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ABSTRACT 

Background: Previous genome-wide association studies (GWAS) have identified 

several risk genes for stroke; however, it remains unclear how they confer risk for the 

disease. We conducted an integrative analysis to identify candidate genes for stroke 

and stroke subtypes by integrating blood-derived multi-omics data with genetic data.  

Method: We systematically integrated the latest stroke GWAS database (73,652 

patients and 1,234,808 controls) with human plasma proteomes (N=7,213) and 

performed proteome-wide association studies (PWAS), Mendelian randomization 

(MR), Bayesian colocalization analysis, and transcriptome-wide association study 

(TWAS) to prioritize genes that associate the risk of stroke and its subtypes with their 

expression and protein abundance in plasma. Cell-type specificity and functional 

enrichment analysis using single-cell RNA sequencing (scRNA-seq) and Gene 

Ontology (GO) databases were then performed to select target genes. A two-step MR 

analysis was followed to explore the potential mechanisms. 

Results: We found that the protein abundance of seven genes (MMP12, F11, 

SH3BGRL3, ENGASE, SCARA5, SWAP70, and SPATA20) in the plasma was 

associated with stroke and its subtypes, with six genes (MMP12, F11, SH3BGRL3, 

SCARA5, SWAP70, and SPATA20) causally related with stroke and its subtypes (P < 

0.05/proteins identified for PWAS; P < 0.05/8 for MR; posterior probability of 

hypothesis 4 ≥ 75 % for Bayesian colocalization). The effect of F11, SH3BGRL, 

SPATA20, and SWAP70 on each subtype was mediated by Factor XI inhibitors (FXI), 

atrial fibrillation, T2D, and SBP respectively (p<0.05). We also found that SCARA5 

and SWAP70 were related to stroke and ischemic stroke at the transcriptome level. 

Conclusions: Our present proteomic findings have identified new causal genes in the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.29.23294808doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.29.23294808
http://creativecommons.org/licenses/by/4.0/


pathogenesis of stroke, which may offer potential future therapeutic targets for stroke 

prevention. 

 

Keywords: stroke, Mendelian randomization, Proteome-wide association study, 
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INTRODUCTION 

Stroke is the leading cause of death and long-term disability worldwide, which 

imposes a great burden on global health.1 Despite significant advancements in the past 

decades, critical gaps persist in the management of stroke and its subtypes(i.e. large 

artery atherosclerosis, cardioembolic stroke, or small artery occlusion).2 As such, 

better understanding the mechanism of stroke occurrence, and identifying novel 

therapeutic targets are needed to tackle this challenge.  

In recent years, large-scale genome-wide association studies (GWAS) have 

greatly aided the discovery of genetic loci linked to stroke and its subtypes.3 However, 

despite this progress in understanding the genetic risk of stroke, genes undergo 

regulation at the post-transcriptional, translational, and post-translational levels, 

predisposition to stroke involves a complex, pleiotropic, and polygenic genetic 

architecture. Deciphering the underlying mechanism for these genetic effects on 

stroke is always challenging, which hinders the translation of identified genetic 

findings into drug development. 

 Proteins are the final products of gene expression and the main functional 

components of cells and biological processes.4,5 Directly investigating proteins that 

are linked to stroke would be of great help in identifying potential therapeutic targets 
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regarding stroke management, especially when this link is supported by the genetic 

association.6 In the past few years, several genetic articles concerned the role of 

circulating proteins in stroke, including a proteome-wide association study and one 

Mendelian randomization (MR) analysis.7,8 However, it is likely that the identification 

of protein quantitative trait locus (pQTL) in their study was incomplete, both due to 

inadequate sample size or/and lack of comprehensive protein measurements, and also 

multi-omics verification was lacking. With higher-quality and larger sample sizes of 

GWAS and, especially, human plasma proteomics data, becoming available, it would 

be promising to perform a new analysis using the newest data and tools to identify 

novel therapeutic targets for stroke. 

Accordingly, we conducted an integrative analysis to identify candidate genes for 

stroke and stroke subtypes by integrating blood-derived multi-omics data with genetic 

data.  
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METHODS 

Human plasma proteomic and transcriptomic data 

The plasma proteomic data were derived from a comprehensive set of analyses 

of cis-genetic regulation of the plasma proteome in large European cohorts of the 

Atherosclerosis Risk in Communities (ARIC) study, comprising cleaned plasma 

protein data of 7,213 European American participants.9 Relative concentrations of 

plasma proteins or protein complexes were measured by the Slow-Of rate Modified 

Aptamer (SOMAmer) via a proteomic profiling platform.10,11 4657 SOMAmers were 

analyzed, which tagged proteins or protein complexes encoded by 4,435 genes. 

Finally, a total of 2,004 significant SOMAmers were identified. 

The whole-blood eQTL data was derived from the Young Finns Study (YFS), in 

which the expression of peripheral blood genes (n=1264) was comprehensively 

analyzed.12 

GWAS data of stroke and its subtypes 

Genetic association estimates for stroke were obtained from the GIGASTROKE 

consortium, the largest published stroke GWAS meta-analysis to date.13 Populations 

were restricted to European participants. Data for 1,308,064 European descent 

individuals (73,652 any stroke cases and 1,234,808 controls) were used as a stroke 

GWAS summary dataset. The primary outcomes for main analysis were the 

occurrence of any stroke (including both ischemic and hemorrhagic stroke; AS; 

73,652 cases), any ischemic stroke (AIS; 62,100 cases), or three aetiologic ischemic 

stroke subtypes: large artery stroke (LAS; 6,399 cases), cardioembolic stroke (CES; 

10,804 cases) and small vessel stroke (SVS; 6,811 cases). 

GWAS data on risk factors for stroke 

The secondary outcomes we considered were stroke risk factors, which were 
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selected from a literature review.14 Five risk factors were considered for the 

two-sample MR analyses and we sought well-powered publicly available GWAS 

summary statistics for these risk factors, including systolic blood pressure (SBP),15 

atrial fibrillation (AF),16 type 2 diabetes (T2D),17 body mass index (BMI),18 and 

coagulation factor XI (FXI)19. The full details of the data sources and sample size for 

these GWASs were provided in supplementary materials (Table S1). 

The RNA-Sequencing Data Availability of stroke 

Single-cell RNA sequencing (scRNA-seq) data were used to identify the cell-type 

specificity and functional pathways of target genes.20 The scRNA-seq data were 

downloaded from the GEO dataset (https://www.ncbi.nlm.nih.gov/geo/) with 

accession number GSE174574. This study provided a scRNA-seq landscape of 17 cell 

populations of mice brain cortex with cell-type specific gene expression profiles 

based on the middle cerebral artery occlusion (MCAO) model.20 Functional pathways 

of target genes were enriched by Gene ontology (GO) analysis. Cell type-specific 

expression of the risk genes was displayed with a dot plot according to the cell 

classification from Zhang et al.20 The scRNA-seq analysis was performed using R 

packages of Seurat and ggsci. The enrichment score of risk genes from PWAS was 

calculated by R package AUCell.  

 

Statistical analysis 

Proteome‑wide and transcriptome-wide association studies 

The overall design of this study is shown in Figure 1. Proteome-wide association 

studies (PWAS) and transcriptome-wide association studies (TWAS) were carried out 

using FUSION.21 A linkage disequilibrium (LD) reference panel was used to 

minimize the influence of LD on the estimated test statistics.21 We used FUSION to 
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compute the effect of single nucleotide polymorphisms (SNPs) on protein abundance 

for proteins with significant heritability (heritability P < 0.01). Two predictive models, 

enet and top1 were adopted in the analysis.9 Protein weights from the most predictive 

model were selected,9 and the expression weights were derived from transcriptomic 

data generated from YFS. Subsequently, we used FUSION to combine the genetic 

effect of stroke and stroke subtypes (stroke and its subtypes GWAS z-score) with the 

protein or expression weights by calculating the linear sum of z-score × weight for the 

independent SNPs at the locus to perform the PWAS or TWAS. The P values were 

adjusted for false discovery rate (FDR) using Benjamini-Hochberg (BH) method and 

the statistical significance was set at P<0.05. 

Mendelian Randomization analysis 

We used two-sample MR to verify whether stroke and its subtypes PWAS-significant 

genes (from the FUSION approach) were associated with stroke and its subtypes via 

their cis-regulated plasma protein abundance and estimate the role of protein 

expressed by these genes in stroke subtypes and its risk factors. The SNPs included in 

the study robustly and independently (r2 < 0.1; clumping window, 10 000 kb) 

predicted exposures at a genome-wide level (P < 5 × 10-8). We harmonized the SNP 

alleles across studies and removed palindromic SNPs with ambiguous allele 

frequencies (0.42–0.58). 

Principal analyses were conducted using the inverse-variance weighted (IVW) 

MR method. This method assumes that all genetic variants are valid instrumental 

variables and produces the most accurate estimates.22 Wald’s ratio method was 

applied when there was only one SNP available for the target exposure.23 The 

weighted median and MR-Egger regression were adopted as sensitivity analyses. The 

weighted median approaches give more weight to the instrumental variables that are 
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more precise, and the estimate is consistent even when up to 50 % of the information 

comes from invalid or weak instruments.24 The MR-Egger could detect and adjust for 

directional pleiotropy, albeit with low precision.22 We used Cochran’s Q statistic in the 

IVW model to assess the heterogeneity between variant-specific estimates. The MR 

Pleiotropy Residual Sum and Outlier (PRESSO) approaches were used to identify 

possible outliers. Finally, a leave-one-SNP-out analysis was performed in which SNPs 

were systematically removed to assess whether a single SNP drove the results. We set 

the P value for statistical significance at P<0.007, after correcting for multiple 

exposures using the Bonferroni method (α=0.05/7 proteins). Statistical analyses were 

conducted in R (version 4.2.2) and MR analyses were conducted using 

“TwoSampleMR”. 

Bayesian colocalization analysis 

We conducted colocalization analysis for each of the genes associated with one or 

more of the stroke outcomes to investigate whether the protein levels of a gene and 

stroke outcome genetic associations are due to the same causal variants. We estimated 

the posterior probability (PP) of multiple traits sharing the same causal SNP 

simultaneously using a multi-trait colocalization method.25 We used the default 

colocalization priors of P1 = 10−4, P2 = 10−4, and P12 = 10−5, where P1 is the 

probability that a given variant is associated with stroke or its subtypes, P2 is the 

probability that a given variant is a significant pQTL, and P12 is the probability that a 

given variant is both a stroke or its subtypes result and a pQTL. colocalization uses 

computed approximation Bayes factors and summary association data to generate a 

posterior probability for the following 5 hypotheses: H0, No association with either 

GWAS or pQTL; H1, Association with GWAS, not with pQTL; H2, Association with 

pQTL, not with GWAS; H3, Association with GWAS and pQTL, two independent 
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SNPs; and H4, Association with GWAS and pQTL, one shared SNP. We mainly 

focused on the last hypothesis H4 and posterior probability (PP) was used to quantify 

support for H4 (denoted as PPH4). We defined strong evidence of colocalization at 

PPH4 ≥ 0.75.26 

Mediation analysis 

For protein levels of a gene that causally associate with both stroke and risk factors, 

we conducted a mediation analysis to quantify the effects of protein levels of a gene 

on stroke outcomes via risk factors. The “total” effect of exposure on outcome 

includes both the “direct” effect and any “indirect” effect via one or more mediators. 

In this study, the total effect is captured by a standard univariable MR analysis—the 

primary MR. To decompose direct and indirect effects, we used results from two-step 

MR and chose the Product method to estimate the beta of indirect effect and the Delta 

method to estimate the standard error (SE) and confidence interval (CI).27 

Functional enrichment analysis and Cell-type specificity analysis 

Gene ontology (GO) analysis was performed to do functional enrichment analysis. 

Subsequently, using mouse single-cell RNA-seq data of the CoW profiled, we 

investigated the cell type-specific expression of the risk genes. The cell suspensions 

underwent scRNAseq using standard 10X Chromium Single Cell Chemistry V3. Raw 

sequencing data were processed using Cellranger to produce gene-level counts for 

each cell in each sample. The CellRanger mkfastq command was used to generate 

Fastq files. Data were mapped to a prebuild mouse reference genome. All subsequent 

analysis was performed using R packages of Seurat and ggsci. The enrichment score 

of risk genes from PWAS was calculated by R package AUCell. The detailed 

parameters of scRNA analysis could refer to previous works.20  
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RESULTS 

PWAS of stroke and its subtypes 

The PWAS identified 7 genes (MMP12, F11, ENGASE, SH3BGRL3, SPATA20, 

SWAP70, SCARA5) whose cis-regulated plasma protein levels were associated with 

stroke and its subtypes at a false discovery rate (FDR) of P<0.05 (Figure 2 and Table 

S2). The protein abundances of MMP12 were associated with AS, AIS, and LAS (AS: 

Z-score: -5.881, PWAS FDR P = 2.73×10-6; AIS: Z-score: -6.149, PWAS FDP P= 

5.18×10-7; LAS: Z-score: -5.674, PWAS FDR P= 7.41×10-6), and the protein 

abundances of F11 was associated with AS, AIS, and CES (AS: Z-score: 5.972, 

PWAS FDR P = 3.12×10-6; AIS: Z-score: 6.718, PWAS FDR P = 2.45×10-8; CES: 

Z-score: 5.683, PWAS FDR P = 1.39×10-5). The protein abundances of ENGASE and 

SH3BGRL3 were associated with AS and AIS (ENGASE: AS: Z-score= 5.055, PWAS 

FDR P = 1.91×10-4; AIS: Z-score= 4.805, PWAS FDR P = 6.87×10-4), (SH3BGRL3: 

AS: Z-score= -4.284, PWAS FDR P = 6.14×10-3; AIS: Z-score= -4.322, PWAS FDR P 

= 5.12×10-3). The protein abundances of SCARA5, SWAP70 and SPATA20 were 

associated with AS, AIS and SVS respectively (SCARA5: Z-score: -3.712, PWAS 

FDR P = 4.58×10-2; SWAP70: Z-score: -3.955, PWAS FDR P = 2.03×10-2; SPATA20: 

Z-score: 4.55, PWAS FDR P = 5.21×10-3). (Table S1) 

Functional enrichment analysis and Cell-type specificity analysis 

We investigated whether the risk genes identified by PWAS were enriched in some 

particular functions and some particular brain cell types. Go analyses suggest that 

MMP12 and F11 were significantly related to serine-type endopeptidase activity, as 

well as serine-type peptidase activity, wound healing, and serine hydrolase activity 

et.al. MMP12 and SWAP70 were significantly related to negative regulation of cell 

adhesion and positive regulation of response to external stimulus. MMP12 and 
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ENGASE were significantly related to the glycoprotein metabolic process. SWAP70 

and SH3BGRL3 were significantly related to the cell leading edge (Figure 3A). 

Single-cell RNA-seq data showed different expression patterns of the risk genes in the 

brain. MMP12 was mainly expressed in microglia. F11 was mainly expressed in 

fibroblast. SCARA5 was mainly expressed in perivascular fibroblast-like cells and 

SWAP70 was mainly expressed in endothelial. SH3BGRL3 was abundantly expressed 

in most cell types of the brain. The expression of SPATA20 was not detected in this 

system (Figure 3B and Table S3). 

Genetically determined PWAS-significant genes and risk of stroke and its subtypes 

Cis-regulated plasma protein levels of seven PWAS-significant genes were tested for 

causal relationships with stroke and its subtypes by using MR analysis (P<0.007 = 

0.05/7). As shown in Figure 4, we found that the concentration of MMP12 was 

inversely associated with AS, AIS, and LAS risk (AS: OR [95% CI]: 0.93 [0.91, 0.95]; 

AIS: OR [95% CI]: 0.92 [0.91, 0.94]; LAS: OR [95% CI]: 0.82 [0.75, 0.91]), while 

F11 was positively associated with AS, AIS, and CES risk (AS: OR [95% CI]: 1.07 

[1.05, 1.10]; AIS: OR [ 95% CI]: 1.09 [1.06, 1.13]; CES: OR [95% CI]: 1.23 [1.15, 

1.31]). The concentration of ENGASE was positively associated with AS and AIS (AS: 

OR [95% CI]: 1.05 [1.03, 1.06]; AIS: OR [95% CI]: 1.04 [1.03, 1.06]), but the 

concentration of SH3BGRL3 was inversely associated with AS, AIS (AS: OR [95% 

CI]: 0.96 [0.94, 0.98]; AIS: OR [95% CI]: 0.95 [0.93, 0.97]). SCARA5 and SWAP70 

were associated with a lower risk of AS (OR [95% CI]: 0.92 [0.87, 0.98]) and AIS 

(OR [95% CI]: 0.96 [0.94, 0.99]) while SPATA20 was associated with a higher risk of 

SVS (OR [95% CI]: 1.16 [1.09, 1.23]). All sensitivity analyses supported the main 

results of the MR Analysis (Table S4). The results of MR further confirmed the 

association between seven genes and their corresponding stroke subtypes. 
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Colocalization between stroke risk genes and pQTLs in the plasma 

We examined the PP for a shared causal variant between a pQTL and stroke for the 

seven genes which met the corrected P value threshold in previous PWAS and MR 

analysis (Table S10). The colocalization suggested the genetic variants associated 

with MMP12 (pQTL) were due to the same genetic variants underlying the 

association with AS, AIS, and LAS (PPH4 ≥ 0.75). Similarly, F11 pQTLs colocalized 

with AS, AIS, and CES genetic associations; SH3BGRL3 pQTLs colocalized with AS 

and AIS; SCARA5, SWAP70, and SPATA20 pQTLs colocalized with AS, AIS, and SVS 

respectively. It suggests that six of seven proteins play an important role in the 

pathophysiology of stroke subtypes. 

Significance of the protein findings 

To determine the importance of the six of seven (ENGASE was excluded because its 

results of Bayesian colocalization analysis were negative) potentially causal genes 

identified from the PWAS, MR, and Bayesian colocalization analyses, we obtained 

the lowest P values for the SNPs within 1 Mb of each of these seven genes using the 

summary statistics from the most extensive stroke GWAS (N=446, 696).28 The most 

significant P values were less than 5×10-8 in two genes (MMP12 and F11), while the P 

values of SNPs in the remaining 4 genes ranged from 1.32×10-5 to 2.36×10-6 (Table 

S5). The findings suggest that specific plasma proteins likely contribute to the 

pathogenesis of stroke subtypes. 

Mediation Effect of six genes on stroke subtypes via risk factors 

To investigate the indirect effect of cis-regulated plasma protein levels of six genes on 

stroke subtypes via risk factors, we carried out a mediation analysis using the effect 

estimates from two-step MR and the total effect from primary MR. We calculated the 

causal relationship between five risk factors and stroke using MR Analysis (Table S6). 
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This analysis was restricted to four genes, F11, SWAP70, SH3BGRL3, and SPATA20, 

that showed evidence of an effect in both MRs with risk factors and stroke outcomes 

(Table S6-S7). The mediation effect of F11 via FXI is the highest (63.8%). The 

indirect effect of SPATA20 on the risk of SVS via T2D contributes to one-fourth of the 

total effect (25.2%). Similarly, the proportion of the mediation effect of SWAP70 and 

SH3BGRL3 on AIS and AS via SBP and AF is one-tenth, respectively (SWAP70: 

14.1%; SH3BGRL3: 12.2%). (Figure 5). 

Examination of the potential stroke‑causal proteins at the mRNA level 

We combined the stroke subtypes GWAS data with human plasma transcriptomes to 

conduct stroke and its subtypes TWAS using FUSION. We found that the 

cis-regulated plasma mRNA expression of the forty-one genes was associated with 

stroke and its subtypes (FDR P < 0.05) (Table S8). Interestingly, we found two genes 

identified in TWAS, i.e. SWAP70 and SPATA20, were also significant in the AIS and 

SVS PWAS respectively, suggesting joint evidence from PWAS and TWAS for its role 

in stroke etiology. 
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DISCUSSION 

In the present study, we employed an integrated analysis based on GWAS, PWAS, 

TWAS, MR, and Bayesian colocalization to investigate the causal relationship 

between proteins in the plasma and stroke and its subtypes. We identified 7 potential 

risk genes (MMP12, F11, SH3BGRL3, ENGASE, SCARA5, SWAP70, and SPATA20) 

of stroke with altered protein abundances in the plasma. We enriched all seven genes 

into corresponding functional pathways and cell types. Six (MMP12, F11, SH3BGRL3, 

SCARA5, SWAP70, and SPATA20) of the above genes were replicated in the 

independent MR and Bayesian colocalization analysis validation analyses of stroke 

and its subtypes, providing a higher confidence level. Furthermore, SWAP70 and 

SPATA20 were supported at the transcriptional level. Also, through a mediation 

analysis, we found the effect of F11 on CES, SH3BGRL3 on AS and AIS, SPATA20 on 

SVS, and SWAP70 on AIS were partly mediated by FXI, AF, T2D, and SBP 

respectively, demonstrating a critical role of these risk factors in the pathogenesis of 

stroke in consistence with previous epidemiological studies.29-33 

Of the 7 genes studied, three (MMP12, F11, and SCARA5) have been implicated 

in previous articles.7,8 MMP12 is a member of the matrix metalloproteinase family 

that contributes to vascular remodeling. To date, the relationship between its 

circulating level and stroke is unclear and contradicted in previous studies. In one 

population-based study containing 2983 participants, higher MMP12 level was 

independently associated with ischemic stroke risk (HR=1.30, 95% CI 1.16-1.45, 

P=4.55×10-06).34 In contrast, our study is consistent with another genetic study which 

showed an inverse relationship between MMP12 circulating level and risk of ischemic 

stroke.35 FXI is mediated by the F11 gene and has become increasingly interesting for 

its role in the pathogenesis of thrombosis. A GWAS analysis containing 371,695 
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participants found a lower FXI level was associated with reduced risks of venous 

thrombosis (OR=0.1, 95%CI 0.07-0.14; P=3×10-43) and ischemic stroke (OR=0.47, 

0.36-0.61; P=2×10-8).36 MR analysis of our study also revealed a causal relationship 

between F11 and CES, and 63.8% of the effect is mediated by FXI. Currently, FXI 

inhibitors have been developed as potential stroke targets, and their role is evaluated 

by some ongoing trials.37-39 SCARA5 is a scavenger receptor that exports 

ferritin-bound iron from circulation to parenchymal tissues, including the heart and 

brain.40 Previous MR studies revealed SCARA5 genetically lower serum iron which 

further decreases CES risk.8,41. Using multi-omics analysis, we confirmed this result, 

SCARA5 was associated with a lower risk of AS (OR [95% CI]: 0.92 [0.87, 0.98]). 

To our best knowledge, the other four genes including ENGASE, SPATA20, 

SWAP70, and SH3BGRL3 have not been extensively studied in stroke research. And 

we were able to identify a shared causal variant between a pQTL and stroke for the 

four genes except for ENGASE. And we identified SPATA20 as associated with the 

SVS subtype. Moreover, mediation analysis of the effects of these three genes on 

stroke subtypes indicated potential mechanisms. For example, the indirect effect of 

SPATA20 on the risk of SVS via T2D contributes to one-fourth of the total effect 

(25.2%). and the proportion of the mediation effect of SWAP70 and SH3BGRL3 on 

AIS and AS via SBP and AF is one-tenth, respectively (SWAP70: 14.1%; SH3BGRL3: 

12.2%). However, the mechanisms of the effects of these proteins are not clear yet. 

ENGASE is an enzyme involved in the processing of free oligosaccharides in the 

cytosol and is associated with glycosylation. Studies have shown protein 

glycosylation may affect the occurrence of AIS by regulating the progression of 

atherosclerosis and AF.42 SWAP70 is a guanine nucleotide exchange factor that 

participates in the regulation of many cellular processes, its role in many diseases is 
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not clear yet, however, studies showed that SWAP70 is a protective molecule that can 

suppress the progression of nonalcoholic fatty liver disease by inhibiting hepatic 

steatosis and inflammation,43 and Pathological Cardiac Hypertrophy, et al.44 Both of 

which were associated with stroke occurrence. SWAP70 also organizes the actin 

cytoskeleton, which is crucial for phagocytosis.45 The role of SWAP70 in immune 

function may be related to its protective effect against AIS, and need further study in 

the future. SH3BGRL3 may play a role in maintaining cerebrovascular integrity and 

maintaining the function of cerebral vascular endothelial cells by activating STAT3 

signaling, thereby preventing AS and AIS.46,47 Little is known about SPATA 20, it is 

predicted to be located in the extracellular region, and involved in the carbohydrate 

metabolic process and cell differentiation. Whatever, further studies are needed to 

confirm the role of these genes and proteins in stroke.  

The strengths of our study include the utilization of the largest and most 

comprehensive human proteome and summary statistics from the most recent GWAS 

and protein quantitative trait locus (pQTL) datasets to date, and integrative analysis of 

multi-omics data including GWAS, PWAS, and TWAS. The stroke GWAS summary 

datasets we used included data for 1,308,064 European descent individuals, nearly 

three times the size of previous studies (MRGASTROKE n=446, 696). 7,8 The plasma 

proteomic data we used included a total of 7, 213 European Americans, and the 

number of significant SOMAmers in this study is almost three times that of plasma 

pQTL studies conducted in the past in the European ancestry sample.48 We further 

identified risk genes through cell enrichment and functional enrichment analysis using 

single-cell transcriptomes and GO databases. Afterward, we used independent MR 

analysis to verify PWAS-significant genes. Then we used a colocalization to integrate 

GWAS data and plasma pQTL using a Bayesian colocalization analysis to explore 
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whether two associated signals are consistent with shared causal variant(s). Finally, 

we included five common risk factors of stroke in two-step MR analyses to explore 

the clinical mechanisms of risk genes and explored the significant genes driving 

GWAS signals at the transcriptional level by leveraging gene expression data.  

Our study also has some limitations. First, although the plasma proteomic data we 

used included SOMAmers for ~ 5,000 proteins or protein complexes, it does not 

provide coverage for the entire plasma proteome.9 Also, the data did not explore the 

effects of uncommon and rare variants, as well as complex trans-associations, analysis 

with substantial discovery on an even larger sample size is likely to need. Second, it is 

insufficient to elucidate the numerous stroke PWAS-identified loci from genetic and 

transcriptional levels. Functional genomic approaches are needed to identify the 

complex molecular mechanisms of stroke. Third, our study mainly focused on 

European subjects, and caution should be taken when generalizing our results to other 

ethnicities. 

CONCLUSION 

In conclusion, we found causal evidence supporting three classic genes (MMP12, F11, 

and SCARA5) and three novel genes (SH3BGRL, SWAP70, and SPATA20) associated 

with ischemic stroke and their subtypes. Our findings provide genetic evidence 

underlying ischemic stroke and subtypes, allowing novel therapeutic targets to be 

further identified.  
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Figure 1. Overview of this study 

First, we used protein quantitative trait locus (pQTL) datasets obtained from plasma and findings from 

stroke and its subtypes GWAS to perform a PWAS analysis. Second, we performed cell enrichment and 

functional enrichment analysis of the identified risk genes using single-cell transcriptomes and Gene 

Ontology (GO) databases. Third, we used independent Mendelian randomization (MR) analysis to 

verify PWAS-significant genes. Fourth, we used a colocalization to integrate GWAS data and plasma 

pQTL using a Bayesian colocalization analysis to explore whether two associated signals are consistent 

with shared causal variant(s). Fifth, we included five common risk factors for stroke in two-step MR 
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analyses to explore the clinical mechanisms of risk genes. Finally, we explored the significant genes 

driving GWAS signals at the transcriptional level by leveraging gene expression data. 

ARIC, Atherosclerosis Risk in Communities; GWAS, genome-wide association studies; PWAS, 

proteome-wide association studies; AS: any stroke; AIS: any ischemic stroke; LAS: large artery stroke; 

CES: cardioembolic stroke; SVS: small vessel stroke; scRNA-seq, single-cell RNA sequencing; pQTL: 

protein quantitative trait locus; MR, Mendelian randomization; SBP, systolic blood pressure; AF, atrial 

fibrillation; T2D, type 2 diabetes; BMI, body mass index; FXI, coagulation factor XI; GTEx, 

Genotype-Tissue Expression; TWAS, transcriptome-wide association study. 
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Figure 2. The Manhattan plot for the PWAS of stroke and stroke subtypes. 

The Manhattan plot shows the genes identified using PWAS for AS, AIS, LAS, CES, and SVS, 

respectively. Each point represents a single association test between a gene and stroke and its subtypes 

ordered by genomic position on the x axis and the association strength on the y axis as the −log10(P) of 

a z-score test. The discovery PWAS identified 7 genes whose cis-regulated plasma protein abundance 

was associated with stroke subtypes at an FDR of P < 0.05. The red horizontal line reflects the 

significant threshold of the FDR P < 0.05. 
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Figure 3. The functional enrichment analysis and Cell-type specificity analysis 

among candidate genes. 

A: functional enrichment analysis; B: cell-type specificity analysis, Single-cell-type expression of the 

potentially stroke-risk genes. Bar graph of single-cell-type enrichment for risk genes in stroke and its 

subtypes from the discovery PWAS. The diagram depicts expression of every gene (y axis) for each 

cell (x axis). 
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Figure 4. Effects of stroke and its subtypes PWAS-significant genes on stroke 

subtypes. 

The squares are the causal estimates on the OR scale, and the whiskers represent the 95% confidence 

intervals for these ORs. SNPs: number of SNPs used for the estimation of the causal effects in this plot. 

P-value were determined from the inverse-variance-weighted two-sample MR method. P-het, P value in 

the Q statistic for heterogeneity; P-pleio, P value in the Egger intercept.  
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Figure 5. Mediation effects of genes on stroke via risk factors. 

Mediation analyses to quantify the effects of four genes on stroke subtypes via risk factors. A. F11 

effect on CES mediated by FXI. B. SH3BGRL3 effect on AS mediated by AF. C. SPATA20 effect on 

SVS mediated by T2D. D. SWAP70 effect on AIS mediated by SBP. 

FXI, coagulation factor XI; CES, cardioembolic stroke; SBP, systolic blood pressure; AF, atrial 

fibrillation; T2D, type 2 diabetes; SVS, small vessel stroke; AS, any stroke; AIS, any ischemic stroke. 
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