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Abstract5

Chagas Disease is a parasitic infection caused by the T. Cruzi parasite endemic to Central and South6

America and transmitted through contact with Triatomine insects, commonly known as “kissing bugs.”7

Although the symptoms of Acute Chagas Disease (ACD) are nonspecific, untreated chronic infection can8

lead to heart disease, enlarged esophagus and colon, and stroke. Chagas disease has become increasingly9

rare owing to a series of public health interventions, including insect eradication campaigns in Brazil10

through the 1980’s that considerably reduced the number of new acute cases. However, hundreds of new11

acute cases still are diagnosed annually, primarily in the states of Pará, Amapá, and Acre. Moreover,12

the population in areas of high Chagas endemicity are changing: many areas are growing and becoming13

increasingly urban, whereas others are decreasing in population. We estimate the Incidence Rate (IR) for14

Acute Chagas disease over the period 2001-2019 in Brazil at the municipal level and investigate the vari-15

ation of these rates with climatic factors. These estimates are used to project forward incidence of Acute16

Chagas Disease over the following decade 2020-2029. Modeling ACD presents numerous methodological17

challenges since incidence is rare, with extreme overdispersion of zero-case counts, and vectors exhibit18

a highly spatially- and temporally-clustered pattern. We use a spatially- and temporally-autoregressive19

small-area smoothing models to estimate the true latent risk in developing Acute Chagas Disease. The20

Bayesian model presented here involves spatio-temporal smoothing via a Zero-Inflated (Lambert 1992),21

Knorr-Held (2000)-Type spatio-temporal model with a BYM2 (Morris, 2019) spatial convolution to pre-22

dict smoothed incidence rates of Chagas disease. As well, we include estimates of Brazil’s growing23

population and projected bioclimate to evaluate how climate and population change may affect ACD24

rates. We estimate that cases will continue to increase in the absence of control efforts, primarily driven25

by a growing peri-urban population in regions of Chagas endemicity.26

1 Introduction27

Chagas disease is a vector-borne parasitic infection in humans caused by the T. Cruzi parasite, and is28

transmitted to humans primarily through contact with infected Triatomine insects commonly known as29

“kissing bugs” (WHO Expert Committee on the Control of Chagas Disease 2002; Pérez-Molina and Molina30

2018; Canals et al. 2017). Transmission of T. Cruzi to humans can occur following bites from infected31

kissing bugs or contact with their feces; human-human transmission can occur via blood transfusion and32
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congenitally from mothers to children via the vertical pathway. Over 80% of transmission occurs from human-33

vector contact, with congenital transmission responsible for nearly all other new infections; screening of blood34

donation has nearly eliminated all transmission from transfusions (World Health Organization 2015). Acute35

symptoms of Chagas disease include fever, inflammation of the infection site, eyelid edema, and swollen lymph36

nodes and tonsils. Acute symptoms resolve spontaneously over 4-8 weeks and treatment during the acute37

phase with antiparasitic medication is highly effective at curing infection (Bern et al. 2007). However, since38

acute symptoms are generally nonspecific and the burden of infection affects many communities lacking39

affordable access to high-quality healthcare, many acute cases go undiagnosed and untreated. Untreated40

chronic Chagas infection can cause cardiomypoathy, megacolon, stroke, and megaesophagus in 30-40% of41

patients in the 10-30 years following acute infection (Pérez-Molina and Molina 2018; Sosa-Estani and Segura42

2015). Although Chagas is fairly rare—acute infection incidence is on the order of a few hundred infections43

annually in Brazil for a population of around 200 million—it is this possibility of chronic complications,44

especially cardiomyopathy, that makes early identification and control of Chagas an important public health45

concern.46

Chagas disease is also known as a disease of poverty affecting mostly poor and indigenous rural com-47

munities in South America (Fernández, Gaspe, and Gürtler 2019; Sosa-Estani and Segura 2015; Dias 1987;48

Tarleton et al. 2007). Many people are at increased risk of infection due to the use of certain residential con-49

struction materials hospitable to Triatomine infestation, especially untreated wood. People working certain50

jobs that entail contact with Triatomine habitats—including forestry or agriculture—may be at increased51

risk of exposure during employment. A number of non-pharmaceutical interventions can alleviate much of52

the probability of contact, including insecticide usage, bed netting, and removal of certain residential con-53

struction materials known to be Triatomine habitats. Intervention campaigns through the 1980’s focused54

directly on the class dynamics of Chagas risk by implementing control efforts across the sociodemographic55

ladder (Dias 1987), yet many persisting Chagas hotspots occur in poor and rural parts of Brazil. Controlling56

the incidence of Chagas remains an important issue of equity.57

Since then, Public health efforts to eliminate new Chagas infections and pharmaceutical developments58

to treat latent chronic infections and complications have been successful at reducing the burden of Chagas59

disease in Brazil (World Health Organization 2015; Sosa-Estani and Segura 2015). The two primary methods60

of transmission—human-vector contact, either through bites or contact with vector feces, and the vertical61

pathway from mothers to infants—have have required vastly different interventions, both with success. Early62

studies dating to the late 1940s found that continuous use of residential insecticides was highly effective at63

eliminating transmission, indicating that residential contact with Triatomines may have been responsible for64

the majority of transmission risk (Dias 1987). Eradication programs by Brazil’s SUCAM (Superintendencia65

de Campanhas de Saude Publica) in the 1980s involved identifying areas of risk by sampling insects in66

homes and generating maps of high risk locations. All homes within more than 700 high-risk municipalities,67

regardless of known infestation, were sprayed with insecticide every 3-6 months until under 5% of homes68

were found to be infested with any insects and no Triatomines were found in any homes. Overall, more than69

5 million homes were sprayed with insecticide, resulting in a 73% reduction in the number of infested homes70

by 1986 (ibid.) and the total elimination of transmission by T. infestans—previously the vector responsible71

for most transmission—resulting in a 94% reduction in new acute cases (Gurgel-Gonçalves et al. 2012).72

Congenitally-transmitted Chagas disease via the vertical pathway is less frequent than transmission via73
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contact with Triatomines (World Health Organization 2015). Screening for Chagas Disease among potential74

mothers living in high-risk areas and initiating treatment in advance of pregnancy is ideal for reducing the75

probability of successful vertical transmission, although commencing treatment after pregnancy appears to76

be well tolerated by both the mother and the fetus (Cevallos and Hernández 2014). While it is not currently77

possible to entirely eliminate vertical transmission, treatment of infants with suspected Chagas infection78

within the first year of life is very successful at eliminating the disease from children (Carlier et al. 2011;79

Moya, Basso, and Moretti 2005). Transmission may occur at any time during pregnancy, but is theorized to80

be more likely to occur during the second and third trimesters (ibid). Most congenital transmission occurs81

from mothers who are in the chronic phase of disease, however vertical transmission has been documented82

from mothers who are acutely infected at conception or become infected during the course of pregnancy.83

It has been proposed that the level of parasitemia of the mother may affect the probability of vertical84

transmission and the severity of infection at birth (Carlier et al. 2011).85

Antiparasitic medications benzniazole and nifurtimox have proven efficacy against Chagas disease, and86

the former is usually recommended for treatment (Bern et al. 2007). If treated in the acute phase, complete87

parasitological cure can occur in 60-85% of vector-transmitted infections and more than 90% of congenital88

infections when treatment is administered within the first year of life (Altcheh et al. 2011; Carlier et al.89

2011; Cevallos and Hernández 2014; Moya, Basso, and Moretti 2005). If Chagas disease is left untreated90

until the chronic phase, treatment is less effective— only 60% of participants achieved negative serology91

within 3-4 years. Even if not resulting in a complete cure, treatment may slow the development of Chagas92

cardiomyopathy and other potentially lethal complications, and treatment is recommended for all patients93

presenting with positive serology (ibid.).94

Despite progress towards elimination, there are still an estimated 1-4.6 million people currently infected95

with chronic Chagas disease and approximately 6,000 deaths per year (Simões et al. 2018). Pérez-Molina and96

Molina 2018 estimate that in 2010, over 70 million people were at risk of contracting Chagas disease across 2197

countries in Latin America, and 38,593 new infections were reported that year. This count of acute infections98

down considerably from 55,585 in 2005 and from more than 700,000 between 1980-1985. Most individuals99

living with Chagas disease are located in three countries—Argentina, Brazil, and Mexico—and the most new100

infections were reported in Bolivia (World Health Organization 2015). While preventative interventions have101

brought the new infection rate down considerably in Brazil, the rate of decrease has not necessarily been102

equal across the country. The WHO estimates that as of 2015, the incidence of new Chagas infections in103

Brazil via human-vector contact was 0.084 per 100,000 population and via congential transmission 0.020 per104

100 live births (ibid.). Our analysis aides in identifying areas where future interventions can further alleviate105

risk of the disease.106

The distribution of triatomines is a highly spatial process within endemic areas, and as a result risk107

of contracting Chagas disease is a complex interaction of local vector population, local human population,108

and interaction between the two. Despite the elimination of T. infestans, previously the vector responsible109

for the most new cases of Chagas Disease, 62 known species of Triatomines in Brazil are responsible for110

transmission; some, including Panstrongylus geniculatus and P. megistus, are widespread over the country,111

whereas others are more localized spatially (Gurgel-Gonçalves et al. 2012). Certain biomes, including the112

Cerrado tropical savannah in the central region and Caatinga shrub forest in the northeast, have a higher113

diversity of species. Not all species of Triatomines are equally likely to transmit Chagas disease to humans;114
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for example, while the most epidemiologically relevant species may be P. megistus, which is common in115

domiciles and a frequent carrier of T. cruzi, the behavior and habitat of T. sordida is more likely to result116

in contact from agricultural activities but unlikely to result in residential contact. Gurgel-Gonçalves et al.117

2012 remark that nearly all areas of Brazil have some risk of Chagas disease, but certain regions, especially118

the Cerrado and Caatinga, present more risk.119

Climate change presents an ambiguous threat to incidence of Chagas disease. Tamayo et al. 2018 find120

that Triatomine vectors of Chagas disease may exhibit increased fecundity and egg viability in warmer121

temperatures. T. Cruzi as well may exhibit increased viability at warmer temperatures, suggesting that122

incidence of Chagas disease will likely increase with climate change. Medone et al. 2015 find that the123

changing climate will likely create more geographic areas that are suitable habitats for Chagas vectors124

correlates with the force of infection of acute Chagas disease in Argentina and Venezuela. They find that125

warmer temperatures are unfavorable to vectors; although current Chagas hotspots may see decreases with126

increased temperatures, the overall geographic distribution of vectors may shift as previously too-cold areas127

warm.128

Since Chagas disease is primarily found in rural areas in Brazil, multi-decadal trends in the urban and129

rural population may be a mediator in the future trajectory and control of Chagas disease (Delazeri, Da130

Cunha, and Oliveira 2022; Perz 2000; Randell and VanWey 2014). Brazil has become increasingly urbanized131

since the 1960s; internal migrants from rural, Chagas-endemic areas have resulted in identification of both132

acute and chronic cases of Chagas disease in places where Chagas is not historically found (Coura and133

Borges-Pereira 2010; Martins-Melo et al. 2014; Moncayo and Silveira 2009). Like all urban areas in Brazil,134

larger municipalities in Chagas-endemic areas have been increasing in size faster than the nearby rural areas,135

many of which have even seen population declines. The identification and control strategies of the 1980s that136

targeted known areas of Chagas endemicity may not be as effective for identifying latently infected internal137

migrants who have moved to the larger cities ourside of endemic strategies. As well, declines in the rural138

population are fundamentally changing the spatial distribution of new cases of Chagas disease. Although139

the rural population is declining overall, declines are not uniform across all areas of Chagas endemicity, and140

projections of future cases must include population change as well.141

To identify areas of persisting and future Chagas endemicity, we borrow Bayesian disease mapping meth-142

ods for modeling higher-incident spatially-clustered diseases, such as cancer (Best, Richardson, and Thomson143

2005; Napier et al. 2019; Riebler et al. 2016; Wakefield 2007; Wikle, Berliner, and Cressie, Noel 1998; Knorr-144

Held 2000; Knorr-Held and Best 2001) and adapt these methods to suit the highly rare nature of Chagas145

disease. Since the rates of ACD are low—on the order of hundreds of cases annually for a population of146

over 200 million—and present in a highly clustered pattern in certain regions of Brazil, a specialized model-147

ing approach is needed to highlight the spatio-temporal structure of Chagas disease. We use a Knorr-Held148

(2000) spatio-temporal model adapted with a rare count, zero-inflated model (Lambert 1992; Lee et al. 2016;149

Rathbun and Fei 2006; Ver Hoef and Jansen 2007) and include climate covariates and population growth150

to analyze how patterns of Chagas disease might play out for the ensuing decade. We find that with an151

increasing population and climate trends, it is likely that cases of Chagas will continue to increase in the152

absence of additional intervention, potentially as high as doubling in incidence.153
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Figure 1: Counts of Chagas disease between 2001 and 2019 at the municipality level. Of the 5568 municipalities in
Brazil, 4472 municipalities reported no cases of ACD during this period.

2 Methods154

2.1 Data155

Counts of Acute Chagas Disease (ACD), aggregated by municipality 1 of residence and year between 2001156

and 2019, are collected by the Ministry of Health’s Departamento de Informática do Sistema Único de Saúde157

(DATASUS; Department of Informatics of the Unified Health System) and retrieved from the agency’s158

TABNET database (Ministério da Saúde, Brasil 2023). We chose to use municipalities—the finest level of159

geographic aggregation available—in order to analyze spatial variability that may be lost at larger levels of160

geographic aggregation, like state or region. Over the period 2001-2019, 5568 cases of Acute Chagas Disease161

were reported among residents of 826 municipalities, with the highest counts in the northern states2 of Pará162

and Amapá. The municipality-specific total counts of Acute Chagas Disease reports are displayed in figure 1.163

Official population estimates at the municipality level are taken from Brazil Instituto Brasileiro de Geografia164

e Estatística (IBGE)’s annual population estimates for 2001-2006, 2008-2009, and 2011-2019 and the 2010165

census counts (Instituto Brasileiro de Geografia e Estatística 2023). No data are present for 2007; population166

for this year is taken as the linear interpolation between 2006 and 2008. Climate data are retrieved from the167

European Union’s Copernicus Climate Change Service (C3S) Climate Data Store (CDS) Global Bioclimatic168

Indicators from 1950-2100 Derived from Climate Projections (Wouters et al. 2021), which contains a suite169

of 19 bioclimatic variables averaged annually. These variables are the same as those in the WorldClim (Fick170

1Município is translated to English as municipality, but are functionally closer to US Counties by population size, geographic
size, and governance.

2Brazil has 27 Federative Units (unidades federativas, abbreviated as UFs), consisting of 26 states and one federal district
(Brasília). Here, we refer to all 27 UFs as states.
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Figure 2: Counts of Acute Chagas Disease (ACD) by mean annual temperature and total precipitation, two of the
19 bioclimatic variables used in the analysis, displayed over the period 2001-2019.

and Hijmans 2017) dataset3, and are listed in supplementary table S2; a selection are displayed in figures 2171

and 3. Broadly, we see in figure 2 that most reports of ACD occur in areas that are warmer (annual mean172

temp > 25◦C) and wetter (annual precipitation above 2000 mm), although many cases do occur in drier173

climates. In Pará and Amapá, the UFs where most cases of ACD occur, there is a slight trend towards174

warmer and wetter weather, although substantial year-to-year variations present (figure 3). Projections are175

performed using the GFDL-ESM2M (NOAA, USA) algorithm.176

2.2 Conditionally AutoRegressive (CAR) statistical models for disease inci-177

dence data178

Many classes of geospatial models for areal data (polygons, like municipíos) exist, a few of which are discussed179

here. Distributional models used in Bayesian modeling can be divided into two groups: Conditionally180

AutoRegressive (CAR) models, that describe probability for observations as conditional on their neighbors,181

and Simultaneous AutoRegressive (SAR) models, that use a matrix of adjacency weights to adjust for spatial182

dependence. At a high level, these two models differ in the scale of spatial dependence: the CAR model183

3http://www.worldclim.org/
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Figure 3: Mean annual temperature and total precipitation, two of the 19 bioclimatic variables used in the analysis,
displayed over the period 2001-2030 for the two states with the highest incidence of ACD, Pará (PA) and Amapá
(AP).
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involves local smoothing, where the SAR model involves global smoothing. Here, we use a CAR model in184

our application to rates of Chagas disease, which is a highly local process found only in certain relatively185

isolated regions of Brazil and where global correlative structure is likely to over-smooth small-area variation.186

More commentary is provided in the supplementary material. As well, CAR models have a computational187

advantage over SAR models: they do not require matrix inversion, which can be computationally expensive188

or impossible when modeling thousands of small-area samples4.189

The simplest implementation of the CAR model is the Intrinsically AutoRegressive (IAR or ICAR) model,190

also called the BYM model after authors Besag, York, and Mollie (1991). For a general Gaussian spatial191

process ϕ, the CAR model is conditionally specified for each geographical unit as a normal distribution with192

expectation equal to the average of its neighbors and variance τ :193

ϕi|ϕj∼i ∼ N

 1

ni

∑
j∼i

ϕj ,
τ2

ni

 (1)

Where ϕi is an observation at the ith spatial unit, ϕj∼i indicates the set of observations among the neighbors194

j of i, and ni is the number of neighbors of i. Throughout, we refer to equation 1 as the CAR and IAR models195

interchangably. The IAR distribution can also be extended to Poisson, Binomial, and Logistic distributions196

as well (Besag, York, and Mollie, 1991; Haining, 2004).197

To utilize the CAR distribution in a disease modeling context, Banerjee, Carlin, and Gelfand (2015)
recommend using a pair of random effects for the standardized incidence rates of disease:

Yi|ψi
iid∼ , τPoisson(Popieψi) (2)

ψi = x′
iβ + θi + ϕi (3)

where x and β are vectors of spatially-varying covariates, θi captures heterogeneity with an iid normal prior198

N(0, 1/τh) and ϕi captures spatial clustering with prior CAR(τc) as in equation 1. Here, parameters τh199

and τc represent precision. Dividing extra-Poisson variability into ‘heterogeneity’ and ‘clustering’ poses a200

problem: should τh and τc be too large, the model will be unable to identify the two random effects. Indeed,201

priors on variance must be carefully chosen in order to allow for identifiability of θ and ϕ, which poses an202

existential question as to the utility of these models in the first place. Instead, other specifications including203

Leroux, Lei, and Breslow 2000 and the very closely related BYM2 model (Riebler et al. 2016) as implemented204

by Morris et al. 2019, which introduce a convolution of the spatial and aspatial error terms which allows205

for identifiability. The BYM2 model is a similar Poisson-GLM framework to the original BYM model, but206

replacing the pair of random effects with a convolved error term:207

ϕ+ θ =
(
(
√
ρ/s)ϕ∗ + (

√
1− ρ)θ∗

)
σ (4)

where ρ ∈ [0, 1] represents the proportion of variance that comes from the spatial clustering random effect and208

how much comes from the heterogeneity random effect; ϕ∗ is the ICAR distribution; θ∗ ∼ N(0, n) where n is209

4Related to the SAR models is the field of Spatial Econometrics (see Anselin 2003 for an overview). Spatial Econometrics
uses the SAR model in a maximum likelihood regression framework. Many related specifications form the suite of Spatial
Econometric models, each with their own implication about spatial correlative structure and dependence (Golgher and Voss
2016)
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the number of connected subgraphs (in our application n = 1), s is the scaling factor such that V ar(ϕ) ≈ 1210

(Riebler et al. 2016); and σ > 0 is the overall standard deviation for the combined error terms (Morris211

et al. 20195). The BYM2 model improves upon the original form by allowing for independent definitions212

of the two prior distributions without involving ρ in the sampling process as is done for the proper CAR213

model. In doing so, this model involves the identification of only a single set of random effects rather than a214

pair of independent random effects, which improves identification by separating the dependency structure.215

Further, this avoids the need for informative priors in the BYM model as emphasized by Banerjee, Carlin,216

and Gelfand 2015. As well, in this context ρ has an informative interpretation, although it still does not map217

onto other indicators like Moran’s I. Morris et al. report that Stan’s Hamiltonian Monte Carlo (HMC) and218

No U-Turn Sampler (NUTS) provide faster and more precise inference with the BYM2 model than other219

samplers like WINBUGS and JAGS. The related Leroux (2000) model, which is similar to the BYM2 model220

but specifies the neighborhood matrix differently, has been shown through simulation to be superior to the221

original BYM model, and is employed by many in disease mapping studies (Lee, 2011).222

2.2.1 Extending the BYM model to include temporal effects223

We follow the Knorr-Held (Knorr-Held 2000) framework for Bayesian spatio-temporal modeling. The Knorr-224

Held model adds time structure in a way that mirrors the BYM model (3) by adding temporally autoregressive225

effects α, temporal random effects γ, and a spatio-temporal interaction term δ:226

Yi|ψi
iid∼ Poisson(Eie

ψi)

ψi = µ+ γt + αt + θi + ϕi + δit (5)

Where µ is the overall intercept, γ is an unstructured temporal component distributed N(0, σγ), α is227

a structured temporal component that can be specified as an AR(1) or AR(2) process, and δ is a spatio-228

temporal interaction term. ϕ and θ are as described above. Effectively, the Knorr-Held model decomposes229

the overall pattern into a global temporal trend, a global spatial trend, and an interaction term between the230

two, in a procedure similar to ANOVA. Prior choice of δ is not straightforward, and requires careful thought231

about the relationship of space and time in the model. Knorr-Held (2000) lays out four types of priors,232

depending on the hypothesized interaction of the spatial and temporal dimensions: (I) where all interaction233

terms are a priori independent; (II) where interactions are autoregressive in time but independent in space;234

(III) where interactions are autoregressive in space but independent in time; and (IV) where interactions are235

totally dependent in both space and time. Further description of these interaction types is given in appendix236

section S4. Knorr-Held’s (2000) evaluation includes specification of the same disease model with each of the237

four interaction types, and evaluation of the resultant model by DIC.238

5In their 2019 paper, Morris et al use a logit-normal prior for ρ, which has mass around either extreme, indicating that
the value of ρ should be close to 0 or 1 and is less likely to be in the middle. However, in a 2018 case study predating the
publication, the same authors use a Beta(1/2, 1/2) prior, which has a similar U-shape.
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2.2.2 Zero-Inflated Poisson models for rare counts239

Since Chagas disease is very rare, most entries in our matrix of counts by municipality and year are zero.240

While a low-rate Poisson may be able to capture this overdispersion of zeros, a more appropriate specification241

involves the zero-inflated Poisson model (ZIP; Lambert 1992). The zero-inflated Poisson is a mixture model242

that includes a Bernoulli process generating zeros and a Poisson process that generates counts (but may also243

generate some zeros). In this way, the zero counts in the data are effectively split into ‘structural’ zeros,244

which are generated from the presence or absence of the process of interest, and ‘sampling’ zeros, which are245

true random zero-counts in the presence of the Poisson process. Lambert (1992) note that in simulation,246

Poisson-only models are sufficient for a dataset that contains at most 68% zeros and 3.4% counts greater247

than 9, and that the ZIP model may be justified on datasets with higher rates of zeros. In our application248

to Chagas disease, over 99% of municipality-years have a zero count; nonzero entries have an average of 1.65249

(95% CI: 1-7) infections. The ZIP distribution is parameterized by Bernoulli probability π and Poisson rate250

λ:251

P (yi|π, λ) =

π + (1− π) · Poisson(0|λ) if yi = 0

(1− π) · Poisson(yn|λ) if yi > 0
(6)

The ZIP distribution is appropriate in a GLM framework, where parameters π and λ are specific to each252

observation yi and are estimated with logit and log link functions, respectively. When writing the probability253

statement, we can also take advantage of the fact that Poisson(0|λ) = λ0e−λ/0! simplifies to e−λ, clarifying254

the condition where y = 0:255

P (yi = 0) = πi + (1− πi)e
−λi (7)

P (yi = k) = (1− πi)e
−λiλki /k! (8)

In turn, the central moments of the ZIP distribution are mean (1 − π)λ and variance λ(1 − π)(1 + πλ)256

(Lambert, 1992).257

The ZIP distribution then prompts an additional modeling decision. When used in a GLM framework,258

covariates can be added to both the Poisson process and the Bernoulli process. Prior studies have done both:259

Agarwal, Gelfand, and Citron-Pousty 2002 include a spatially-autocorrelated Poisson process, Rathbun and260

Fei 2006 include a spatially-dependent Bernoulli process, and Ver Hoef and Jansen 2007 include spatial (and261

temporal) autocorrelation in both parts. For our application to Chagas disease, it is not clear if the spatial262

process should be included in either the Bernoulli or Poisson process, or in both parts. Is the probability of263

any appearance of Chagas disease spatially correlated? Undoubtedly, as the primary determinant in risk of264

Chagas disease is the highly localized distribution of T. Cruzi. However, conditional on the presence of T.265

Cruzi, it is less clear a priori if the risk of contracting Chagas also a spatially dependent process.266

2.3 Model: Estimating rates of ACD with zero-inflation and spatial and tem-267

poral autoregression268

Here, we integrate the components discussed above into a single Bayesian model that allows for spatial and269

temporal autoregression as well as overdispersion of zeros. Specifically, we use a ZIP likelihood within a270
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spatio-temporal decomposition framework like the one proposed by Knorr-Held (2000). As well, we innovate271

by introducing the BYM2-type convolution of the unstructured error and spatially-structured heterogeneity272

to improve identification on the model posed by Knorr-Held (2000). We encountered convergence issues273

when including the spatial convolution in the Poisson proccess; as a result; this process is defined in the274

Bernoulli parameters only. In the Poisson process, we include a grand mean, temporally AR(1) time trend,275

and a spatial fixed effect with a Knorr-Held Type 1 interaction. We chose the probabilistic programming276

language and software suite Stan to estimate the yearly incidence risk of Chagas disease across all munic-277

ipalities in Brazil between 2000 and 2019. The model is evaluated in Stan 2.20 using the cmdstanr (Stan278

Development Team 2023) interface for the R programming language, version 4.20. Stan was chosen for its279

speed relative to other probabilistic programming languages, like GeoBUGS (Lunn, Arnold, and Spiegelhal-280

ter 2004) or JAGS (Plummer 2003), especially for its ability to evaluate vectorized probability statements.281

Although Stan lacks the built-in support for spatial models present in BUGS, the computational gains from282

vectorization and adaptive sampling allow for quick evaluation and convergence of complicated posteriors,283

with full implementation details elaborated in the supplementary material. To sample Bayesian posteriors,284

by default Stan uses the No U-Turn Sampler (NUTS), a variant of Hamiltonian Monte Carlo, in contrast to285

Gibbs sampling used by BUGS and JAGS.286

We run two formulations of the model: first, a non-covariate smoothing model used purely to recover287

latent rates of Chagas disease unadjusted for other causal factors besides population at risk; and second,288

a model that includes climatological covariates. The two models differ only in the inclusion of the set of289

covariates.290

Beginning with ZIP-distributed likelihood:291

Yti|πti, λti ∼ ZIP (πti, Popti · λti) (9)

Where indices t and i refer to year t between 2000 and 2018 and municipality i between 1 and 5561, the
number of municipalities in Brazil. Assuming a logit link for Bernoulli parameter π and Poisson parameter
λ, we take the follow GLM equations for π and λ:

logit−1(πti) = µπ + απ,t + βπxt,i +
(
(
√
ρπ/s)ϕπ,i + (

√
1− ρπ)θπ,i

)
σπ + δπ,ti (10)

log−1(λti) = µλ + αλ,t + βλxt,i + θλ,iσλ + δλ,ti (11)

Where µ indicates the global mean with uninformative, U(−20, 20) prior; α is an AR(1) structured time
effect; ϕ is a structured spatial process with an IAR(1) prior; θ is an unstructured spatial error with an
independent N(0, 1) prior; ρ indicates the proportion of variance that comes from the spatially structured
process, with prior Beta(1/2, 1/2) (Mitzi Morris 2018); σ is the variance of the convolved spatial term; and
δ is a spatio-temporal interaction with a normal prior at mean 0. Finally, β.xt,i indicates a set of coefficients
and covariates, which are absent in the main smoothing model but include a set of environmental covariates
in the climate model. For simplicity, the effect of these covariates is assumed to be constant throughout
space and time. We follow Knorr-Held’s recommendation to drop the unstructured temporal component γ
to improve identification of the model and the parameters in equation 10 are otherwise same as described in
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equation 5. Finally, we specify uninformative Gamma-distributed hyperpriors for variance as recommended
by Knorr-Held 2000:

σ, σα, σu, σδ ∼ Gamma(2, 1) (12)

The quantities of interest include the expected number of acute Chagas Disease cases in year t in munic-292

ipality i, which is given by:293

E[Yt,i] = (1− πt,i)λt,i · Popt,i (13)

And the incidence rate:294

IRt,i =
E[Yt,i]

Popt,i
= (1− πt,i)λt,i (14)

Altogether, this model was evaluated in Stan using the CmdStanR interface for the R-language. Four295

chains were in parallel run for 2000 warmup iterations and 1000 posterior draws, and evaluated in approxi-296

mately 12 hours on an Apple MacbookAir M1. The corresponding Stan code is included in the supplementary297

material.298

2.3.1 Climate Model299

To investigate the relationship of climate with Chagas incidence, we include covariates to the model re-300

lated to temperature, precipitation, and vegetation. Determining covariates relevant to the incidence of301

Chagas disease is not straightforward as the climate processes that affect Triatomines and the T. Cruzi302

parasite may not necessarily be the same as those governing transmission to humans. Further, interventional303

strategies limiting transmission have shown an overall decrease in incidence of Chagas disease, which may304

confound identification of climatic factors influencing transmission. Nonetheless, we have chosen to include305

the following covariates in our model.306

In laboratory settings, it was found that Triatomines incubated at warmer temperatures (30C vs. 28C and307

26C) mature faster and had higher levels of T. Cruzi parasites in stool, although insect mortality did increase308

slightly (Tamayo et al. 2018). Further, Triatomines may be able to adapt to changes in temperature in309

complex ways (Clavijo-Baquet et al. 2021). Ecological modeling of Chagas Disease in North America indicates310

that as temperatures rise, the distribution of Triatomines may shift towards the north and northeastern part311

of the region (Garza et al. 2014).312

To avoid multi-collinearity among our climatological factors, like Medone et al. 2015 we use Principal313

Component Analysis (PCA) on the 19 WorldClim Bioclimatic Indicators (Fick and Hijmans 2017), which314

we retrieved from the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) dataset, “Global315

Bioclimatic Indicators from 1950-2100 Derived from Climate Projections” (Wouters et al. 2021). PCA is a316

dimensionality-reducing procedure that decomposes the matrix of covariates by municipality-year into an317

ordered set of orthogonal vectors, or principal components. Each principal component represents a ‘trend’318

or pattern in the data with the first component representing the most dominant pattern by proportion of319

variance explained, and each subsequent component representing less of the variance. Each observation can320

then be described as a linear combination of principal components and coefficients. PCA can be used for321

Principal Component Regression; rather than using the covariates directly, each observation’s location in322

principal component-space is used as a covariate. Since all principal components are orthogonal, this avoids323
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(a) (b)

Figure 4: (A): Average annual percentage change in population for all municipalities in Brazil between 2001 and
2019. (B): Average annual growth rate, percent, for all municipalities in Brazil between 2001 and 2019. The overall
growth rate for Brazil, indicated in red, is 1.04%, higher than the average municipality growth rate of 0.6%.

any potential multi-collinearity in the data.324

We find that the first six principal components explained 95% of the variation in the data. Values for these325

principal components are displayed in supplementary table S3 and the variance explained in supplementary326

figure S3. The largest principal component, responsible for just over 50% of the variance in the dataset, is327

related to warmer, drier weather year-round. In turn, the second principal component (17% of total variance)328

is related to cooler temperatures with more seasonal fluctuation but less precipitation year-round. Third329

and subsequent principal components are less clear in their interpretation and are responsible for decreasing330

amounts of variance in the dataset.331

2.3.2 Projection of future incidence332

The resulting quantities estimated from the main smoothing model and the covariate model are used to333

estimate the incidence of Chagas disease over the 10 year period from 2020 to 2030 using projected population334

counts and projected climate variables. To project this data, we calculate the average annual exponential335

growth rate over the period 2001-2019 for each municipality as:336

ri = exp

(
logPopi(2019)− logPopi(2001)

18

)
− 1 (15)

Growth rates at the municipality level are displayed in figure 4. The overall growth rate of Brazil is 1.04%337

per year between 2001 and 2019, and the average municipality grew by 0.6%. The 2019 population for each338

municipality is projected forward each year for 10 years as:339

Popi(t ∈ [2020 : 2030]) = Popi(2019)(1 + ri)
t−2019 (16)
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This projected population is used as an input to the model to predict future incidence of Chagas disease.340

We report two sets of projected rates of Chagas disease: one from the main smoothing model and one from341

the covariate model. In the covariate model, each municipality-year’s location in prinicipal component space342

for the predicted bioclimatic variables is used as an additional input. The incidence in municipality i at343

future year t⋆ is estimated as:344

E[Yt⋆,i] = (1− πt⋆,i)λt⋆,i · Popt⋆,i (17)

logit−1(πt⋆,i) = µ̂π + απ,t⋆ + β̂πxt⋆,i +
(
(
√
ρ̂π/s)ϕ̂π,i + (

√
1− ρ̂π)θ̂π,i

)
σ̂π + δπ,t⋆,i (18)

log−1(λt⋆,i) = µ̂λ + αλ,t⋆ + β̂λxt⋆,i + θ̂λ,iσ̂λ + δλ,t⋆,i (19)

Where all quantities are the median value of those estimated in the main model except time-trend quantity
α. for both απ and αλ, which is taken as an AR(1) random walk given the distribution of estimated time
trend terms:

α.,2020 ∼ N(α̂.,2019, σ̂.,α) (20)

α.,2021 ∼ N(α.,2020, σ̂.,α) (21)

... (22)

α.,t⋆ ∼ N(α.,t⋆−1, σ̂.,α) (23)

We conduct 1000 simulated random draws of future incidence and report the predicted rates of Chagas345

disease.346

3 Results347

3.1 Results of Main Smoothing Model348

The overall incidence rate of Acute Chagas Disease in Brazil between 2001 and 2019 is estimated to be 0.121349

per 100k person-years of life (PYL), although substantial heterogeneity in risk exists between and within350

regions. Figure 5 shows the municipality level 18-year incidence rate of acute Chagas Disease. Estimated351

incidence of Chagas disease is highly spatially variable with a strong regional trend, with two major areas352

of vulnerability: first, the northern Amazon states of Amapá (AP) and Pará (PA), which have the highest353

smoothed incidence rates in the country at 1.80 and 1.69 per 100k PYL—almost an order of magnitude354

higher than the national average—as well as Acre (AC; 0.317 per 100kPYL) and Amazonas (AM; 0.188355

per 100kPYL). These states are highly rural and have a smaller population than the coastal states, but356

contain the majority of Acute Chagas Disease risk. The second main region of transmission includes the357

northeastern, Caatinga states of Rio Grande do Norte (RN; 0.334 per 100kPYL), Sergipe (SE; 0.247 per358

100kPYL), Piauí (PI; 0.197 per 100kPYL) and Pernambuco (PE; 0.316 per 100kPYL). We do not observe359

increase transmission rates in the Cerrado, which includes the state of Goiânia and Mato Grosso do Sul, as360

reported by Gurgel-Gonçalves et al. 2012 besides a slight elevation in Tocantins. The states with the lowest361

estimated rates of Chagas Disease are the federal district of Brasilia and Sao Paulo.362
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Within the Amazon states of Pará and Amapá, which have the highest overall rates of new Acute Chagas363

Disease diagnoses, 31 of 160 municipalities had 18-year incidence rates higher than 1 per 100k PYL; the364

highest rates of ACD were found in Breves (population 93,000) and Limoeiro do Ajuru (25,000), with365

15.9 and 15.8 cases per 100k PYL respectively. Six more municipalities had rates above 10 per 100kPYL:366

Curralinho, Abaetetuba, Bagre, Muaná, Anajás, and São Sebastião Da Boa Vista. However, the most cases367

were predicted to be found in Belém, the capital and largest city in Pará, at 386 over the 18 year period for368

a population of approximately 1.4 million.369

A zero-inflated models represent the observed data as being a mixture of two processes: here, the proba-370

bility of never being exposed to Chagas disease represented through the Bernoulli process, and the incidence371

rate given exposure represented through the Poisson process. Lambert 1992 refers to the over-dispersion of372

zeros generated through these processes as these as ‘structural’ and ‘non-structural’/‘sampling’ zeros, respec-373

tively. Although we found a very strong spatial process governing the rate of ‘structural’ zeros—probability374

of never being exposed to Chagas disease (shown in figure 6)—we did not find a strong spatial process in the375

rate given exposure. Since Chagas disease is transmitted to humans given contact with disease-transmitting376

vectors with a particular habitat, we interpret this to mean that Chagas-carrying Triatomines are more377

likely to live in certain locales, the rate of contact and transmission within those locales is more spatially378

constant.379

Overall, the Northern and Amazon states were found of have a high probability of exposure to Chagas380

Disease and the coastal and southern states were less likely to have exposure. The total spatial term for π is381

shown in figure 6. Parameter ρ, indicating the proportion of spatial variance derived from the ICAR term,382

evaluated to 0.985, indicating that the spatially-clustered process was responsible for most of the Chagas383

incidence and the random process θ contributed very little to the overall distribution, indicating further that384

the location of Triatomines may be driving the location of cases.385

Where the probability of exposure to Chagas disease shows a strong spatial pattern, the rate of Chagas—386

after normalization for population—does not show nearly the degree of spatial autocorrelation as the387

Bernoulli process. The spatial structure for the Poisson process λ that estimates the rate of disease is388

shown in supplementary figure S1. Instead, even though the Poisson process parameter λ is normal-389

ized to municipal population, the Poisson process instead appears to be highlighing population locations390

rather than a spatially-autocorrelated process. However, Moran’s I test for spatial autocorrelation did find391

that the spatial heterogeneity term θ was statistically significantly spatially autocorrelated, albeit weakly392

(E[I0] = −0.0001; Ia = 0.12; p(I0 < Ia) < 2e − 16). Future evaluations of this model will need to carefully393

consider how to incorporate autocorrelation into the Poisson process while maintaining model identification.394

The overall time trend parameters απ and αλ, which are specified as AR(1) processes, both show a395

difference from 0 on the linear scale, indicating that there is a global temporal component in both the396

Bernoulli and Poisson processes (figure S2A). However, after adding in mean terms µ and applying the397

logit and log transforms as shown in figure S2B, the overall time trend tells a different story: the Bernoulli398

probability π, indicating probability of non-exposure to acute Chagas Disease, decreases from 55% in 2000399

to a maximum of 23.6% by 2006 only to increase to nearly 100% for the remainder of the study period. This400

indicates that over the course of the study period, country-wide exposure to Chagas disease increased before401

decreasing to nearly 0 after 2007, at which point the distriubtion of Chagas cases ceased to be a country-wide402

phenomenon and instead became more spatially localized. The Poisson rate is stable around 2e-5 per capita403
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Figure 5: Overall log incidence rate at the municipality level over 2001-2019. Red indicates higher rates of ACD and
green indicates lower rates of ACD. Incidence rate is calculated as log

∑
t

(
(1− π̂m,t)λ̂m,t/Popm,t

)
.
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Figure 6: Estimated spatial process π governing the probability of an individual never being exposed to Chagas
Disease over the study period. This process is an inverse-logit transformation of a linear combination of Conditionally
AutoRegressive (CAR) term ϕπ capturing risk that is spatially clustered, possibly due to Triatomine habitat or contact
rates.
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over the course of the study period.404

Overall, the model converged well and showed good mixing between the chains for the main parameters
π and λ. The Root Mean Squared Error (RMSE) of the model, evaluated as:

RMSE =

√
1

|T | · |M |
∑

t∈T,i∈M
(ŷt,i − yt,i)2

is 0.175. Convergence is evaluated using statistic R̂, which evaluates the agreement of between-chain esti-405

mates, and Effective Sample Size (ESS), which evaluates the number of samples correcting for autocorrelation.406

Supplementary table S1 shows the distribution of R̂ and ESS for all parameters π, λ, ϕ, θ, α, and δ.407

3.2 Results of Climate Model408

The climate model includes the specification as the main model above with the inclusion of each municipality-409

year’s location in principal component space among the 19 WorldClim Bioclimatic variables. We include the410

first six principal component dimensions as covariates β in both the Bernoulli process governing overdisper-411

sion of zeros and the Poisson process governing rate of Chagas disease. The RMSE of the climate model is412

0.183, which is slightly higher than that of the main model, indicating that controlling for climate produces413

a worse fit and may reduce the accuracy of the model, possibly due to overfitting. Posterior densities of β414

are included in supplementary figure S4. In the Poisson process, posterior estimates of coefficients for the415

first three principal components were found to be statistically significantly different from zero, whereas in416

the Bernoulli process, only the second principal component was found to be significantly different from zero.417

The values of parameters in the climate model are similar to the values in the main model (shown in figure418

S5), except for ϕπ, the spatial clustering term in the Bernoulli process.419

To better analyze these climatic factors, we transformed these estimated coefficients from principal com-420

ponent space back to the scale of the original variables before applying the inverse-link function and intercept421

terms to show the values visualized in figure 7. These values are calculated as g−1(µ + β̂⋆), where g is the422

link function log for the Poisson process λ and logit for the Bernoulli process π, and β̂⋆ represents the423

estimated coefficients transformed from principal component space to the original coefficients. Ultimately,424

βπ coefficients represent a one-unit change in each variable on the probability of non-exposure to Chagas425

disease, and βλ represents the effect of a one-unit change in each variable on the predicted rate of Chagas426

disease, per million person years, conditional on exposure. Overall, we see that these variables do not affect427

the rate of Chagas disease, only the probability of non-exposure. Non-exposure to Chagas disease is more428

likely in climates that are highly seasonal, and less likely in wetter wetter climates.429

3.3 Projected Rates 2020-2030430

We used the main smoothing and climate covariate models to estimate counts of Chagas disease over the431

decade 2020-2030. As elaborated above, the projection procedure utilizes the estimated intercept and spatial432

parameters, and using randomly-drawn temporal structure. The main model estimates a median of 4461433

cases of Acute Chagas Disease over the decade 2020 (IQR: 1,653 - 13,859), almost double the number of434

cases in the previous decade (2,612). Predicted incidence is similar when including the bioclimate covariates,435

estimating a median of 4461 cases (IQR: 1619 - 13,270). Figure 8 shows the median annual predicted counts436
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Figure 7: Coefficients for 19 WorldClim Bioclimatic Variables used in the climate model estimated for both the
Poisson process (λ, left), governing the incidence rate of ACD given exposure, and the Bernoulli process (π, right),
governing the probability of never being exposed to ACD. Lighter colors on the left figure indicate that a higher value
of the coefficient corresponds to a higher rate of ACD in the population where exposure is present, and on the right
figure indicate that probability of never being exposed is higher. Coefficients are estimated in principal component
space and transformed to the natural scale, and applied the corresponding log−1 link function for the Poisson process
and logit−1 for the Bernoulli process.
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of Chagas disease across Brazil and interquartile range between 2020 and 2030. A map of projected incidence437

and a comparison of observed and projected rates are shown in figure 9 and for selected municipalities in438

figure 10 and 11. Most of ‘hot spots’ for new cases are predicted to be in the same locations as 2001-2019,439

including Abaetetuba, Belém, and Breves in Pará, and Macapá in Amapá. However, the largest increases are440

projected to be in smaller, rural municipalities with high growth rates in the states of Amazonas—especially441

municipalities Apuí and Tefé—and Piauí. The climate covariate model implies slightly lower rates than442

the main model, implying that projected bioclimatic conditions may result in fewer infections, although the443

overall difference is likely small. The trend observed in figure 8 shows a highly variable trajectory year444

to year—much more than the main model predicts—indicating that annual climate fluctuations may have445

substantial effects on predicted rates.446
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Figure 8: Observed counts across Brazil, 2001-2019, summary of 1000 projected counts, 2020-2030, from the main
smoothing model (top) and climate covariate model (bottom). Median simulated counts are shown in black and
interquartile range, representing 50% of simulations, is shown in grey.
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Figure 9: Projected incidence and percent increase compared to the previous decade.
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Figure 10: Observed and Projected rates, main model
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Figure 11: Observed and Projected rates, climate model
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4 Discussion447

Despite progress towards elimination, Chagas disease remains a significant threat to public health, and448

additional intervention will be needed to further reduce rates of new ACD cases in Brazil. The results of our449

modeling imply that rates of ACD will increase consistently over the ensuing decade—potentially as much as450

doubling compared to the previous decade—driven primarily by an increasing population in high-risk areas.451

Climate change may result in the exacerbation of this trend. However, this appears to be at odds with452

the country-wide decrease in ACD rates as a result of Triatomine eradication campaigns since the 1980’s.453

While these campaigns have been enormously successful, risk of ACD is likely to persist without additional454

intervention. As a result, our work here serves as a call to continue the campaigns Nonetheless, we predict455

that risk for ACD will persist, and further intervention will be necessary to continue the decrease observed456

in previous decades.457

This model has a number of limitations, some of which may be addressable in future modeling studies.458

First, our data include official reports of Acute Chagas Disease as submitted to SINAN. We were unable to459

find literature estimates of under-reporting rates of ACD not submitted to SINAN. It is possible that there460

are many annual cases not captured in the dataset, implying that our estimates are not only incomplete, but461

subject to a ‘survivorship paradox’ where the locations of highest epidemiological interest are not captured462

in the dataset. Since the treatment success rate is high for acutely diagnosed cases of Chagas disease, it may463

be reasonable to estimate the number of ‘missed’ acute cases from backwards-projection of chronic cases.464

However, due to the substantial lag time (at least 10-30 years) between exposure and chronic symptoms, this465

was not possible with the data available from SINAN. However, should this topic be revisited in the following466

decades, a back-projection approach may be useful for retrospectively estimating the underreporting rate.467

Our model uses Knorr-Held Type I spatio-temporal interactions δ, which are the least sophisticated of468

the structures outlined by Knorr-Held (2000). This strategy essentially estimates uncorrelated space-time469

fixed effects, which we found to be ideal for precise internal estimation; however, since these fixed effects470

lack a temporally autoregressive definition, it is not possible to use these fixed effects to project the model471

to predict future incidence without introducing meaningless statistical noise. In our prediction we simply472

dropped the interaction term from the model; in effect, only the un-interacted spatial and simulated random473

walk temporal terms were used for future projection. We believe that using the basic Type I interactions474

allowed for better estimation of the independent spatial and temporal components as we found that the475

Type IV term is only weakly identified in our model; so this decision was not without benefit. Choice of476

a spatio-temporal interaction that includes a temporally autoregressive term, such as Type II or Type IV477

(see supplementary material for more elaboration), would allow for projection in the form of a random walk478

through interaction space-time. For example, should a Type IV prior be used that assumes total spatial and479

temporal dependence in the interaction, future space-time interaction terms can be simulated as a random480

draw from a Multivariate Normal distribution with a variance-covariance matrix derived from the previously-481

estimated interaction terms, similar to the simulation procedure for spatially autocorrelated data (Banerjee,482

Carlin, and Gelfand 2015). Special care will likely be needed to assure propriety of the Type IV distribution,483

which is outside of the scope of the present study.484

Our population projection would benefit from a more precise estimation methodology than the crude485

exponential growth model used here. Future analysis should consider municipality, year, and age-specific486

rates of fertility, mortality, and migration—especially internal migration—to inform population projections.487
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We were unable to obtain these quantities at the level of spatial and temporal granularity required. We488

believe that in the short term—namely, the single decade between 2020 and 2030—this crude methodology489

allows for understanding how heterogeneity in growth rates may relate to future incidence of Acute Chagas490

Disease. Nonetheless, it is not suitable for long-term projections. Model-based estimates that utilize the491

readily-available state-level rates to determine small-area estimates, possibly similar to the Lee-Carter (1992)492

procedure or the one used by Alexander, Zagheni, and Barbieri 2017, may allow for more precise estimation493

of future municipality-level population. As well, an extension of the model to predict age-specific rates of494

Chagas disese may aide researchers in planning for interventions.495

Finally, we make the critical assumption in both models that population and climate change are the496

sole drivers of future incidence. Other factors, such as housing construction materials, poverty, habitat497

destruction, and residential or industrial development encroaching on Triatomine habitats may increase498

affect rates of Chagas disease even in the absence of population or climate change. Further, the inherent499

assumption of linearity in our model assumes that as climate and population change, predicted incidence500

of Chagas disease will respond. This may not be the case: while climate may partially determine the501

geographic distribution of Triatomines, which may in turn affect incidence, it is likely that the relationship502

of climate with Triatomine populations is too complex to be captured by a linear model of the sort used503

here. Since there are many species of Triatomines, each with different habitats, behaviors, and virulence,504

the ultimate effect of climate on Chagas incidence is undoubtedly complex and nonlinear. Further, our505

climate model has a slightly higher error than the main model despite the inclusion of additional covariates,506

indicating that the model may be suffering from overfitting. As well, many exogenous factors could affect507

the distribution of Triatomines under future climate conditions, including interventional strategies to limit508

Triatomine habitats like the residential insecticidal campaigns of the 1980s, development of urbanization509

and infrastructure, and climate adaptations, environmental destruction and conservation practices that may510

affect Triatomine habitats. Should future climate conditions create new habitats for Triatomines, it is not511

clear at present if the insects are mobile enough to find these habitats, or if accidental importation by512

humans—such as improper handling of lumber—may catalyze a shift in Triatomine distribution.513

Replication Code514

Replication code is publicly available at https://github.com/eroubenoff/chagas_modeling.515
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Supplementary Material516

S1 Adjacency Matrices for Geostatistical Models517

For the analysis of Chagas disease, we focus on methods for areal or polygon data, which refer to a region518

of space which contains a subset of the observations of interest. Polygonal data is a common format for519

administratively-collected spatial data, often representing a governmentally-defined area—such as a state or520

province equivalent, city or municipality, or even more specific form such as census tract or block. Areal data521

exist in contrast to point-referenced data, which instead link each observation with longitude and latitude522

coordinates. Whereas areal data can be generated from point data using a simple point-in-polygon operation,523

the reverse process is not possible as the specific coordinates are lost when points are tallied within polygons.524

Critical in any spatial statistcal work is the concept of the neighborhood matrix: a mathematical repre-525

sentation of geographic adjacency. For example, this 3x3 grid could be representing by binary neighborhood526

matrix W:527

1 2 3

4 5 6

7 8 9

W =



0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 1 0 0

0 1 0 1 0 1 0 1 0

0 0 1 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0 1

0 0 0 0 0 1 0 1 0


528

A symmetric binary matrix like this is most common for representing adjaceny, but can easily be extended529

to include reciprocal distance weights, higher-order neighbors, or measures of connectivity that are not strict530

adjacency (for example, consider transit networks or other transportational features that mean the travel531

time between two locations is not linear with distance). While estimates will change between different532

matrices W, the following distributional properties remain the same.533

In the general case of eq. 1 with a non-binary neighborhood matrix W , the equivalent, generalized model534

can be parameterized:535

ϕi|ϕj ̸=i ∼ N

 1

wi+

∑
j

wijϕj ,
τ2

wi+

 (S1)

where wi+ =
∑
j wij , or the sum of matrix W row i.536

S2 Commentary on the BYM- type model537

In their 1991 paper, BYM use the IAR distribution (eq. 1) to fit a log-linear Poisson GLM of the form:

logµi = logEi + xiβ + ϕi
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where µi is the rate of disease occurrence in unit i, E is expected count unit i, x and β are explanatory538

variables and regression coefficients, and error term ϕi has the prior distribution of eq. 1. This model,539

which utilizes internal standardization, was called by Banerjee, Carlin, and Gelfand “cheating (or at least540

‘Empirical Bayes’)” since the Ei are not fixed but rather itself part of the data, posing a ‘null hypothesis’541

about if there were to be absent a spatial pattern (BCG, p.151)6. As well, BCG and Leroux et al (2000) note542

that this model may have poor performance as using the CAR prior alone as an error term may over-smooth543

aspatial variation, which may be mechanistically important to the model.544

The IAR distribution is conditionally specified for each geographic unit and is improper, meaning that545

it does not integrate to produce a valid probability distribution, instead only able to show the proportional546

density between spatial units. This is problematic for stochastic generation and maximum likelihood estima-547

tion, but is valid for Bayesian inference as posterior density need only be proportional to the prior density548

(Besag, York, and Mollie 1991). However, it is possible and mathematically convenient to consider equation549

1 in its joint, albeit improper, form. Besag (1974) showed that fully conditional distributions of this type550

can utilize Brook’s Lemma (1964) to recover the full conditional form, as a multivariate normal distribution551

with mean 0 and variance-covariance matrix related to the adjacency matrix. Banerjee, Carlin, and Gelfand552

demonstrate this concisely, determining the joint distribution of ϕ from a fully specified set of conditionals:553

p(ϕ1, ..., ϕn) ∝ exp

− 1

2τ2

∑
j∼i

(ϕi − ϕj)
2

 (S2)

which is also known as the pairwise-differences formula (Banerjee, Carlin, and Gelfand 2015, p.81, eqn. 4.16).554

Equation S2 can be utilized to provide convenient estimation in Bayesian MCMC, using software such as Stan555

as pairs of adjacent units can be efficiently stored in program memory, and the proportional density can be556

quickly computed without the need for matrix inversion. Since Stan estimates the proportional log-density557

of ϕ up to a constant, Morris et al. 2019 demonstrate that equation S2 can be quickly evaluated as:558

phi ~ sigma * -0.5 * dot_self(phi[node1] - phi[node2]);559

sum(phi) ~ normal(0, 0.001 * N);560

where sigma is the precision rather than the variance, where node1 and node2 are vectors of adjacent pairs,561

dot_self takes the dot product of the vector with itself, and the second line indicates that phi is subject562

to a soft sum-to-0 constraint. Due to this computational efficiency and problematic assumptions needed to563

make this distribution properly integrate, BCG recommend that the IAR model be used only in the case564

of a Bayesian prior, and may be frequently the optimal choice for geostatistical inference (BCG, ch. 4 and565

BCG, ch. 6, p.155)566

The expression in S2 is an improper probability distribution since the joint probability density is only567

proportional to the derived expression. This is because the variance-covariance matrix implied is singular,568

meaning the inverse does not have a unique solution and as a result the distribution does not necessarily sum569

to one, as required for valid probability distributions. For a non-mathematical explaination, consider that570

each observation is entirely dependent on its neighbors, which allows us to estimate the total distribution only571

on relative terms without a ‘ground truth’ or some external source centering the distribution. To demonstrate572

this impropriety, BCG (p.81) derive equation 1 by beginning with adjacency matrix W , which has wij = 1 if i573

6This is forgiveable as BYM—who were working in digital image restoration—were the first to demonstrate how this technique
could be used in other fields, which has become a foundational technique in Bayesian Disease Mapping.
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and j are neighbors and 0 otherwise; matrix B where bij = wij/wi+, or a row-standardized version of matrix574

W ; and D, a diagonal matrix where dii is equal to the number of neighbors of i and 0 otherwise. Then,575

equation 1 can be written in the conditional form as ϕi|ϕj∼i N(
∑
j bijyj , τ

2
i ) since B is the row-standardized576

version of W . This would imply that ϕ ∼MVN(0, [τ(D−W )]−1). Temporarily disregarding τ , calculating577

the covariance matrix Σ−1 of this distribution involves the calculation (D − W )1 = 0, which is singular;578

effectively, too many variables without a constraint to preserve propriety (BCG, p.81). It is possible to make579

this distribution proper with an additional parameter, often denoted ρ (α in Morris et al. 2019), by defining580

the inverse covariance matrix Σ−1 = D−ρW , so long as ρ is chosen to find a singular solution. BCG list the581

bounds under which ρ will provide a non-singular solution, which is related to the eigenvalues of matrices582

D and W . Then, the full conditional distribution becomes:583

ϕi|ϕj∼i ∼ N

ρ 1

ni

∑
j∼i

ϕj ,
τ2

ni

 (S3)

BCG write that ρ is sometimes reported as being the degree of spatial autocorrelation, but it is clear from584

equation S3 that the resultant expression rather expresses some proportion of the spatial gaussian process585

(p.82). As well, ρ does not map clearly onto any other measures of spatial autocorrelation, like Moran’s I or586

Geary’s C, and thus its interpretation outside of the model is limited.587

Further, the authors remark that the proper CAR model may be attractive in cases where the spatial588

pattern is weak, and the improper CAR model may over-smooth heterogeneity. However, in simulation, the589

proper CAR model has been shown to nearly always converge on values of ρ close to 1, as when ρ is less than590

1 there presents an identification challenge between the spatial random effects and the non-spatial random591

effect. BCG remark (p.155) that it appears that the data always want ρ to be close to 1. In conclusion,592

BCG recommend that the improper IAR model be only used as a Bayesian prior, or in the frequentist case,593

use of a SAR or other proper probability distribution.594

As noted above, two issues present with using the IAR model alone as a prior for a spatially autocorrelated595

error term. First, the IAR model is known to show poor performance when spatial autocorrelation is not very596

strong, otherwise it will oversmooth random variation in the data. This issue is rectified with a proper CAR597

model, but as noted above, BCG do not recommend usage of the proper CAR prior. Second, the IAR variance598

parameter τ has an ambiguous function, and sources differ as to its interpretation. While Leroux (2000)599

states that this parameter represents both autocorrelation and over-dispersion simultaneously, but Banerjee,600

Carlin, and Gelfand write that this parameter should not be taken as representing spatial autocorrelation in601

any mechanistic way.602

Ideally, we would have included the BYM2-type spatial convolution term in both the Bernoulli and603

Poisson processes, however in model development we were unable to reach convergence with the model604

specified as such: the convolved spatial error for the Poisson parameter λ failed to be identified. Recall605

that this term is specified in both the Bernoulli and Poisson parameters as
(
(
√
ρ/s)ϕ+ (

√
1− ρ)θ

)
σ, where606

ϕ is the IAR model, θ is N(0, 1), ρ represents the proportion of variance having a spatial pattern rather607

than unstructured error, and σ is the overall variance. The convolved spatial process in the Bernoulli part608

showed excellent convergence and mixing with posterior estimates of ρπ ≈ 0.75. As a result, both the609

spatially clustering term ϕ and the spatial heterogeneity term θ contributed to posterior estimates of π and610
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the likelihood of the model. However, in the Poisson part, median posterior estimates of ρλ ≈ 0 such that the611

convolved error term ≈ θσ. As a result, the sampler could not identify values for ϕλ, functionally searching612

the entire parameter space for ϕλ without any effect on the likelihood of the model. Ultimately, this caused613

slow evaluation and divergences, but did not affect the resultant values of other parameters.614

S3 Zero-Inflated Models and their efficient estimation in Stan615

To assess the appropriateness of the ZIP distribution for our data, we conducted a naive maximum likelihood616

estimate of the Poisson parameter λ and the Zero-Inflated Poisson parameters π, λ without any adjustment617

for spatial structure, annual deviations, or covariates. Likelihood functions for both the Poisson-only spec-618

ification and ZIP specification were optimized over the municipality-year counts of Chagas incidence using619

R’s multivariate optim routine. The maximum likelihood estimate of Poisson-only parameter λ was 0.1053620

with log-likelihood ℓℓ = 57773.01, and the estimate of ZIP parameters were π = 0.9849 and λ = 6.9885 with621

ℓℓ = 19330.45. To test the relative fit of both models, we conduct Wilk’s test for likelihood ratios, which622

assumes that the ratio of two likelihoods is asymptotically distributed as χ2(df = dfH1 − dfH0). Taking the623

Poisson-only specification as the null hypothesis and the ZIP specification as the alternative, the probability624

of observing these data generated by the Poisson-only specification instead of the ZIP specification is p ≈ 0.625

Hence, we can comfortably reject the Poisson-specification in favor of the ZIP specification.626

Using ZIP models may provide an additional computational advantage over a regular Poisson specifica-627

tion. We found that a model of the type laid out in the previous sections, which models the count of Chagas628

disease as a Poisson-distributed GLM with terms for fixed effects for spatial and aspatially-clustered errors,629

showed slow evaluation and poor estimation. While the sheer dimensionality of the model—approximately630

estimating 6 parameters for 5000 municipalities across 19 years—was undoubtedly responsible for part of the631

problem, we hypothesized that the complicated posterior geometry caused by the overdispersion of 0s in the632

dataset was partially to blame. To test this hypothesis, we ran two test cases each with a single UF over the633

first two years of the study period. We chose Pará (PA), which has the highest number of Chagas cases at634

5259 over the 19 year study period in 143 municipalities, and Roraima (RR), with the second lowest number635

of cases at 10 cases in 15 municipalities7. In Stan, the test models were run for 500 warmup iterations and636

500 sampling iterations. For PA, the model completed evaluation in 2508 seconds for an average parameter637

effective sample size (ESS) of 2234.738 (SD = 1413). However, despite RR having one tenth the number of638

municipalities of PA, the model for RR took more than twice as long to evaluate—5994.4 seconds— for an639

average parameter ESS of 1416.437 (SD = 451.5). Both models showed convergence (R̂ ≤ 1.01) for more640

than 99% of parameter estimates. When this test was replicated using the ZIP model with an autoregressive641

component in the Bernoulli part only, the PA model evaluated in 46.2 seconds with an average parameter642

effective sample size of 470.96, and the RR model evaluated in 57 seconds with an average ESS of 25.39.643

Naive implementation of Spatio-Temporal statistical models involves many pairwise comparisons, which644

can be prohibitively computationally expensive for MCMC estimation. For example, our spatio-temporal645

adjacency structure may contain not only neighboring observations between all 5000 municipalities in Brazil,646

but the temporally-correlated neighbors as well. Assuming that an average municipality has 4 spatial neigh-647

7Only the Federal District, DF, had fewer cases, at 4 over the 19 year period, but was not chosen since that UF contains
only one municpality.
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bors and 4 temporal neighbors, this will result in inverting a neighborhood matrix of over 1.6 billion elements648

which is not reasonably evaluated with standard computing resources, let alone for thousands of MCMC649

iterations. We have taken many steps towards quick and efficient estimation in lieu of this challenge, which650

is a major contribution of this research in addition to the primary substantive estimation of Acute Chagas651

Disease incidence.652

When sampling a ZIP GLM in Bayesian software such as Stan, we will have to write a custom log-653

probability mass function (LPMF, in Stan terms) to cover zero-inflation. First, we assume that Bernoulli654

parameter π is estimated on a logit scale and Poisson parameter λ is estimated on a log scale, as is common655

for GLMs. Second, we must evaluate the probability density on the log scale. The following is an unoptimized656

ZIP estimation, adapted from Stan’s documentation for Zero-Inflated Poisson models8:657

for (t in 1:T){658

for (n in 1:N) {659

if (y[t,n] == 0) {660

target += log_sum_exp(bernoulli_logit_lpmf(1 | pi[t,n]),661

bernoulli_logit_lpmf(0 | pi[t,n])662

+ poisson_log_lpmf(y[t,n] | pi[t,n]));663

} else {664

+= bernoulli_logit_lpmf(0 | pi[t,n])665

+ poisson_log_lpmf(y[t,n] | pi[t,b]);666

}667

}668

}669

where target is the log-probability of the model and log_sum_exp(a,b) = log(exp(a) + (exp(b)). Clearly,670

this is a highly inefficient way to evaluate the model since the log-probability statement is conditioned on671

the data y which is known and constant through the course of the simulation. In computational efficiency672

terms, each evaluation of the likelihood will complete in O(T ·N) time, meaning that the time to evaluate the673

log-probability statement is proportional to the number of municipalities times the number of years. For our674

application to Chagas Disease in Brazil, which contains observations of approximately 5000 municipalities675

over 19 years, this becomes extraordinarily slow, evaluating 1000 warmup and sampling iterations on the676

scale of 12-24 hours.677

To optimize this Stan modeling statement, the Stan documentation recommends partitioning the data into
zero and non-zero elements and evaluating them separately, but does not elaborate on how to do so in a GLM
framework, which we have developed for our application. Doing so will allow for separate, efficient vectorized
evaluation of the Bernoulli and Poisson GLM statements. Indeed, as explained elsewhere, vectorization is
one of the primary benefits of using Stan over other Bayesian MCMC software suites, since vectorized
probability statements evaluate much faster and with less overhead than doubly-looped functions. First,
consider a matrix of counts Y with dimensions T (number of years) and N (number of municipalities). From
Y , we will derive two matrices zero_idx and nonzero_idx with the same dimensions, containing the indices
of zero and nonzero observations, and supported by vectors zero_max and nonzero_max with dimension T ,
where each element contains the annual number of zero and nonzero entries. In this way, for matrix row t ∈ T

columns [1 : zero_max[t]] contains the index of municipalities with zero entries, and [zero_max[t]+1 : N ]

8https://mc-stan.org/docs/stan-users-guide/zero-inflated.html
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are uninitialized. Beginning with matrix of counts Y :

Y =


0 1 0 3 2

1 0 0 0 1

2 0 2 0 1

0 0 0 0 0

2 1 3 1 2


that yields derived zero and non-zero matrices:

zero_idx =


1 3 / / /

2 3 4 / /

2 4 / / /

1 2 3 4 5

/ / / / /

 nonzero_idx =


2 4 5 / /

1 5 / / /

1 3 5 / /

/ / / / /

1 2 3 4 5


with max vectors:

zero_max =
[
2 3 2 5 0

]
nonzero_max =

[
3 2 3 0 5

]
In Stan, zero-counts in year t can be be easily indexed from Y as Y[t, zero_idx[t, 1:zero_max[t]]]678

and nonzeros as Y[t, nonzero_idx[t, 1:nonzero_max[t]]]. Essentially, these sparse matrices are an679

efficient way to store ragged arrays, which are not supported natively in a C-based language like Stan. The680

R code for generating these matrices and vectors from matrix Y in:681

n_T = nrow(Y)682

N = ncol(Y)683

zero_max = array(rep(0,n_T))684

nonzero_max = array(rep(0,n_T))685

zero_idx = matrix(0, nrow = n_T, ncol = N)686

nonzero_idx = matrix(0, nrow = n_T, ncol = N)687

688

for (t in 1:n_T) {689

for (n in 1:N){690

if (Y[t,n] == 0) {691

zero_max[t] = zero_max[t] + 1692

zero_idx[t, zero_max[t]] = n693

}694

else {695

nonzero_max[t] = nonzero_max[t] + 1696

nonzero_idx[t, nonzero_max[t]] = n697

}698

}699

}700

Then, we can turn to writing a log probability mass function describing equations 7 and 8 that takes
advantage of this vectorization. First, recall that π is on the logit scale and λ is on the log scale, and we
wish to evaluate the probability on the log scale. Assuming that π and λ have been transformed using their
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corresponding inverse-link functions, this yields likelihood:

log(P (yi = 0)) = log
(
πi + (1− πi)e

λi
)

(S4)

log(P (yi = k)) = log
(
(1− πi)e

λiλki /k!
)

(S5)

Equation S4 is problematic in that it does not simplify to built-in Stan probability statements, but can be701

written in a way that is efficiently vectorized9. Luckily, equation S5 simply evaluates to two independent702

expressions of Bernoulli probability and Poisson probability on the log scale, respectively. This means they703

can be evaluated in Stan as:704

vector[N] pi_inv_logit;705

vector[N] lambda_exp;706

707

for (t in 1:T) {708

pi_inv_logit = inv_logit(pi[t]);709

lambda_exp = exp(lambda[t]);710

711

// Zeros712

target += sum(log(713

pi_inv_logit[zero_idx[t, 1:zero_max[t]]] +714

(1-pi_inv_logit[zero_idx[t, 1:zero_max[t]]]) .*715

exp(-lambda_exp[zero_idx[t, 1:zero_max[t]]])716

));717

718

// Nonzeros719

target += bernoulli_lpmf(720

rep_array(0, nonzero_max[t]) |721

pi_inv_logit[nonzero_idx[t,1:nonzero_max[t]]]722

) + poisson_lpmf(723

y[t, nonzero_idx[t, 1:nonzero_max[t]]] |724

lambda_exp[nonzero_idx[t, 1:nonzero_max[t]]]725

);726

}727

In a test case, this vectorized model evaluated 100 warmup iterations and 100 sampling iterations in 1099728

seconds, more than 10 times faster than the non-vectorized example.729

S4 Knorr-Held Spatio-Temporal Models730

The other priors outlined in Knorr-Held (2000) are, respectively:731

• Type I interaction, where all interaction terms are a priori independent:732

P (δ|σδ) ∝ exp

−σδ
2

∑
i∈I,t∈T

(δit)
2

 (S6)

which is suitable if the space-time interaction does not have any structure.733

9In theory, an additional optimization of the Zero-likelihood involves use of the log-sum-exp trick, which provides compu-
tationally efficient evaluation of log(a+b) = log(exp(a) + exp(b)), but this remains unexplored at present.
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• Type II interaction, where each spatial unit follows a 1st order random walk independent of its neigh-734

bors:735

P (δ|σδ) ∝ exp

−σδ
2

∑
i∈I,t∈[2:T ]

(δit − δi,t−1)
2

 (S7)

which is suitable if temporal trends differ between spatial units and the temporal trends do not have736

any structure in space.737

• Type III interaction, where interaction effects follow and intrinsic autoregression such as the type laid738

out in equation 1, but are indepdent at each time:739

P (δ|σδ) ∝ exp

−σδ
2

∑
j∼i,t∈T

(δit − δjt)
2

 (S8)

which is suitable if the spatial trends differ between time points, but the temporal trends do not have740

any structure in space.741

• Type IV interaction, perhaps the most methodologically and conceptually interesting, where effects742

are totally dependent over space and time:743

P (δ|σδ) ∝ exp

−σδ
2

∑
j∼i,t∈[2:T ]

(δit − δjt − δi,t−1 + δj,t−1)
2

 (S9)

Which defines a space-time Markov random field and is suitable if temporal trends are different from744

location to location but are more likely to be similar in adjacent locations. This prior can be written745

in Stan as:746

real knorr_held_type4_lpdf(vector delta_t, vector delta_tm1, int N, int[] node1, int[] node2) {747

return -0.5 * dot_self(delta_t[node1] - delta_t[node2] - delta_tm1[node1] + delta_tm1[node2]) +748

normal_lpdf(sum(delta_t) | 0, 0.001*N) ;749

}750

where delta_t is the value of δ at time t, delta_tm1 is the value of δ at time t− 1, node1 and node2751

indicate adjacent pairs of nodes, and the normal_lpdf statement indicates a soft sum-to-0 constraints752

for δt, as done for the ICAR prior above.753

At face value, interaction Type IV would be the most useful for our purposes, however in model develop-754

ment we found that this model both was under-identified and over-smoothed random variation in the data.755

Instead, we opt for Type I priors, which are both simpler to estimate and more easily identified. Theoretically,756

type IV interactions are comparing not only the first degree neighbors—each observation with its spatial757

neighbors and previous observation—but also the 2nd order neighbors—the spatial neighbors of temporal758

neighbors, or equivalently, the temporal neighbors of spatial neighbors (Knorr-Held 2000). Essentially, this759

prior is an extension of the pairwise-differences CAR prior (eq S2) to the temporal dimension. Where the760

pairwise CAR prior focuses on the differences between adjacent units, the Knorr-Held Type IV prior includes761

the differences between adjacent units in the current time period and the prior time period. Knorr-Held762

remark that such a model may be useful for modeling the spatio-temporal spread of both infectious diseases763
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and non-infectious diseases where the underlying risk has a spatio-temporal pattern, as is appropriate for our764

application to Chagas disease. For the first time point t = 1, the ‘previous’ time period t = 0 is unavailable,765

so for this case only the ‘previous’ time period is instead taken to be a 0 vector, at which point the model766

simplifies to the ICAR prior. If the full model is specified as in equation 5, it is likely that identifiability767

will be poor without highly informative priors, as was the case for the BYM model above. For the present768

application to Chagas disease, it may be possible to disregard the time trends α and γ, since most locations769

begin and remain absent Chagas disease throughout the duration of study.770

S5 Stan model code, edited slightly for clarity771

functions {772

real icar_normal_lpdf(vector phi, int N, array[] int node1, array[] int node2) {773

// Soft sum-to-zero constraint774

return -0.5 * dot_self(phi[node1] - phi[node2]) + normal_lpdf(sum(phi) | 0, 0.001*N);775

}776

}777

data {778

// Number of municipalities779

int<lower=0> N;780

// Number of years781

int<lower=0> T;782

// Number of adjacent edges783

int<lower=0> N_edges;784

// node1[i] adjacent to node2[i]785

array[N_edges] int<lower=1, upper=N> node1;786

// and node1[i] < node2[i]787

array[N_edges] int<lower=1, upper=N> node2;788

// count outcomes789

array[T,N] int y;790

// Population exposure791

array[T,N] int E;792

// Scaling factor-- scales variance of spatial effects793

real<lower=0> scaling_factor;794

// indices of zero counts795

array[T,N] int zero_idx;796

// Max number of zero counts797

array[T] int zero_max;798

// indices of nonzero counts799

array[T,N] int nonzero_idx;800

// max number of nonzero counts801

array[T] int nonzero_max;802

}803

transformed data {804

// Logged population805

array[T] vector[N] log_E;806

807

for (t in 1:T) {808

log_E[t] = to_vector(log(E[t,1:N]));809

}810

}811

parameters {812

// Bernoulli part: Knorr-Held model813

// Intercept814

real mu_pi;815

real mu_lambda;816

817

// Structured temporal trend818
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vector[T] alpha_pi;819

vector[T] alpha_lambda;820

real<lower=1e-10, upper=10> sigma_alpha_pi;821

real<lower=1e-10, upper=10> sigma_alpha_lambda;822

823

// Structured spatial pattern824

vector[N] phi_pi;825

// vector[N] phi_lambda;826

827

// Unstructured spatial pattern828

vector[N] theta_pi;829

vector[N] theta_lambda;830

831

// Proportion of spatial/aspatial error832

real<lower=0, upper=1> rho_pi;833

// real<lower=0, upper=1> rho_lambda;834

real<lower=1e-10, upper=10> sigma_convolved_pi;835

real<lower=1e-10, upper=10> sigma_convolved_lambda;836

837

// Knorr-Held Type I spatio-temporal interaction838

array[T] vector[N] delta_pi;839

array[T] vector[N] delta_lambda;840

real<lower=1e-10, upper=10> sigma_delta_lambda;841

real<lower=1e-10, upper=10> sigma_delta_pi;842

843

844

}845

transformed parameters{846

array[T] vector[N] pi; // Bernoulli GLM term847

array[T] vector[N] lambda; // Poisson GLM term848

849

for (t in 1:T) {850

pi[t] = inv_logit(mu_pi +851

alpha_pi[t] +852

sigma_convolved_pi * (853

sqrt(rho_pi/scaling_factor) * phi_pi + sqrt(1-rho_pi)*theta_pi854

) +855

sigma_delta_pi * delta_pi[t]);856

lambda[t] = exp(log_E[t] + mu_lambda +857

alpha_lambda[t] +858

sigma_convolved_lambda * (859

// sqrt(rho_lambda/scaling_factor) *860

// phi_lambda861

theta_lambda862

// sqrt(1-rho_lambda)*theta_lambda863

) +864

sigma_delta_lambda * delta_lambda[t]);865

}866

}867

model {868

// Intercepts869

mu_pi ~ normal(-10, 10);870

mu_lambda ~ normal(-5, 10);871

872

// Structured temporal trend873

alpha_pi[1] ~ normal(0, sigma_alpha_pi);874

alpha_pi[2:T] ~ normal(alpha_pi[1:(T-1)], sigma_alpha_pi);875

sigma_alpha_pi ~ gamma(2, 1);876

877

alpha_lambda[1] ~ normal(0, sigma_alpha_lambda);878

alpha_lambda[2:T] ~ normal(alpha_lambda[1:(T-1)], sigma_alpha_lambda);879

sigma_alpha_lambda ~ gamma(2, 1);880
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881

// Structured spatial patten882

phi_pi ~ icar_normal(N, node1, node2);883

// phi_lambda ~ icar_normal(N, node1, node2);884

885

// Unstructured spatial error886

theta_pi ~ std_normal();887

theta_lambda ~ std_normal();888

889

// Prior on Rho890

rho_pi ~ beta(.5, .5);891

// rho_lambda ~ beta(.5, .5);892

893

// Convolved variance894

sigma_convolved_pi ~ gamma(2,1);895

sigma_convolved_lambda ~ gamma(2,1);896

897

for (t in 1:T){898

// Interaction899

delta_pi[t] ~ std_normal();900

delta_lambda[t] ~ std_normal();901

902

}903

sigma_delta_pi ~ gamma(2, 1);904

sigma_delta_lambda ~ gamma(2, 1);905

906

907

908

// Likelihood909

for (t in 1:T) {910

911

// Vectorized ZIP912

// Zeros913

if (zero_max[t] > 0) {914

target += log(915

pi[t, zero_idx[t, 1:zero_max[t]]] +916

(1 - pi[t, zero_idx[t, 1:zero_max[t]]]) .*917

exp(-lambda[t, zero_idx[t, 1:zero_max[t]]])918

);919

}920

921

// Nonzeros922

if (nonzero_max[t] > 0) {923

target += bernoulli_lpmf(924

rep_array(0, nonzero_max[t]) |925

pi[t, nonzero_idx[t,1:nonzero_max[t]]]926

);927

target += poisson_lpmf(928

y[t, nonzero_idx[t, 1:nonzero_max[t]]] |929

lambda[t, nonzero_idx[t, 1:nonzero_max[t]]]930

);931

}932

}933

}934

935

936
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Table S1: MCMC convergence diagnostics for main smoothing model selected parameters

Parameter R̂ 5th Quantile R̂ 95th Quantile ESS 5th Quantile ESS 95th Quantile

π 1.00 1.01 941.00 3, 708.96
λ 1.00 1.00 6, 116.68 10, 733.15
ϕπ 1.00 1.00 993.54 3, 845.31
θπ 1.00 1.00 8, 329.99 12, 173.52
θλ 1.00 1.00 4, 293.10 11, 373.93
απ 1.00 1.01 430.58 635.58
αλ 1.00 1.01 364.32 537.66
δπ 1.03 1.03 316.20 316.20
δλ 1.00 1.00 734.21 734.21

Figure S1: Spatial process in the Poisson term, without temporal effects. A: overall rate of Chagas, calculated as
Popi × λi, where λi = exp(µλ + θi ∗ σi); B: per-capita rate of Chagas λ, net of population; C: spatial heterogeneity
term θλ, with N(0, 1) prior.
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Figure S2: Global AR(1) time trend for Bernoulli and Poisson processes, on the (A) crude scale and (B) transformed
scale, where the transformed scale is logit−1(µλ +απ) for the Bernoulli probability and exp(µλ +αλ) for the Poisson
process. While the Poisson process always stays near 0, indicating that the rate of Chagas conditional on its presence
in an area is stable over time, the global temporal trend of the Bernoulli parameter indicating probability of non-
exposure drops initially, recovering to 100% by 2008. This implies that over the period of study, Chagas disease
became much less global and more local in presentation.

S5.1 Main Model Additional Figures937

S5.2 Climate Model Additional Figures938
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Variable name Description
BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 Isothermality (BIO2/BIO7) (×100)
BIO4 Temperature Seasonality (standard deviation ×100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter

Table S2: WorldClim suite of Bioclimatic variables downloaded from the Copernicus Climate Change Ser-
vice’s Global Bioclimatic Indicators from 1950-2100 Derived from Climate Projections dataset.

Variable PC1 PC2 PC3 PC4 PC5 PC6

Annual Mean Temperature 0.316 -0.083 0.019 -0.066 0.065 -0.143
Mean Diurnal Range -0.010 0.286 -0.494 -0.137 0.409 0.018
Isothermality 0.171 0.082 -0.133 0.408 0.662 0.139
Temperature Seasonality -0.271 0.104 -0.074 -0.294 -0.159 -0.127
Max Temperature of Warmest Month 0.261 0 -0.186 -0.370 0.010 -0.216
Min Temperature of Coldest Month 0.302 -0.155 0.130 -0.032 -0.016 -0.147
Temperature Annual Range -0.114 0.224 -0.417 -0.412 0.036 -0.054
Mean Temperature of Wettest Quarter 0.295 -0.038 0.003 0.061 0.056 -0.457
Mean Temperature of Driest Quarter 0.296 -0.113 0.073 -0.172 0.082 0.067
Mean Temperature of Warmest Quarter 0.292 -0.075 -0.005 -0.260 -0.030 -0.217
Mean Temperature of Coldest Quarter 0.315 -0.099 0.030 0.012 0.077 -0.061
Annual Precipitation -0.175 -0.424 -0.170 -0.015 0.122 -0.128
Precipitation of Wettest Month -0.051 -0.411 -0.370 0.127 -0.172 0.027
Precipitation of Driest Month -0.223 -0.173 0.257 -0.220 0.316 -0.062
Precipitation Seasonality 0.222 0.099 -0.310 0.125 -0.268 0.222
Precipitation of Wettest Quarter -0.052 -0.428 -0.359 0.149 -0.092 -0.054
Precipitation of Driest Quarter -0.257 -0.156 0.177 -0.214 0.308 -0.143
Precipitation of Warmest Quarter -0.251 -0.050 -0.109 0.297 0.049 -0.540
Precipitation of Coldest Quarter 0.041 -0.438 -0.013 -0.282 0.159 0.472

Standard Deviation 3.084 1.809 1.515 1.323 0.882 0.716

Table S3: Principal Components 1-6 of the 19 WorldClim Bioclimatic Variables for median municpality-years
in Brazil, 2000-2019.
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Figure S3: Screeplot of variance and cumulative variance explained by the first n principal components, with 95% of
cumulative variance indicated by the dotted line.
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Figure S4: Plot of Climate Covariates, specified for both the Bernoulli process (π) and Poisson process (λ) as each
municipality-year’s location in principal component space of the 19 WorldClim Bioclimatic Variables.
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Figure S5: Differences in parameter estimates between the main smoothing model and the climate covariate model.
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