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Abstract5

Despite the United States Center for Disease Control (CDC)’s May 2023 expiration of the declared6

public health emergency pertaining to the COVID-19 pandemic (Silk 2023), approximately 3 years after7

the first cases of SARS-CoV-2 appeared in the United Sates, thousands of new cases persist daily.8

Many questions persist about the future dynamics of SARS-CoV-2’s in the United States, including:9

will COVID continue to circulate as a seasonal disease like influenza, and will annual vaccinations be10

required to prevent outbreaks? In response, we present an Agent Based Networked Simulation of COVID-11

19 transmission to evaluate recurrent future outbreaks of the disease, accounting for contact heterogeneity12

and waning vaccine-derived and natural immunity. Our model is parameterized with data collected as13

part of the Berkeley Interpersonal Contact Survey (BICS; Feehan and Mahmud 2021) and is used to14

simulate time series of confirmed cases of and deaths due to SARS-CoV-2, paying special attention to15

seasonal forces and waning immunity (Kronfeld-Schor et al. 2021; X. Liu et al. 2021; Nichols et al. 2021).16

From the BICS ABMmodel we simulate SARS-CoV-2 dynamics over the 10-year period beginning in 202117

with waning immunity and inclusion of annual booster doses under a variety of transmission scenarios.18

We find that SARS-CoV-2 outbreaks are likely to occur frequently, and that distribution of booster doses19

during certain times of the year—notably in the late winter/early spring—may reduce the severity of a20

wintertime outbreak depending on the seasonal epidemiology of the pathogen.21

1 Introduction22

Three years after the first cases of SARS-CoV-2—the pathogen responsible for the COVID-19 pandemic—23

appeared in the United States, many control measures put in place during the early phase of the pandemic24

have been eliminated (Silk 2023) in favor of a desire to return to ‘business as usual’. This includes mask25

mandates, shelter-in-place and work from home ordinances, physical distancing guidelines, and recommen-26

dations to isolate symptomatic cases. While vaccines for COVID-19 were a source of optimism through early27

2021, it became clear over the subsequent months that waning natural and vaccine-derived immunity and28

the pathogen’s immunity-evading mutations rendered the vaccines less effective at ending the pandemic than29

initially hoped (Levin et al. 2021,Centers for Disease Control and Prevention 2021). Additionally, uptake30

of booster doses has lagged far behind targets (National Center for Immunization and Respiratory Diseases31

(NCIRD) 2022a; National Center for Immunization and Respiratory Diseases (NCIRD) 2022b). Over time,32

‘pandemic fatigue’ has set in as compliance with disease-preventing behavioral mandates, especially mask33

usage and contact limitation, has slipped and such ordinances have been lifted (Reicher and Drury 2021).34

The current phase of the pandemic is substantially different from the initial phase, characterized by a highly35
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transmissible but less severe form of the illness owing in part to many factors acting in different directions,36

including: highly transmissible but less severe later variants (Davies et al. 2021; Strasser et al. 2022; Yang37

et al. 2022), higher levels of partial or full immunity from vaccine or prior infection (Clarke 2022), higher38

levels of social contacts approaching pre-pandemic levels, low or absent rates of mask usage and physical39

distancing (Crane et al. 2021), and better treatments reducing the probability of death or severe illness after40

infection (National Institutes of Health 2022). While better treatments, milder variants, and prior immunity41

has resulted in a far lower case fatality ratio than the early days of the pandemic, avoiding the illness is still42

a persistent challenge for those who remain at elevated risk of severe illness and death due to COVID-19,43

including the elderly and people with chronic health conditions.44

Understanding the various drivers of future SARS-CoV-2 outbreaks can help to plan for future inter-45

ventional strategies, including vaccine distribution, school or work closure, and other non-pharmaceutical46

interventions. Infectious disease models can help to plan for these future outbreak scenarios by helping47

understand how SARS-CoV-2 will exist in our medium to long-term future. Here, we consider the effect48

of recurrent outbreaks, annual distribution of booster doses, and seasonal change in transmission of SARS-49

CoV-2. It is presently unknown if SARS-CoV-2 will demonstrate a strong seasonal pattern; however, it50

is hypothesized to follow the seasonal patterns of influzena and other coronaviruses (Kronfeld-Schor et al.51

2021).52

To answer these questions, we use a stochastic Agent-Based Network Model paramaterized with contact53

data from the Berkeley Interpersonal Contact Survey (BICS; Feehan and Mahmud 2021). Using BICS data54

allows us to consider how contact heterogeneity, household structure, and other network dynamics play55

into the periodicity and size of future outbreaks. Our model also includes seasonal forcing of transmission56

parameters, waning immunity from vaccines and prior infection, and variable-rate case importation to capture57

interaction with counter-seasonal populations (i.e., travel between the hemispheres experiencing opposite58

seasons).59

Agent-Based Models are alternative to compartmental models and allow for more flexible and dynamic60

transmission dynamics, including network structure (Ajelli et al. 2010; Bansal, Read, et al. 2010). Roubenoff,61

Feehan, and Mahmud 2023 utilized a compartmental model for analyzing SARS-CoV-2 transmission. While62

these types of models are heavily utilized for analyzing disease transmission, one particular limitation of63

these models with contact data is their requirement for relatively few and well-defined categorizations. ABMs64

are more flexible and contrast with compartmental models by keeping track of the disease status for each65

individual in the simulation, rather than the tally of individuals in a particular compartment. In place of66

differential equations describing flows between compartments, ABMs use highly explicit (either deterministic67

or stochastic) rules governing interaction (Bonabeau 2002; Bruch and Atwell 2015; J. D. Baker et al. 2013; He,68

Ionides, and King 2010). Interactions are governed by some aspect of the simulated population contained69

within an objective function, such that interactions between nodes of certain values are more likely that70

others. As a group, ABMs are free of many of the analytic requirements of compartmental models—especially71

the need for of explicit transition properties between states, only an objective function for optimization—72

earning them the descriptor ‘plug and play’ (He, Ionides, and King 2010). Importantly for our purposes,73

ABMs allow for flexibility in how the population mixes, allowing for contact inequality between simulated74

agents through either a spatial or network component. Network models are a particular type of agent-based75

model that assume an explicit network structure for disease-transmitting contacts. In network models,76

instead of a homogenous or even matrix-structured contact pattern employed by compartmental models,77

disease transmission is simulated as occurring over a graph representing network connections (Bansal, Bryan78
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T Grenfell, and Meyers 2007; Danon et al. 2011; Matt J Keeling and Eames 2005).79

A plethora of agent-based and network simulations of the COVID-19 pandemic have been published and80

tools released. The flexible yet highly specific ways that ABMs can be used to model social interactions is81

ideal for testing network and behavioral interventions for COVID-19. These models include a wide set of82

techniques, including models that explicitly account for how individuals navigate geographic space (Cuevas83

2020) and social networks (Hunter and J. D. Kelleher 2021). Agent-based models have used to estimate84

parameters for the COVID-19 outbreak in France (Hoertel et al. 2020), Ireland (Hunter and J. D. Kelleher85

2021), and Colombia (Gomez et al. 2021). Models can utilize existing contact data, such as Moghadas et al.86

2021 and Sah et al. 2021, who use data from the POLYMOD survey (Mossong et al. 2008) as inputs to an87

ABM to evaluate willingness to vaccinate. Holmdahl et al. 2020 test a series of behavioral interventions in88

nursing homes using a two-cohort ABM (patients and caregivers), finding that testing frequency and isolation89

are the most effective ways to limit the spread of disease. We draw on a number of general ABMs developed90

for COVID-19, including Covasim (Kerr et al. 2021), an aspatial model that combines Erdos-Reyni Poisson91

random networks with SynthPops networks that are generated from empirical contact data, and OpenABM92

(Hinch et al. 2021), that simulates social network interaction through stochastic network simulation at the93

household, occupational, and random connectivity additively.94

Although it remains to be seen, research has suggested that SARS-CoV-2 may exhibit seasonality similarly95

to influenza and other coronaviruses, which exhibit higher incidence in the colder months (Nichols et al.96

2021). Indeed, in the United States, the highest number of cases were observed in winters 2020-2021 and97

2021-2022. The periodicity and severity of future SARS-CoV-2 outbreaks is currently unknown, largely98

since the rate of mutations and long-term vaccine-derived and natural immunity is unknown, but many99

mechansims are theorized (Kronfeld-Schor et al. 2021). Seasonal forcing of respiratory diseases involves a100

consideration of multiple temporal factors relevant to modeling the transmission of SARS-CoV-2 including101

seasonal changes in host behavior and immune function (Altizer et al. 2006; Grassly and Fraser 2006).102

Although modeling studies suggest that climate may mediate the timing and peak incidence of SARS-CoV-2103

outbreaks, susceptible supply driven by population immunity is the primary driver of such dynamics (R. E.104

Baker et al. 2020). Many childhood diseases, namely measles, exhibit seasonal cycles driven by the birth rate105

and increased contact between non-immune children during the school year (Metcalf et al. 2009). In some106

situations, it can be assumed that the pathogen is circulating at a very low level locally in between outbreaks;107

in others, like influenza, seasonal human-animal interactions and case importation between populations in108

opposite hemispheres experiencing counter-cyclical temperature-forced outbreaks may drive timing (Lofgren109

et al. 2007; Lowen and Steel 2014).110

We use a stochastic agent-based network simulation of SARS-CoV-2 transmission parameterized with111

data from the Berkeley Interpersonal Contact Survey (Feehan and Mahmud 2021) and include seasonality,112

annual vaccination, waning immunity, and demography. To our knowledge, this represents the first agent-113

based model for examining COVID-19 endemic outbreak cycles and seasonality. We find that outbreaks are114

likely to occur regularly and that annually-distributed booster doses can be an effective tool to eliminate115

regular outbreaks. Depending on seasonal epidemiology of the pathogen, booster doses are most effective116

when distributed at certain times of year; in the absence of seasonality, booster doses are most effective when117

distributed in the first half of the year, but in a seasonally-forced transmission scenario distributing vaccines118

in early fall is more successful at eliminating major annual outbreaks.119
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2 Methods120

2.1 Data121

Like Roubenoff, Feehan, and Mahmud 2023, we also utilize here contact survey data collected by Feehan122

and Mahmud 2021 as part of the ongoing Berkeley Interdisciplinary Contact Survey (BICS), which captures123

disease-transmitting behavior during the COVID-19 pandemic. The BICS survey, collected in several waves124

beginning in March 2020, is an online survey aimed at capturing the frequency and nature of respondents’125

face-to-face contact over a 24-hour period. Respondents to the BICS survey are recruited through a quota126

sample using an online survey panel provider, Lucid. Respondents are asked to report the total number of127

close, face-to-face contacts they had over the previous 24 hours, and to elaborate on three such contacts in128

detail. Respondents are also asked to report information regarding their demographic information, household129

structure, and other questions regarding their behavior. We utilize responses from Wave 6 (n = 5418, 12130

May - 25 May 2021) of the BICS national (U.S.) survey to capture post vaccination contact patterns.131

2.2 Model: BICS ABM132

Using Hunter, Mac Namee, and J. D. Kelleher 2017’s taxonomy for categorizing Agent Based Models, the133

simulation model used here is disease-specific to COVID-19 and society-specific to the behaviours captured134

from respondents in the BICS sample frame. Behavior is modeled on networks and is without transportation135

and without environment. The BICS ABM simulation population is constructed of individuals (also referred136

to as agents, nodes, or vertices) within households. We simulate interaction and disease spread among137

a population of 1000 households (approx. 3200 individuals) representative of the U.S. according to the138

procedure described below and in the model supplement. Each agent in the simulation directly corresponds139

to a respondent in the BICS or POLYMOD surveys sampled with survey weights to match the distribution140

of age and sex of the US population, and the agents’ demographic and behavioral data is derived from the141

corresponding survey respondent. The simulation includes three types of social contacts: household contacts142

with household members, school contacts for children below the age of 18, and non-household ‘random’143

contacts. As employment data are not available for this wave of the survey, ‘random’ contacts are designed144

to include employment contacts for adults. Household contacts and school contacts are drawn randomly145

at the start of the simulation according to the procedure described below and are maintained throughout146

the simulation; random draws of graphs representing random non-household contacts are taken during each147

daytime time step. In this way, the total network is dynamic as it changes throughout the course of the148

simulation.149

The graph of household contacts is drawn according to the procedure described in the model supplement,150

which is similar to the SynthPops procedure utilized in COVASIM (Kerr et al. 2021; Mistry et al. 2021).151

Briefly, a supplied number of households are created with the following two-step procedure. First, BICS152

survey respondents are repeatedly sampled with replacement and adjustment for survey weights to be heads153

of household. Heads of household are chosen to match the age- and sex-distribution of adults in the United154

States using 2021 American Community Survey estimates (US Census Bureau 2022). Then, households are155

filled by sampling BICS respondents (again, with replacement and adjustment for survey weights) who match156

the household head’s reported household members’ age and gender, until each household is the proper size.157

Respondents under the age of 18 were not ascertained in the BICS survey; instead, they are sampled uniformly158

from the POLYMOD UK survey (Mossong et al. 2008). Throughout the simulation, each node’s behavior159
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is derived from the corresponding BICS survey respondent’s responses; nodes derived from POLYMOD160

respondents are derived from the corresponding fields in the POLYMOD survey1.161

The model progresses in hourly steps through simulation time. During morning and evening hours162

(6pm-8am), agents have contact with all members of their household. During daytime hours, random163

connections occur between members of the simulation population governed by the degree (number of non-164

household contacts) supplied by each survey respondent. A daily contact network is drawn using the Network165

Configuration Model, described below. Each such contact is designated to begin at a random time during166

the day chosen uniformly between 8am and 6pm. Each contact has a randomly chosen duration sampled167

according to the following probabilities: respondents to wave 6 of the BICS survey indicated that 17.1% of168

contacts were less than one minute, 45.2% were between 1 minute and 15 minutes, 18.7% were less than169

one hour, and 18.9% were more than 1 hour. Here, we choose to use the marginal distribution rather170

than individual-level responses due to computational limitations. During the duration of each contact,171

respondents are disconnected from other members of their household and reconnected after the conclusion of172

the random contact. If a node is clinically infectious, they may enter isolation for the duration of symptoms;173

if asymptomatic, they continue to mix as before. Isolation is incorporated by a parameter representing the174

multiplicative reduction in random daily contacts: for example, an isolation parameter of 0.1 means that a175

node normally with 10 daily non-household contacts with would have 1 such contact while in isolation.176

Random contacts are drawn using the Network Configuration Model, which generates a random graph of177

contacts that preserves each node’s degree—here, the number of daily non-household contacts. The network178

configuration model creates random networks using only a provided degree distribution as an input. The179

configuration model works through a two-step procedure (Albert-László Barabási 2021):180

1. First, assign a degree to each node in the network such that the distribution of degrees matches the181

desired distribution. For each node, assign a number of ‘stubs’ or half-edges equal to the degree of that182

node.183

2. Second, randomly and uniformly join stubs to create edges until there are no stubs remaining in the184

network.185

Without alteration, the model may produce self-edges (a node connected to itself), or multi-edges (multiple186

edges connecting a pair of nodes). Sampling ‘simple’ graphs that lack self- or multi-edges is a computationally187

intensive procedure and non-uniform in its graph-generating process. In our application, we continue to188

sample graphs uniformly and remove self-edges, but maintain multi-edges. Realizations of this type are189

likely to have total degree less than would be implied by the supplied degree distribution.190

2.3 Transmission of SARS-CoV-2191

All agents begin susceptible and vaccine roll-out begins at the beginning of simulation time. At a given time192

T0 a supplied number of index cases are chosen randomly to be exposed to SARS-CoV-2. In addition, a193

vector representing the number of cases imported daily is provided as input to the simulation—in the present194

application, one case weekly is imported to ensure that SARS-CoV-2 is constantly circulating at a low level.195

At exposure, each agent is assigned a randomly drawn number of hours spent as exposed and infectious;196

they then proceed to either symptomatic or asymptomatic infection with a supplied probability. Baseline197

1Some fields collected as part of the BICS survey are not available in the POLYMOD data and are imputed. For the present
application, only mask/NPI usage is unavailable, and is taken to be the False.
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Figure 1: Illustration of network structures used during simulation. (A): household contact network rep-
resenting evening and morning contacts, and (B): daytime contact network, consisting of school contacts
and randomly drawn contacts. While school contacts are maintained throughout the simulation (with the
exception of summertime school closures), random contacts are re-drawn hourly.

probability of transmission—before considering vaccine efficacy, contact duration, non-pharmaceutical inter-198

ventions, and asymptomatic reduction in transmisison probability—from an infected node to a susceptible199

node occurs with probability β(t), where t is the simulation’s tth day in the year. The value of β(t) thus200

represents the probabiltiy of transmission during an hour-long contact between one clinically symptomatic201

node and one susceptible, unvaccinated node without mask usage.202

Various factors multiplicatively reduce the probability of transmission. First, transmission is reduced203

proportional to the duration of contact in fractions of an hour; a 15-minute contact is 1/4-th as likely to result204

in transmission as an hour-long contact. As well, transmission from an asymptomatic node to a susceptible205

node occurs at a reduced probability α relative to symptomatic nodes. The susceptible node’s vaccination206

status reduces the probability of transmission by the corresponding vaccine efficacy; the infectious node’s207

vaccination status is not assumed to affect transmission probability. As detailed further below, we allow for208

reinfection after a set amount of time; previous infection offers protection for the recovered node as a reduction209

in the transmission probability. Finally, the model includes a single Non-Pharmaceutical Intervention (NPI),210

designed to capture the combined disease-blocking effectiveness of masks, physical distancing, and other211

preventative measures. If BICS respondents corresponding to both nodes in a random contact report any212

mask usage, the probability of transmission is proportionally reduced by a supplied effectiveness. If NPI213

effectiveness is set to 0, the simulation is effectively in the absence of NPI usage. We assume that NPIs214

are not used among household contacts. At the conclusion of the infectious period, asymptomatic nodes all215

recover; symptomatic nodes die with a supplied age-based probability.216

Unlike compartmental models that often hinge on parameter R0—the basic reproduction ratio, repre-217

senting the average number of secondary cases caused by an index case in a fully susceptible population,218

estimated as the product of the transmission probability, contact rate, and duration of infectiousness—no219

such closed form solution for R0 in an ABM necessarily exists. Although the ABM’s ability to model con-220

tact and transmission through separate processes and objective functions allows for for increased flexibility,221

including time-variable and stochastic transmission probability, heterogeneous contact rates and network222
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Figure 2: Schematic for disease states in the Agent-Based Model used in the present simulation, including
disease status (top) and vaccination status (bottom). Disease states include susceptible (S), exposed/pre-
infectious (E), clinically infectious (Ic), subclinically infectious (Isc), recovered (R), recovered with waned
immunity (RW), and deceased (D). Vaccination states include unvaccinated (V0), first and second primary
doses (V1, V2), waned immunity (VW), and boosted (VBoost).

structure, variable duration of contact, isolation of infectious cases, and uneven NPI and vaccination usage,223

the parameters that govern the overall transmission dynamics are not well-defined in closed form. Instead,224

the R0 must be estimated from the the contact rate or incidence curve generated by the simulation itself225

(Hunter, Namee, and J. Kelleher 2018; Venkatramanan et al. 2018; Hunter and J. D. Kelleher 2021; Hoertel226

et al. 2020). We estimate R0 by observing the hourly contact rates ĉh in the initial 7 days of the simulation,227

using the expression:228

ĉh =
∑
e∈Eh

(Duratione ·NPIe) (1)

which estimates the average hourly number of edges weighted by the duration and effectiveness of non-229

pharmaceutical interventions, if used during each contact. Then, the average contact rate c̄ is taken to be230

the average of the hourly contact rates ĉh. Finally, R0 is taken to be:231

R0 = β̄ · d̄ · c̄

N
· [ρ+ (1− ρ)α] (2)

where parameter β̄ is the average transmission probability over the course of the simulation period, d̄ is the232

average duration of infectiousness, N is the size of the population, and the expression ρ+(1−ρ)α represents233

the reduction in infectiousness among subclinical cases. Since R0 is not necessarily known until the conclusion234

of the simulation, we instead determine the overall transmission rate by varying the transmission probably235

β, then estimating R0 post-facto.236

2.4 Vaccine effectiveness, waned immunity, and reinfection237

An important feature of the model is waning natural and vaccine-derived immunity. Vaccination occurs238

uniformly in the population assuming that all eligible members of the population are equally able to access239

the vaccine (differing from the prioritization procedure taken by Roubenoff, Feehan, and Mahmud 2023), at240

a baseline 70% uptake rate. A set number of vaccine doses are available daily, and are distributed at 8am241
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each day according to optional priority rules. Nodes are eligible for a second dose of the vaccine after 25242

days. After a supplied amount of time, immunity wanes, and nodes are eligible for booster doses; booster243

doses are made available at a set date every year and are distributed with the same rate and priority schedule244

as primary doses. Only nodes with waned immunity are eligible for booster doses. All vaccination statuses245

(1st dose, 2nd dose, waned, and booster) have fixed proportional reductions in transmission probability.246

As well, we include reinfection in the model with a similar procedure. Nodes that have recovered from247

infection remain completely protected from infection for a fixed amount of time; after this, nodes are assigned248

disease status ‘Recovered-Waned’ indicating that they may be re-infected, yet have some protection against249

future infection. Waned immunity is assumed to be the same for clinical and subclinical infections, and the250

protection offered does not depend on the number of previous infections.251

At present, the duration of immunity after infection and vaccination is not known, but is estimated to252

be approximately 6 months of near-complete immunity followed by a steady decrease over time (Centers for253

Disease Control and Prevention 2021). This is implemented in our model with a pair of parameters: first, the254

duration of complete immunity, governing the time after infection or vaccination that an individual experi-255

ences the full effect of vaccine-derived or natural immunity; second, the wanted immunity effectiveness. For256

simplicity, these parameters are held to be the same for both vaccine-derived and post-infectious immunity.257

2.5 Incorporation of Seasonality258

Seasonal environmental changes are known to affect infectious disease transmission in predictable, annually-259

recurrent cycles. Although seasonality is well documented in many infectious diseases, the underlying mech-260

anisms are frequently poorly understood or difficult to tease out from other compounding effects (Fisman261

2012). For respiratory infections transmitted between humans via the airborne pathway such as SARS-CoV-262

2 and influenza, seasonal effects can be grouped in three broad areas: environmentally-driven changes in263

host behavior, such as summertime school closings or increased wintertime indoor gatherings; the pathogen’s264

ability to survive outside of the human host adapted to certain climatic conditions, in turn affecting fitness265

for transmission; and seasonal changes in the host’s immune response, possibly due to changes in temperature266

or sunlight exposure (Altizer et al. 2006; Grassly and Fraser 2006; Dowell 2001; Kronfeld-Schor et al. 2021;267

Buonomo, Chitnis, and d’Onofrio 2018; Held and Paul 2012). Additionally, seasonal migration—especially268

temporary domestic migration with an annual cyclical pattern—may fundamentally change the landscape269

of interactions and population at risk (Buckee, Tatem, and Metcalf 2017).270

Incorporating seasonality into a compartmental model is typically done by adding sinusoidal temporal271

forcing to the transmission parameter β as β(t) = β0(1+β1cos(2πt)), through a binary indicator in the case272

of seasonal school closings as β(t) = β0(1+β1term(t)), or other time-dependent functional form (Grassly and273

Fraser 2006; Matt J. Keeling, Rohani, and Bryan T. Grenfell 2001). Here, the basic reproductive number R0274

represents the average number of secondary cases from a single index case introduced at a random time of the275

year, and is defined as R̂0 = D
∫
β(t)dt where D is the average duration of infection. Forcing functions can276

be easily extended to include age-structured contact (Bolker and B. Grenfell 1993), and time-series methods277

allow for modeling of outbreak dynamics without fitting a functional form to the transmission parameter278

(Metcalf et al. 2009; Finkenstädt and B. T. Grenfell 2000). Extending beyond compartmental models,279

seasonality can be incorporated into modeling of incidence data; Held and Paul (2012) demonstrate how280

seasonal incidence can be decomposed into an endemic and epidemic component with independent temporal281

structure.282

The long-term seasonal patterns and drivers of COVID-19 are still unknown and not necessarily possible283
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to disentangle from control efforts, especially noting non-pharmaceutical interventions like shelter-in-place284

ordinances and mask usage. Weaver et al. 2022 note in a review that COVID-19 may be more stable and more285

transmissible in cooler environments, consistent with influenza2, although both stability in high humidity286

and low humidity have been observed (Morris et al. 2021; Marr et al. 2019; Matson et al. 2020; Dabisch287

et al. 2021). SARS-CoV-2’s preference for colder, drier conditions is consistent with climatic effects observed288

with influenza (Lofgren et al. 2007; Lowen and Steel 2014; Shaman and Kohn 2009). Another review article289

by Mecenas et al. 2020 finds a similar conclusion. While climate may affect SARS-CoV-2’s transmissibility290

directly, the indirect effect of climate’s effect on human behaviors has been demonstrated to be a much291

stronger effect (Susswein, Rest, and Bansal 2023; Damette, Mathonnat, and Goutte 2021; Weaver et al.292

2022). Indeed, research on contact patterns that relate to COVID-19 have are known to be a substantial293

driver of outbreak dynamics (Feehan and Mahmud 2021).294

While many applications of ABMs to infectious disease focus on investigating the interaction-level, net-295

work, or transportation aspects of infectious disease, few have focused directly on seasonality. Arduin et al.296

2017 incorporate seasonal forcing of pneumococcal infections linked to influenza infection using a fixed mul-297

tiplication of the transmission probability during the flu season, similar to the school-term forcing of the298

transmission probability used in compartmental models by Matt J. Keeling, Rohani, and Bryan T. Grenfell299

2001. Similarly, Williams et al. 2022 incorporate seasonal forcing to an ABM used to study influenza by300

adding a multiplicative effect to the transmission parameter related to the temporal distance of each time301

period from the winter solstice, which is ‘intended to account for factors that may influence transmissibility302

across a range of seasons due to variability in factors such as temperature, humidity, and changes in contact303

rates.’ In an application of ABMs to COVID-19, Krivorotko et al. 2022 use an time-series model to decom-304

pose incidence counts into a time series effect, a seasonal effect, and a noise component; the seasonal effect305

and the time-series effects are specified to have a temporally autocorrelative function. ABMs have also been306

used to study seasonality in non-human diseases (Dawson et al. 2018; Oraby et al. 2014).307

We incorporate seasonality in two ways: in the transmission probability β(t) and in the number of308

nonhousehold contacts. We allow for seasonal forcing of the transmission probability to capture how the309

transmissibility of the pathogen may change with weather, modeled as:310

β(t) = β0(1 + β1 ∗ cos(2π/365 ∗ t)) (3)

where β0 represents the average transmission probability and β1 represents the amplitude of seasonal forcing311

(X. Liu et al. 2021; Grassly and Fraser 2006). Second, we include school contacts between children under312

18, which are derived from the POLYMOD survey (Mossong et al. 2008). School contacts are drawn once at313

the start of the simulation and maintained through simulation time. Schoolchildren are taken to have school314

contacts during the same business hours as random contacts between September 1st and June 1st annually;315

children who are clinically infectious with SARS-CoV-2 are kept home from school until they recover.316

2.6 Incorporation of Demography317

Optional in the model is the inclusion of basic demographic vital rates in the form of age-specific fertility318

and mortality data. At baseline, we draw from the CDC’s 2021 estimates (Martin, Hamilton, and Osterman319

2022; Xu et al. 2022) summarized to the age categories used in the model (0-18, 18-25, then in 10 year320

2See Weaver et al’s review of the following studies, among others: Chin et al. 2020; J. Liu et al. 2020; Ma et al. 2021; Matson
et al. 2020; Morris et al. 2021; Nottmeyer and Sera 2021; Raiteux et al. 2021; Riddell et al. 2020; Sera et al. 2021; Smith et al.
2021; Wu et al. 2020

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.29.23294791doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.29.23294791
http://creativecommons.org/licenses/by-nc-nd/4.0/


increments through age 85). The rates used at baseline are shown in figure 12. These rates are used to321

randomly introduce new susceptibles into the population and randomly remove members of the population,322

representing deaths due to non-SARS-CoV-2 causes. Each birth represents a new, fully susceptible and323

unvaccinated child in the population in the household of the birthing parent; they are assumed to have the324

number of non-household and school contacts equal to the population average. Demography is incorporated325

into the model once monthly as a Bernoulli random draw for each member of the population with rate equal326

to the supplied rate, divided by 12 (for males, fertility rate is 0).327

2.7 Simulation Procedure and Parameters328

We identify a set of baseline transmission parameters in line with those used by Roubenoff, Feehan, and329

Mahmud 2023, adapted to fit the parametric needs of our Agent Based Model. For all simulations, the number330

of households is fixed at 1, 000, producing approximately 3, 200 individuals at the start of the simulation.331

Simulations are run for 10 years and are seeded with 5 index cases at time t = 0, intended to mimic the332

wintertime outbreak of early January 2021. During the course of the simulation, one case is imported weekly333

to ensure that all SARS-CoV-2 is constantly circulating at a low level. To account for a wide range of334

transmission scenarios, we consider three levels of transmissibility: low, with β0 = 0.01 (implying R0 ≈ 1.3);335

moderate, with β0 = 0.025 (R0 ≈ 3.4); and high, with β0 = 0.05 (R0 ≈ 6.5). Baseline simulations are without336

seasonal forcing of transmission or contact but with school contacts included during school-year weekdays337

(Monday-Friday, 9am-3pm). Seasonal forcing of both transmission and contact parameters is introduced338

with low (10%), moderate (25%), or extreme (50%) seasonal amplitude as described above. To introduce339

stochasticity into the model, each infected case in the simulation contains a randomly drawn duration of340

latent period of between 48 and 96 hours after transmission; this is followed by a randomly drawn infectious341

period of between 72 and 120 hours. These distributions are held constant across all simulations. We assume342

that each case has a 20% chance of being subclinical—fewer than used by Roubenoff, Feehan, and Mahmud343

2023 (derived from Johansson et al. 2021), but in line with recent meta-review estimates by Buitrago-Garcia344

et al. 2022. That same analysis identified seven studies comparing the secondary attack rate of asymptomatic345

cases and symptomatic cases with an average ratio of 32%. At baseline we assume that symptomatic cases346

have all of their normal random contacts and do not isolate, for a ‘business as usual’ scenario; we test the347

effect of isolation in sensitivity analysis. However, children are assumed to always be kept at home when ill.348

NPI effectiveness is set to zero, equivalent to the absence of NPIs or masks, but is varied during sensitivity349

analysis.350

Vaccine effectiveness is taken to be 80% after one, dose, 90% after two doses, and 80% after three doses,351

consistent with estimates published in 2021 and 2022 (Tenforde 2021,Thompson 2021; Thompson 2022) and352

values used by Roubenoff, Feehan, and Mahmud 2023. Unclear at the present moment is the duration353

of immunity after infection and vaccination and the effectiveness of waned immunity; a 2021 CDC brief354

(updated 2022) estimates 6 months of nearly complete immunity that diminishes over time (Centers for355

Disease Control and Prevention 2021). We take 6 months to be the baseline assumption but vary this356

duration in monthly increments from 6 months to two years in a sensitivity test. We assume a pessimistic357

25% efficacy of waned natural- and vaccine-derived immunity.358

All main simulations are run for 10 years in replicates of 10, and we report a number of summary values359

for all simulations. These include the total number of clinical and subclinical cases, deaths due to SARS-360

CoV-2, and the timing and size of all outbreaks after year 5. All estimates are standardized to the population361

size to account for populations that vary randomly in size. Outbreaks are found using the Python library362
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scipy’s find peaks function on the daily sequence of clinical cases, for a minimum incidence threshold of363

5% of the population infected over a 30-day window.364

3 Results365

To elucidate future outbreaks of SARS-CoV-2, we simulate outbreaks at various levels of transmissibility,366

and test the distribution of annual booster doses in the absence of and presence of seasonality. We find that367

the optimal date of booster dose distribution for reducing the number of clinical infections is different for368

the simulations with and without seasonality; in the absence of seasonality booster doses in the first half of369

the year are most effective at eliminating a large annual outbreak, but with seasonality booster doses are370

most effective when distributed in early fall.371

Infectiousness of COVID-19 and the duration of immunity after infection and vaccination have a strong372

effect on the dynamics of outbreaks. In a moderate transmission scenario, where the base probability of373

transmission for an hour-long contact the absence of NPIs or vaccination β0 = 0.025 (corresponding to374

an R0 of approximately 3.2), an average of 6.16 clinical infections occur per capita over a 10-year period.375

Over this period, an average of 33.6 outbreaks occur, each infecting an average of 17.7% of the population.376

However, when β0 is raised to 0.05 (corresponding R0 ≈ 6.5), outbreaks are fewer (an average of 16.0 over377

the 10-year period) but more severe, with an average outbreak size of 59.63% and about 9.75 infections378

per capita—nearly one per person per year. These simulations are summarized in figure 3 and trajectories379

are shown in figure 4. We observe this dynamic throughout many simulations: when SARS-CoV-2 is more380

transmissible or less mitigated, outbreaks are fewer but more severe. Mortality in the high-transmission381

scenario is higher, proportional to the number of clinical infections—2.63% on average compared to 1.67%382

in the moderate transmission scenario and 1.1% in the low-transmission scenario. These simulations suggest383

that the public health planning and response for future variants may differ based on their epidemiology. More384

transmissible variants are likely to have fewer, larger outbreaks that may overwhelm the healthcare system385

capacity, but show few cases outside of the season; less transmissible variants may require a year-round386

response, but with less severe outbreaks.387

Distributing annual booster shots consistently lowers the rates of SARS-CoV-2 for all simulations, but388

may independently induce a seasonal pattern in outbreaks. The ability of booster doses to successfully limit389

SARS-CoV-2 outbreaks is dependent on the timing of their distribution and whether or not seasonal forcing390

of transmission is included in the model. In the absence of seasonal forcing of transmission and contact391

(figures 5 and 6), distributing booster doses earlier in the year is most effective at reducing the size of392

outbreaks: assuming a 75% update of vaccinations distributed annually between January and May, about393

1.68 − 2.35 clinical infections occur per capita (average outbreak size ranging from 4.25% to 6.13% of the394

population); when distributed after July 1st, this rises to 4.34 − 4.76 clinical infections per capita (average395

outbreak size ranging from 13.21% to 15.61%). In a high-vaccine uptake scenario (90% uptake, shown in396

the model supplement), the overall rates of SARS-CoV-2 are lower only when vaccines are distributed in the397

first half of the year; when vaccines distributed in the latter half of the year, the total cases and severity of398

outbreaks is comparable to the regular-uptake scenario. Outbreaks are observed to generally occur around 6399

months—which is also the duration of full immunity after vaccination—after the date that booster doses are400

made available, with the strongest seasonal patterns observed with June-September distribution inducing401

a strong wintertime and October - December inducing an early spring outbreak. Indeed, as observed in402

figure 6, the peak out the outbreak appears to be ‘shifted’ approximately 6 months after the date of booster403
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Figure 3: Summary of SARS-CoV-2 clinical infections, deaths, number of outbreaks, and average outbreak
size for different values of β0, the average baseline transmission probability, in the absence of seasonal
forcing, isolation, or vaccine distribution. Simulations are run for 10 years in replicates of 10. Approximate
corresponding values of R0 are: β0 = 0.01, R0 ≈ 1.3; β0 = 0.025, R0 ≈ 3.4; β0 = 0.05, R0 ≈ 6.5.
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Figure 4: 5-year trajectory of SARS-CoV-2 clinical infections for different values of β0, the average baseline
transmission probability, averaged across 10 simulations each. When β0 is high, there are generally 1-2 large
outbreaks per year; when lower, outbreaks are smaller and more frequent. Approximate corresponding values
of R0 are: β0 = 0.01, R0 ≈ 1.3; β0 = 0.025, R0 ≈ 3.4; β0 = 0.05, R0 ≈ 6.5.

dose distribution, the duration of of full immunity after vaccination. This phenomenon—whereby January-404

May boosters nearly eliminate annual outbreaks in the steady state but later-year boosters fail to do so,405

albeit shift the outbreak timing—is likely driven by the initial outbreak (set to occur in January of 2021 to406

capture the large winter outbreak in the United States), which establishes the clock for a sufficient number407

of individuals with waned immunity to appear for an outbreak to occur predictably after. These simulations408

indicate that, in the absence of seasonality, the timing of booster dose distribution may have the power to409

govern the timing of the primary annual outbreak.410

We also tested the distribution of vaccines in the presence of seasonal forcing of the transmission param-411

eters (β1 = 0.5), shown in figure 7 and 8. Unlike when distributing booster doses in the absence of seasonal412

forcing, in which the timing of booster dose distribution shifts the timing of the main outbreak, in these413

simulations with seasonal forcing a substantial wintertime outbreak occurs at nearly the same time every414

year. However, the size of this outbreak, as well as the presence of secondary outbreaks throughout the415

year, depends on the timing of booster doses. When boosters are distributed in the first half of the year—416

January 1st through May 1st—a moderate-sized fall outbreak occurs. When boosters are distributed by July417

1st, this fall outbreak nearly doubles in size; a September 1st distribution day results in a less predictable418

situation, with multiple (2-3) smaller outbreaks throughout the year. However, distributing doses too late419

(November 1st) results in a large summertime outbreak, despite the relatively lowered transmission rate420

during the summer months. These dynamics are similar when seasonal forcing is present in the transmission421

parameters and the contact rate, shown in the supplementary material. Overall, simulations where vaccines422

are distributed between January and June resulted in 2.76 − 3.36 infections per capita—1-1.5 fewer than423

when vaccines are distributed in the highest months of July or December (4.82, 5.19 respectively). However,424

distributing booster doses in September or October results in fewer infections, comparable with simulations425
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Figure 5: Summary of simulations by day of booster dose distribution, varied as the first of each month, in
the absence of seasonal forcing of the transmission parameter β. Simulations are run for 10 years in replicates
of 10.
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Figure 6: 5-year trajectory of simulations by day of booster dose distribution, in the absence of seasonal
forcing, for selected distribution days: Jan 1st (day 1), May 1st (day 121), July 1st (day 182), Sept 1st
(day 244), and Nov 1st (day 305), averaged across 10 replications. When doses are distributed earlier in the
year—Jan 1st-May 1st—the major outbreaks are largely averted, but persist when doses are distributed too
late in the year.

when vaccines distributed earlier in the year, and smaller outbreaks (8.69%−9.59% of the population infected426

on average per outbreak).427

As a sensitivity test, we varied the duration of immunity after infection and vaccination, and find that428

this parameter has a substantial effect on the timing and size of outbreaks. As this parameter governs the429

rate and which susceptibles are effectively re-introduced into the population, our results are onsistent with430

M. G. Baker, Peckham, and Seixas 2020. Recurrent outbreaks of SARS-CoV-2 are driven by the seasonality431

included in the model but also by the effect of waning natural and vaccine-derived immunity, such that even432

models without seasonal forcing and booster dose distribution may exhibit predictable outbreaks (figure 9).433

Rather than these outbreaks occurring at specific times throughout the year, they occur a certain amount434

of time after the previous outbreak—generally equal to the duration of complete immunity. At 6 month435

immunity, generally two outbreaks occur per year, spaced slightly more than 6 months apart, with periodic436

secondary outbreaks between; at one year of full immunity, large outbreaks occur slightly more than one437

year apart, without secondary outbreaks. These simulations indicate that preparations for outbreaks should438

include evaluation of the previous major outbreak.439

We also explored the possibility of isolation as a means to control SARS-CoV-2, despite it being unlikely440

to be used as a general control strategy in the future. Isolation remains an effective way to limit the spread441

of SARS-CoV-2 in the steady state, however only the higher degrees of isolation— reducing non-household442

contacts among clinically infectious individuals to less than 50% of their normal amounts as compared to a443

‘business as usual’ scenario— has a substantial effect on transmission dynamics (figure 10). At 50% isolation,444

an average of 2.72 clinical infections occur per capita, down from 4.84 when clinically infectious nodes have445

75% of their normal random contacts and 6.22 in the complete absence of isolation. With 50% isolation, the446
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Figure 7: Summary of simulations by day of booster dose distribution, varied as the first of each month,
in the presence of seasonal forcing of the transmission parameter β. Simulations are run for 10 years in
replicates of 10.
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Figure 8: 5-year trajectory of simulations by day of booster dose distribution, for selected distribution days:
Jan 1st (day 1), May 1st (day 121), July 1st (day 182), Sept 1st (day 244), and Nov 1st (day 305), in the
presence of seasonal forcing of the transmission parameter β, averaged across 10 replications.

outbreak size drops dramatically to 6.05% of the population infected during an average of 40.8 outbreaks,447

down from from 18.7% of population infected in an average of 32.2 outbreaks in the absence of isolation.448

More extreme isolation reduces the severity of outbreaks even further: at 25% of normal contacts, clinical449

infections average one per capita; with perfect isolation, clinical infections are less than 0.5 per capita.450

4 Discussion451

Across all simulations, we observed frequent and predictable SARS-CoV-2 outbreaks over a 10-year period,452

even with the annual distribution of booster doses as the primary disease-averting intervention. Depend-453

ing on the epidemiology of the pathogen—namely, should SARS-CoV-2 exhibit seasonality in transmission454

probability and contact—outbreaks may occur at predictable times of the year, and distribution of booster455

doses may be able to mitigate the worst of seasonal outbreaks. Our results are consistent with R. E. Baker456

et al. 2020, who find that outbreak cycles are primarily determined by the levels of susceptibility in the457

population, although seasonality is an important moderator in outbreak dynamics. Different vaccination458

campaigns may be needed in areas that exhibit stronger transmission seasonality. We find that distributing459

booster doses in the first half of the year—January through May—may be an effective strategy at limiting460

recurrent outbreaks depending on the seasonality exhibited by the pathogen. We find that in simulations461

without seasonal forcing, distributing booster doses in the first half of the year is most effective at limiting462

outbreaks; however, with the inclusion of seasonal forcing of transmission and contact, distributing booster463

doses in September or October may limit the average outbreak size the most. In these simulations, distribut-464

ing booster doses in the late fall ‘shifts’ the outbreak to the summer, when transmissibility is lower. Since465

influenza vaccines are distributed in the fall, including booster doses for SARS-CoV-2 at the same time may466

be easiest in implementation, but less successful than Springtime distribution in limiting outbreaks should467
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Figure 9: Trajectory of SARS-CoV-2 clinical infections with varied duration of complete immunity after
infection and vaccination, illustrating how outbreak timing can be affected by immunity. Top: full immunity
lasting for 180 days (6 months) and 270 days (9 months); bottom: full immunity lasting for 360 days (12
months) and 540 days (18 months). Averaged across 10 replications.
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Figure 10: Summary of SARS-CoV-2 clinical infections, deaths, number of outbreaks, and average outbreak
size for different levels of isolation, in the absence of seasonal forcing or vaccine distribution. Isolation
multiplier is a factor used to scale a clinically infectious node’s random, non-household contacts; 1.0 indicates
business as usual and 0 indicates perfect isolation.
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SARS-CoV-2 fail to exhibit transmission seasonality.468

In addition to illustrating how vaccination interventions can avert the burden of illness and death due to469

SARS-CoV-2, our simulations further understanding of how to prepare for future SARS-CoV-2 outbreaks.470

Although distributing booster doses in early fall—like annual vaccinations for influenza—avoids a large471

wintertime outbreak in a seasonally forced environment, multiple smaller outbreaks may occur throughout472

the year. This may be preferable to avoid exceeding the treatment capacity of the health system. However,473

this strategy may not be effective in a less seasonally-variable climate, where booster dose timing merely474

shifts the main outbreak to later in the year after immunity wanes. Overall, we generally observe variance475

in mortality proportional to the number of clinical infections that occur in the simulations, indicating both476

that the most effective strategies for limiting clinical infections also limit deaths. Although we focus on the477

number of infections as the primary outcome, reducing the number of deaths due to SARS-CoV-2 may be478

possible with the interventional strategies outlined here.479

While agent-based models have been used in a variety of applications for COVID-19, ours represents one480

of the first to examine long-term dynamics using real population contact data. Our results hint at a rather481

bleak outlook for the future of SARS-CoV-2: that outbreaks are extremely likely to continue given that482

natural and vaccine-derived immunity wanes over time. However, annual booster doses—especially when483

timed properly—and isolation of infectious cases may be effective control strategies. The investigation above484

tells us that outbreaks can be expected to occur more frequently than annually, and the epidemiology of485

the pathogen—namely, the base transmission probability and the duration of immunity after infection and486

vaccination— determines the frequency and severity of outbreaks more than vaccination timing and within a487

reasonable range of effectiveness. As our approach to SARS-CoV-2 shifts from eradication to management,488

the strategies presented here show how we can time the distribution of doses to minimize strain on the489

healthcare system and limit chronic complications from SARS-CoV-2 infections.490

Our model has a number of shortcomings that limit its generalizability. First, we are limited by comput-491

ing resources to a population of 1000 households (approximately 3, 200 individuals). During development,492

we found that using too few households resulted in simulations that were highly unstable; with a larger493

population, simulation results were more consistent between runs but took much longer to complete. As494

a result, we chose the number of households to balance numerical stability while maintaining a reasonable495

run time of approximately 4 minutes per simulation. Larger populations may exhibit different dynamics as496

the spread of infection may take longer; as such, it is not known presently if this chosen population size is497

representative of a larger population or is limited in generalizability to smaller communities. As well, like498

Roubenoff, Feehan, and Mahmud (2023), we borrow contact patterns for the youngest age group from the499

POLYMOD UK survey (Mossong et al. 2008), which may not be representative of that age group in the US500

during the COVID-19 pandemic. However, since our application here is in consideration of the long-term501

patterns of SARS-CoV-2,’ we believe that these contacts represent a return to ‘business as usual’ for school502

children.503

A key feature of our model is in the random network generation, that produces daily draws of random504

contacts according to the network configuration model parameterized with degree and duration from the505

BICS survey. Like any random network generation, the network structure of contacts produced by this506

model may affect transmission dynamics. Future work should draw inspiration from the COVASIM agent507

based model (Kerr et al. 2021), which allows for comparison of outbreak dynamics between simulations508

with Poisson random networks, Hybrid networks, or SynthPops networks depending on the needs of the509

simulation and data available. As well, we do not include any assortative mixing as emphasized by the510
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model used by Roubenoff, Feehan, and Mahmud 2023 or serial (repeat) contacts, instead choosing a network511

generation function that maintains the degree of each node. Employment contacts, like school contacts for512

children under the age of 18, provide a consistent set of individuals having contact most days; inclusion of513

these such contacts may affect outbreak in unpredictable ways. Future development of the model should514

include associativity by age and employment status; however, doing so was outside of the scope of the present515

analysis.516

Implementation Overview517

The BICS ABM model is implemented in the C++ language and with use of the iGraph-C library (G. Csárdi518

and Nepusz, T. 2006; Gábor Csárdi et al. 2023), and a Python 3.8 API. The core C++ implementation was519

chosen over other languages, like Python or R, to maximize speed. Full implementation details are given in520

the supplementary material. Each simulation of 1000 households for 10 years completes in approximately521

4 minutes on an Apple MacBook Air M1, and the entire suite of simulations completes in approximately 8522

hours. Replication code is publicly available at https://github.com/eroubenoff/BICS_ABM.523
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5 Model Supplement524

The model described here is a stochastic Agent-Based Network Simulation for COVID-19 transmission that525

utilizes data collected as part of the Berkeley Interpersonal Contact Survey to simulation population structure526

and contact networks. The core algorithm is written in C++, compiled using Apple Clang++17, and utilizes527

CMake 3.16 and utilizes the igraph 10.4 library (G. Csárdi and Nepusz, T. 2006; Gábor Csárdi et al.528

2023), and includes a Python 3.8 user API. The BICS ABM C++ library is compiled to a dynamic library529

for linkage to the Python API and can be used with an external C++ program.530

The BICS ABM C++ library hinges on two input data structures and their Python equivalents: Params,531

a C-struct that contains the input parameters, documented in table 1; and an array of the simulation popu-532

lation. The input population requires a strict format: each row is an individual and each column represents533

individual-level data passed to the simulation, flattened to one dimensional array of floats in column-major534

(Fortran-style) order. Currently, 8 fields are required for each simulated node: the node’s household id; age,535

represented as a categorical index 0-8; gender, where 0 corresponds to male and 1 corresponds to female;536

number of non-household contacts; number of school contacts, which is taken to be zero for adults; number537

of times left home (unused presently, but maintained for legacy purposes); vaccine priority (see 5.1.5); and a538

boolean indicating if the node uses NPIs or not. Parameters must be supplied indicating the dimensionality539

of the dataset. The simulation returns a trajectory, a C-struct containing an hourly time-series of all540

disease states.541

The Python API contains a class BICS ABM, which is a wrapper around all of the above utilizing the542

ctypes library for cross-language functionality. Parameters can be passed to the model through the Python543

API identically as to the C++ library and we recommend interacting with the simulation through the Python544

API. The class constructor for BICS ABM takes any of the arguments to Params, runs the simulation, and545

saves as fields the components of the resultant trajectory as a numpy.ndarray; as such, the trajectory of546

clinical cases can be accessed as BICS ABM.Cc. The population can be accessed through BICS ABM. pop.547

Parameter Name Description Default Value

N HH Number of simulation households 1000

WAVE (Python only) BICS survey wave used to derive

simulation population

6

GAMMA MIN,MAX Bounds for uniformly-sampled duration of latent

period

2,4

SIGMA MIN,MAX Bounds for uniformly-sampled duration of infec-

tious period

4,6

BETA VEC Array of length 365 indicating the daily baseline

probability of infection

[0.025, ... 0.025]

BETA0, BETA1 (Python only) Average and amplitude of sinu-

soidal seasonal forcing of the baseline transmission

probability; transformed into BETA VEC

0.025, 0

CONTACT MULT VEC Array of length 365 indicating daily multiplier for

number of random contacts

[1, ... ,1]

22

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.29.23294791doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.29.23294791
http://creativecommons.org/licenses/by-nc-nd/4.0/


C1 (Python only) Amplitude of sinusoidal seasonal

forcing of contact multiplier; transformed into

CONTACT MULT VEC

0

SCHOOL CONTACTS Whether to include school contacts for children

during weekdays during the school year

True

MU VEC Vector of length 9 indicating the age-specific

SARS-CoV-2 mortality for each of the 9 age cate-

gories

See main text

INDEX CASES Number of index cases 5

IMPORT CASES VEC Array of length 365 indicating the number of im-

ported cases each day of the year; only begins after

T0

One Weekly

SEED Random seed None

N VAX DAILY Number of vaccines distributed daily 100

VE1,2,BOOST Efficacy of vaccines after first, second, and booster

doses

0.8, 0.9, 0.8

VEW Efficacy of waned immunity for both vaccines and

infectious-derived immunity

0.5

ISOLATION MULTIPLIER Scaling factor for random contacts by clinically

infectious nodes; 0 is full isolation and 1 is business

as usual

0.5

T REINFECTION Duration (in hours) of full vaccine and infectious-

derived immunity before waning

24*180

T0 Date of appearance of index cases 0

ALPHA Relative infectiousness of subclinical cases 0.32

RHO Proportion of subclinical cases 0.20

MAX DAYS Duration of simulation, in days 10 * 365

BOOSTER DAY Day of year that booster doses are made available 244

FERTILITY VEC Array of length 9 indicating the age-category spe-

cific fertility rate for females, adjusted for age

group bin width

See main text

Mortality VEC Array of length 9 indicating the age-category spe-

cific mortality rate, adjusted for age group bin

width

See main text

Table 1: Parameters used in the ABM model

5.1 Model Pseudocode548

Psuedocode for the model is given below:549

1. In Python API: Establish the following parameters governing the population structure: number of550

households nhh, survey wave, and vaccine priority. Establish all other transmission parameters and551

store them in an object params.552
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2. Generate nhh households from the corresponding survey wave using the procedure described below.553

Assign each household a unique household identifier.554

(a) First, the distribution of adult ages and sex is derived from ACS data, and a set of N HH555

households are sampled from this distribution.556

(b) A ‘head’ of household is randomly chosen from the BICS survey data. A respondent is eligible557

to be head of household hi if they are the corresponding age and sex for the sampled household558

head. Eligible household heads are chosen with replacement and with probability adjusted for559

survey weights.560

(c) Finally, households are filled by sampling (with replacement and adjustment for survey weights)561

from the set of BICS respondents who mach each of hi’s reported household members’ age,562

gender, and household size. Children under 18 are not ascertained in the survey; children are563

instead sampled from the POLYMOD survey. The max size of a household is 6 as as respondents564

were only asked to report 6 of their household members.565

3. Assign vaccine priority to all nodes in the network based off of the rules provided as input, as elaborated566

in section 5.1.5.567

4. Create and pass the params and population object to the C++ core algorithm.568

5. In C++ core: Determine the household contact network assuming that all nodes have contact with all569

members of their household. Randomly draw a school contact network for children under the age of570

18.571

6. Repeat the following procedure representing one ‘day’ of simulation time, where each day contains572

24 ‘hours’ of simulation time, until either no nodes are exposed or infectious OR the simulation has573

occurred for a supplied maximum number of days.574

(a) If hour == 0 (midnight) and an index case is supplied to appear on the current simulation day,575

transition one node at random into ‘Exposed’ status.576

(b) Each hour between midnight and 8am: assume that all nodes have contact with all members of577

their household. Execute transmission and decrement procedures for all nodes.578

(c) 8am: Distribute vaccine doses to n vax nodes awaiting any dose of the vaccine.579

(d) 8am: generate a random graph of daily contacts using the procedure outlined in section 5.1.3;580

assign a random duration and start time for all contacts.581

(e) Each hour between 8am and 6pm: connect all random contacts; disconnect each node having a582

random contact from their household nodes; transmit; and decrement. Reconnect nodes after583

termination of random contact.584

(f) Each hour between 6pm and midnight: transmit within households assuming that all nodes have585

contact with all members of their household. Execute transmit and decrement procedures.586

7. At the conclusion of the simulation, return trajectories of each disease and vaccination status.587
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5.1.1 Update Handlers588

The C++ program contains a centralized method for handling and dispatching changes to nodes, edges,589

and the graph itself. Classes exist for five types of changes can be executed: UpdateGraphAttribute,590

CreateEdge, DeleteEdge, UpdateEdgeAttribute, and UpdateVertexAttribute. Vertices cannot be created591

or destroyed using the update handler. All updates are stored in wrapper class UpdateList, which contains an592

overloaded method UpdateList.add update() to add an update of each type. Updates are then dispatched593

with the method UpdateList.add updates to graph(igraph t*), which takes a reference to the graph594

object as an argument to perform the updates.595

The centralized update handlers were developed to streamline the attribute interface. Although the596

igraph API contains methods for updating individual node or edge attributes, it is more computationally597

efficient to pull all of the attributes, make all changes, then push them back to the graph. Since the igraph598

API involves many dynamically-allocated objects, this meant keeping track of many pointers, being sure to599

free all used vectors of attributes. With a project of this size, adding a centralized way of dispatching updates600

helped with debugging many issues with memory management, at the cost of a slight function overhead.601

As well, the object-oriented interface allows for saving of all, say, household edges in a single object to be602

connected and disconnected as needed.603

5.1.2 Decrement procedure604

The decrement procedure is among the most important function in the C++ core for tracking the progression605

of nodes through simulation time. Each ‘event’ that can occur to a node (infection, development of clinical606

or subclinical infectiousness, recovery, waning immunity, becoming vaccinated, etc) is accompanied by a607

duration of the event. The decrement procedure decrements the time remaining at each status, and for608

some events (for example, recovery from infectiousness) will automatically trigger a status change; for other609

events (like eligibility for vaccination), eligible nodes are placed in a queue for the next event to occur.610

5.1.3 Random contacts611

Random contacts are drawn for the daytime hours, 8am-6pm, using the network configuration model (as612

described in the main text; Albert-László Barabási 2021). First, the number of daily-nonhousehold contacts613

is supplied for each simulation node; this number is first multiplied by the isolation multiplier if the node is614

clinically infectious and contact multiplier if included in the model, then taken to be a random draw from a615

Poisson distribution with rate parameter equal to the product of all three terms. This is done to allow for616

minor stochasticity in the model. Each node is assigned a number of stubs equal to this Poisson random617

draw; if the total number of stubs subs to an odd number, one stub is randomly deleted until the sum is an618

even number. Should this sum be zero stubs then the procedure aborts. The configuration model is drawn619

using the igraph degree sequence game from the igraph library; the graph is then simplified to remove620

self-edges but not multi-edges.621

5.1.4 Non-Pharmaceutical Interventions622

We include a single generic Non-Pharmaceutical Intervention (NPI) intended to capture the combined623

transmission-preventing power of mask usage, gloves, and physical distancing. In wave 6, about 60% BICS624

respondents reported the usage of any of these possible NPIs in any of their reported contacts; any simula-625

tion nodes representing these respondents are given an NPI status of True. During the daytime simulation626
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Figure 11: Albert-László Barabási 2021’s diagram representing realizations of the Network Configuration
Model showing multiple ways of connecting the four nodes in panel (a) with corresponding degree k. (b): no
self- or multi-edges; (c): allowing self-edges but not multi-edges; (d): allowing multi-edges, but not self-edges.
Our application would allow for configuration (d) but not (c).

procedure, if two non-household nodes are connected who both have an NPI status of True, then their627

transmission probability is lowered by a supplied parameter representing the strength of these NPIs (see628

below).629

5.1.5 Vaccine Distribution630

Nodes in the population are assigned a discrete priority level for vaccination before the simulation begins.631

A set number of vaccines are distributed daily among nodes with the highest priority level until no nodes632

in that priority level remain; remaining doses are distributed among nodes with the next highest priority633

level, repeating until the day’s number of vaccines are exhausted. A priority level of −1 indicates that the634

node declines or is ineligible for vaccination. Nodes are eligible to receive the second dose of the vaccine 25635

days after they received first dose. After a period of time, vaccine efficacy is assumed to wane; at this point,636

nodes are eligible to receive an additional booster dose.637
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5.1.6 Demographic Rates638

Fertility and all-cause mortality are incorporated in the simulation according to published age-specific rates,639

aggregated for each age group in the simulation:640

Figure 12: Baseline demographic vital rates used in the simulation.
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5.2 Supplementary Figures641

5.2.1 Booster Dose Distribution Day, High Uptake642

Figure 13: Summary of simulations by day of booster dose distribution, varied as the first of each month, in
the absence of seasonal forcing of the transmission parameter β, with 90% vaccine uptake.

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.29.23294791doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.29.23294791
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 14: Trajectory of simulations by day of booster dose distribution, without seasonal forcing, for selected
distribution days: Jan 1st (day 1), May 1st (day 121), July 1st (day 182), Sept 1st (day 244), and Nov 1st
(day 305), with 90% uptake.
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5.2.2 Seasonality in contact rates643

Figure 15: Summary of simulations at selected levels of c1, the amplitude of seasonal forcing of the contact
parameter.
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Figure 16: Trajectories at selected levels of c1, the amplitude of seasonal forcing of the contact parameter.
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5.2.3 Isolation of infectious cases644

Figure 17: Outbreak seasonality at selected levels of isolation
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Figure 18: Summary of simulations at selected levels of β0 with 90% isolation of clinically infectious cases
(corresponding to an isolation multiplier of 10%).
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Finkenstädt, B. F. and B. T. Grenfell (2000). “Time series modelling of childhood diseases: a dynamical753

systems approach”. en. In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 49.2.754

eprint: https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9876.00187, pp. 187–205. issn: 1467-755

9876. doi: 10.1111/1467-9876.00187. url: https://rss.onlinelibrary.wiley.com/doi/abs/10.756

1111/1467-9876.00187 (visited on 06/15/2020).757

Fisman, D. (Oct. 2012). “Seasonality of viral infections: mechanisms and unknowns”. en. In: Clinical Micro-758

biology and Infection 18.10, pp. 946–954. issn: 1198-743X. doi: 10.1111/j.1469-0691.2012.03968.x.759

url: https://www.sciencedirect.com/science/article/pii/S1198743X14610910 (visited on760

06/28/2023).761

Gomez, Jonatan et al. (Feb. 2021). “INFEKTA—An agent-based model for transmission of infectious diseases:762
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