Associated with early-onset 
obesity [PMID: 24129437] (NA) 

AC079779.1 

(NA) 

AC079779.2 

AC079779.3 

AC079779.4 

LINC01865 

AC105393.2 

AC105393.1 
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LINC01874 

LINC01875 

AC093326.1 

AC141930.2 

ADCY3 

ITSN2 (NA) 

Regulate T-cells function [PMID: 
32618424] and help the 
interaction with B-cells [PMID: 
29337666] 

NCOA1 

Meta-inflammation gene [PMID: 
25647480], reduce adipogenesis, 
shift the energy balance between 
white and brown fat [PMID: 
31133421] 

(NA) 
 

ADCY3 

Regulate/impair MC4R within 
energy-regulating melanocortin 
signaling pathway [PMID: 
29311635,32955435]  

DNAJC27-
AS1 

Linked to obesity, diabetes traits 
[PMID: 30131766] 

DNAJC27 Linked to obesity, diabetes traits 
[PMID: 30131766] 

EFR3B 

Associated with T1D [PMID: 
21980299], down-regulated in rare 
obesity-related disorder [PMID: 
25705109] 

WDR43 (NA) 
Associated with breast cancer 
[PMID: 27117709] 

AC013267.1 
(NA) 

RF00016 

GPR1 GPR1 
Increase expression in obese 
phenotype [PMID: 34174278] (NA) 

TFAP2B TFAP2D 

(NA) 

Involve in embryogenesis [PMID: 
12711551] 

CALCR 

HEPACAM2 Associated with colorectal cancer 
[PMID: 29659199, 29973580] 

VPS50 
Involve in neurodevelopmental 
disorders and defects [PMID: 
30828385, 34037727] 

MIR653 Involve in different types of 
cancer [PMID: 35777307] 

MIR489 Promote adipogenesis in mice 
[PMID: 34004251]  

(NA) 
CALCR 

Associated with BMI and control of 
food-intake [PMID: 34462445, 
34210852, 31955990, 29522093] 

TFPI2 (NA) 
Involved in colorectal cancer 
[PMID: 35004840, 34092617, 
25902909] 
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BET1 Involved in triacylglycerol 
metabolism [PMID: 24423365] 

Associated with muscular 
dystrophy [PMID: 34310943, 
34779586] 

AC003092.1 (NA) 
Association with glioblastoma 
[PMID: 33815468, 30442884] 

AC002076.1 (NA) 

BDNF 

LIN7C 
Associated in T2D [PMID: 
20215397], obesity [PMID: 
23044507] 

Associated with psychopathology 
[PMID: 23044507] 

BDNF-AS 
Regulate BDNF and LIN7C 
expression [PMID: 22960213, 
22446693] (NA) 

BDNF Regulate eating behavior and 
energy balance [PMID: 34556834] 

MIR610 

(NA) 

Involve in different types of 
cancer [PMID: 34408418, 
29228616, 26885452] 

KIF18A 
Involve in different types of 
cancer [PMID: 35591854, 
35286090] 

METTL15 Associated with childhood obesity 
[PMID: 31504550] (NA) 

AC090124.1 

(NA) 

Reported to differentially 
prognostic of pancreatic cancer 
[PMID: 34307375] 

ARL14EP Involve in WAGR syndrome 
[PMID: 36011342, 31511512] 

DCDC1 Involvement with eyes anomalies 
[PMID: 34773354, 34703991] 

THEM7P 
Associated with mechanisms 
underlying inguinal hernia [PMID: 
34392144] 

AL035078.2 

(NA) 

ELP4 

LINC00678 

AC023206.1 

RN7SKP158 

AC104978.1 

MIR8068 

AC013714.1 

AC100773.1 

AC090833.1 

AC090791.1 

AC110056.1 

AL035078.2 
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FAIM2 

PRPF40B (NA) 
Splicing regulator involved in T-
cell development [PMID: 
31088860, 34323272] 

TMBIM6 

Deficiency leads to obesity by 
increasing Ca2+-dependent 
insulin secretion [PMID: 
32394396] 

Immune cell function and survival 
[PMID: 26470731] 

BCDIN3D Associated with obesity, T2D 
[PMID: 20215397] 

(NA) FAIM2 Associated with childhood obesity 
[PMID: 31504550] 

AQP2 Associated with obesity, diabetes 
[PMID: 33367818] 

AQP5 
Associated with non-obese 
diabetes [PMID: 
25635992,22320885] 

Responsible for transporting 
water, involve in Sjogren's 
syndrome [PMID: 25635992, 
31557796] 

AQP6 Down-regulated in retina in 
diabetes [PMID: 21851171] 

Associated with renal diseases 
[PMID: 30654539] 

RACGAP1 
Involve in diabetes nephropathy 
[PMID: 35222021] 

(NA) 
ASIC1 

Inhibition increase food intake and 
decrease energy expenditure 
[PMID: 35894166] 

LSM6P2 

(NA) 

RPL35AP28 

LINC02396 

LINC02395 

AC025154.1 

AC025154.2 

ADCY9 

SLX4 (NA) Associated with blood pressure 
[PMID: 30671673] 

DNASE1 Associated with obesity 
hypertension [PMID: 33351325] 

(NA) 

TRAP1 
Involve in global metabolic 
network, deletion reduce obesity 
incidence [PMID: 25088416] 

CREBBP 
Associated with high adiposity and 
low cardiometabolic risk [PMID: 
33619380] 

ADCY9 Asoociated with BMI, obesity 
[PMID: 33619380, 23563607] 

SRL 

(NA) 

Involve in cardiac dysfunction 
[PMID: 22119571] 

LINC01569 
Associated with cancer and 
endometriosis [PMID: 35341703, 
34422671] 

TFAP4 Associated with BMI, birth weight, (NA) 
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maternal glycemic [PMID: 
35708509] 

AC012676.1 (NA) Involve in hepatocellular 
carcinoma [PMID: 35210216] 

AC009171.2 (NA) 

FTO 

FTO Most extensively studied obesity 
locus [PMID: 34556834] 

(NA) IRX3 Obesogenic effects in adipocytes 
[PMID: 26760096], brain [PMID: 
24646999], pancreas[93] IRX5 

AC018553.1 (NA) Associated with melanoma 
[PMID: 35611195] 

CRNDE 
Regulator of angiogenesis in 
obesity-induced diabetes [PMID: 
31863035] (NA) 

MMP2 
Involve in obesity-relate 
angiogenesis [PMID: 35919566] 

CAPNS2 (NA) Associated with thyroid-related 
traits [PMID: 23408906] 

AMFR Involve in hepatic lipid metabolism 
[PMID: 33591966] 

(NA) 
CETP 

Involve in monogenic 
hyperalphalipoproteinemia [PMID: 
34878751] 

RPGRIP1L 
Hypomorphism of this ciliary gene 
linked to morbid obesity [PMID: 
27064284, 30597647, 29657248] 

Required for hypothalamic 
arcuate neuron development 
[PMID: 30728336] 

LINC02169 (NA) 
Associated with occupational 
exposure to gases/fumes and 
mineral dust [PMID: 31152171] 

AC007491.1 

(NA) 

AC018553.2 

LINC02140 

AC106738.1 

AC106738.2 

MTND5P34 

AC007336.1 

MC4R AC090771.1 (NA) 
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