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Abstract

Traumatic brain injury and neuro-degenerative diseases
leave people dependent and with a low quality of life. Several
technologies have been proposed to connect the central ner-
vous system to silicon circuitry and thereby circumvent the
damaged nervous tissue that is impairing normal function.
These technologies rely upon a language of subtle move-
ments within a patient’s capability to direct computer op-
erations, however, selecting the proper abstraction for even
a task as simple as moving a computer cursor can be chal-
lenging. Involuntary movements can create noise and false
positives for the brain-computer-interface (BCI) receptors,
and non-intuitive abstractions can be a barrier for adoption
by neurologically damaged patients. We therefore introduce
Visualization of Arrow Movements (VAM) as a set of men-
tal tasks for controlling cursor movements in a BCI system.
The performance of VAM was evaluated by six untrained
subjects via 10-fold cross validation using band power and
k-Nearest Neighbor classification methods as well as linear
discriminant analysis (LDA) after spatial filtering. The bi-
nary classification accuracy in recognizing VAM tasks from
each other was between 92% and 100% for four subjects and
between 66% and 72% for the other two participants, which
suggests that the tasks are most intuitive for even untrained
persons. Non-EEG analysis revealed that this performance
does not originate from ocular or other facial movements,
but from cerebral electrical activity. The high classification
accuracy and intuitive abstraction suggest that VAM is a
promising abstraction for BCI systems.

Keywords Brain Computer Interface • Mental tasks •
Electroencephalography • Motor imagery • Rehabilitation

1 Introduction

Brain Computer Interface (BCI) systems uniquely allow par-
alyzed patients to communicate with others and thereby rad-
ically improve their quality of life [1]. BCI systems control

diverse equipment such as prosthetic limbs and wheelchairs
with computers that interpret specific mental activity via
Electroencephalography (EEG) [2,3] as computer signals to
control machinery [4, 5], as an alternative to more invasive
procedures such as those that are being develeoped by Neu-
ralink [6]. BCI relies on the efficiency and accuracy of meth-
ods that detect, preprocess, extract a patient’s mental sig-
nal [7–10]. These methods can importantly be augmented
with Machine Learning algorithms that adaptively sort sig-
nal from noise [11]. The selection of imaginary mental task
to most effectively transmit as a computer signal [12, 13] –
such as multiplying large numbers; tracing a letter; rotating
geometric figures; visualizing numbers being counted on a
board; visualizing a word; and imaginary limb movements
– is therefore imperative for BCI systems, and remains a
bottleneck to their adoption. Motor Imagery (MI) [14] –
such as imagining hand movements – is the most popular
mental task used for controlling cursor movements in BCI
and has exhibited high performance and robustness for di-
verse patients [15], yet it remains susceptible to false posi-
tives like other abstractions: e.g. involuntary eye and facial
movements [16]. MI abstractions generally, like other mental
tasks, do not intuitively relate to the computer operations
that they represent, which further hinders their adoption.

We therefore investigated the efficacy of several intuitive
MI abstractions – Visualization of Arrow Movements (VAM)
– to control a computer cursor. These abstractions further
leverage the fact that moving objects stimulate more brain
activity than stationary objects, and therefore may be bet-
ter suited for BCI sensors [17]. Six untrained volunteers
employed four VAM that imagined hitting an arrow: from
above (to move the cursor down), from below (to move the
cursor up), from right (to move the cursor left), and from left
(to move the cursor right). The subjects were measured via
EEG, similar to other preliminary work on mental tasks [18].
The up and down mental tasks, and the left and right men-
tal tasks, were difficult to distinguished; hence, only the
Down Arrow Movement (DAM) and Right Arrow Movement
(RAM) in fig. 1 were used for subsequent study, since they
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(a) DAM: Imagining a
down arrow hitting a
square from the top

(b) RAM: Imagining a
right arrow hitting a
square from the left

Figure 1: Mental tasks and their associated instructions.
This pair of mental tasks was sufficient to localize a cursor
anywhere on a computer screen that was programmed with
continuous borders.

are sufficient for screens with continuous borders. Involun-
tary eye movements were dispelled as a source of overwhelm-
ing noise in EEG channels by monitoring eye movements
and muscle movements as well as employing spectral anal-
ysis and classification techniques. Our results suggest that
untrained persons can rapidly master VAM as an intuitive
means of controlling a computer cursor, and suggests that
this MI has medical utility BCI applications.

2 Methods

2.1 Experimental setup and data acquisi-
tion

Six healthy individuals, aged 25-35, were selected to evaluate
the performance of VAM. Subjects 2, 3, 4, and 6 (S2, S3, S4,
and S6) were male while subjects 1 and 5 (S1 and S5) were
female. Subjects S1, S2, S3, S5, and S6 were right-handed
and S4 was left-handed. Ethical clearance (2009/EC/36)
was obtained for recording of EEG, and volunteer consent
was obtained after explaining the experimental procedure
and that they will be paid an honorarium for their par-
ticipation. The Mindset – an 24R amplifier system manu-
factured by NeuroPulse-Systems LLC, USA – was used to
record the EEG signals, which consisted of 24 differential
input channels of 90 dB amplifier gain and 60 dB signal-to-
noise ratio. ECI Electro-Cap electrode system II manufac-
tured by Electro-Cap International Inc was used to capture
EEG signals on the scalp. The EEG electrode placement was
based on standard international 10-20 system [19], which in-
cludes 20 channels: Fp1, Fp2, F7, F3, Fz, F4, F8, C3, Cz,
C4, P3, Pz, P4, T3, T4, T5, T6, O1, O2 and G (ground
electrode). Two ear electrodes were also connected to the
amplifier as reference electrodes in addition to the electro-
cap electrodes. The impedance of these electrodes was mea-
sured, via an NPS impedance meter (model 1089NP) manu-
factured by NeroPulse Systems, and maintained for all elec-
trodes < 3KΩ. A sample rate of 256

second was used.
The role of noise from electrooculography (EOG) and elec-

tromyography (EMG) in VAMmental tasks was investigated
by examining EOG signals from three different locations sur-

Figure 2: Schematic diagram for the short training session
and the real experimental setup showing the time durations
for a single trial.

rounding the left eye, since eyes move in unison. Trials where
eye blinks or facial movements were observed were discarded,
and the affected trial was repeated. The same electrodes for
eye movements also monitored involuntary muscles move-
ments such as EOG and EMG artifacts. EEG data was
recorded via Mindmeld 24 Data acquisition software, and a
program called Alarm was developed to inform each subject
about the forthcoming mental task, and when a recording
starts and ends, which were signaled via short beeps of dif-
ferent tones. Subjects were primed to visualize the proper
VAM before the recording sessions by being shown animated
images of DAM and RAM, where a single arrow hits a black
cross in fig. 1. Subjects were seated comfortably, with arms
and hands relaxed on armrests, during the recording ses-
sions, and looked at a black cross on a white screen ≈ 1.5m
in front of them to keep their eyes open and minimally mov-
ing during the trials. This experimental design in fig. 2 was
repeated for 240 trials of each of the three mental task, which
resulted in 720 recordings per subject.

The detectability of EOG signals from eye movements ne-
cessitated a separate experiment where subjects performed
RAM while moving their eyes side-to-side, performed DAM
while moving their eyes up-and-down, and performed both
of these VAM mental tasks 1) without moving their eyes,
2) while slightly moving their eyes at a normal speed, and
3) while slightly moving their eyes at a slow speed. EMG
was not recorded for facial muscle movements since data
was available from literature [16]. The results from these
experiments are illustrated in fig. 3.

2.2 Preliminary investigation on signal
processing and classification

All calculations were conducted in MATLAB. The EEG
signals from each channel were constrained to 1Hz <
freqEEG < 48Hz with a Butterworth filter that enhances
data quality by mitigating noise [20]. This frequency range
importantly covers: Delta and Theta ([1, 7] Hz), Alpha
([8, 12] Hz), Beta ([13, 29] Hz) and Gamma ([30, 48] Hz)
brain frequencies. Test data for feature vector construc-
tions were examined via three methods – Band Power, Down
Sampling, and Principal Component Analysis [21]. Band
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Figure 3: Typical EOG signals recorded for three situations
described in the text. Large changes occurred in EOG sig-
nals when the subject moves eyes slightly. Even when sub-
ject moves eyes slowly, changes in EOG can be easily iden-
tified. The above graphs are drawn for the data recorded
from subject S1.

Power, which is based on Fourier Transform, outperformed
the other methods, and was utilized for subsequent compu-
tations. The cut-off frequencies fk

low and fk
high of the kth

band were calculated

fk
low = fmin + (k − 1) ∗∆

fk
high = fmin + k ∗∆

(1)

with fmin = 1 Hz, ∆ as the band width for each partition
of the 1Hz < freqEEG < 48Hz range, and fmax = 48 Hz.
Secondly, VAM performance was evaluated by varying be-
tween [4, 36] bands for each subject, where 1.3Hz corre-
sponded to 36 bands and 12Hz corresponded to 4 bands.
Common classification methods for evaluating VAM perfor-
mance were evaluated: linear and non-linear Discriminant
Analysis, k-Nearest Neighbor (kNN) classification, and Sup-
port vector machines (SVM) with various kernals. Both
kNN and SVM exhibited reasonable accuracy with our data,
however, some SVM calculations did not converge within a
practical number of iterations; hence, kNN was used to as-
sess the performance of VAM in combination with bandpass
filtering for preprocessing and Band Power for feature vec-
tor construction. The most discriminating information from
the VAM mental tasks was furthermore obtained by Com-
mon Spatial Patterns and classified with linear discriminant
analysis (LDA) [8]. The preliminary classification results re-
veal that no relative importance could be assigned to any of
the spectral bands which are common to all the subjects.
First, the total data set was split: one half was used to

identify optimal parameters, such as the most effective chan-
nels, bandpower, and classification parameters for each sub-
ject; the other half was used to evaluate the performance of

Subjects Channels
S1 Fp1, Cz, C4, T4, Pz
S2 Fp1, Cz, C4, T4, Pz
S3 Fp1, F8, C4, T4, Pz
S4 Fp1, Cz, F8, T4, Pz
S5 Fp1, Cz, C4, T4, Pz
S6 Fp2, Cz, C3, T5, P3

Table 1: The best 5
20 channels for each subject.

VAM. The most effective five EEG channels of each subject
are presented in table 1, which represent the fewest channels
that still retain classification accuracy. The frequency range
[1, 48] Hz was used for bandpass filtering and binary clas-
sification of VAM, where non-overlapping bands have equal
band widths for Band Power in feature vector constructions
and 11 nearest neighbors in kNN classification. Performance
P of each subject with 10-fold cross validation was calcu-
lated P = 100 ∗ Ns

N as the percent of the total number of
mental tasks N that were successfully identified Ns.

3 Results

3.1 Investigation of possible contamination
of EEG due to EMG/EOG during
VAM

The possible contamination of eye or facial muscles move-
ments in the VAM EEG signals was dispelled through a few
steps. First, the EEG and EOG signals were monitored for
eye movements or blinks during the recording, with previous
EOG recordings in fig. 3 as a reference. This effort was facil-
itated by eye and facial these movements usually producing
large distinguishable signals. Second, spectral analysis of
EEG channels, which have classified performance, were used
to indicate noise in EOG and EMG, where the presence of
such contaminating noise in DAM or RAM is expected to
manifest larger peaks throughout the EEG frequency range.
The DAM and RAM spectra were therefore compared with
the baseline spectra, where no observable difference was ob-
served for any of the EEG channels.

The possibility that subtle eye or facial muscle movements
are undetected in EOG or EMG signals and spectra but
influence the EEG signals was also considered. The clas-
sifications of DAM and RAM using only the EEG channel
were compared with those from only the EOG and EMG
channels, with separately optimized parameters of bandpass
filtering, feature vector construction, and classification for
each subject. The best performance for each subject in ta-
ble 2 ranged between [45%, 69%] in binary classification of
DAM and RAM while the EEG channels were much higher,
which demonstrates that EEG signals from VAM are not
contaminated by eye or facial muscle movements.

VAM performance from binary classification in table 3
reveals that the classification accuracy of all the subjects
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Subjects EEG mean EOG & EMG mean
S1 89.6± 0.42 56.6± 2.35
S2 83.7± 0.28 68.9± 1.9
S3 92.7± 0.38 50.3± 4.24
S4 68.8± 0.13 51.9± 2.12
S5 83.4± 0.19 44.9± 4.24
S6 67.7± 0.25 44.9± 5.89

Table 2: The performance of visualization of arrow move-
ments (DAM vs. RAM) using EGG or EOG + EMG.

Subjects DAM-BL RAM-BL DAM-RAM
S1 90.8± 0.23 86.5± 0.19 82.6± 0.0
S2 87.2± 0.19 88.4± 0.46 77.8± 0.37
S3 83.8± 0.18 85.4± 0.37 87.2± 0.25
S4 87.7± 0.37 82.8± 0.35 64.6± 0.88
S5 93.6± 0.04 92.6± 0.18 77.7± 0.18
S6 84.7± 0.20 80.7± 0.28 68.7± 0.36

Table 3: Mean performances of VAM in k-NN based binary
classification for channels given in table 2, where BL denotes
baseline.

except S3 exceeded the baseline versus DAM, in the range
[84%, 94%]. and versus RAM, in the range [81%, 93%]. The
classification accuracy of RAM versus DAM for the major-
ity of the subjects was similarly between [78%, 87%]; yet,
performance for the remaining subjects was low, between
[65%, 69%].

The head volume effects were reduced via spatial filters to
enhance the classification accuracy. Common spatial pat-
terns were compared in table 4 with the support of LDA
classifier, similar to other studies. The maximum possible
number of filters (m = 10) for each direction were used in
the classifier, which significantly improved the classification
accuracy from previous studies [22]. The classification accu-
racy of S1, S2, S3, and S5 were above the baseline between
[90%, 100%] for DAM versus [88%, 95%] for RAM. The clas-
sification performance of S6 interestingly deteriorated by
11% and 14% for DAM and RAM versus the baseline, re-
spectively, compared to kNN, and the classification accura-
cies of DAM and RAM for this same subject did not improve
from spatial filtering. These anomalous results with S6 are
not yet understood; nevertheless, 5

6 subjects exhibited im-
provement in the classification accuracy from LDA, which
suggests that alternative enhancement methods to spatial
filtering may be suitable.

3.2 Potential Physiological Origin of VAM

The priming of subjects with images before recording indi-
cates the possibility of leveraging visual memory and spa-
tial imagery with DAM or RAM, and likely activate the vi-
sual cortex, somatosensory cortex, and motor cortex, among
other regions of the cerebral cortex. The possible Brodmann
areas [23] and their corresponding functions that are acti-

Subjects DAM-BL RAM-BL DAM-RAM
S1 90.0 90.0 96.6
S2 95.0 88.3 93.3
S3 100.0 93.3 100.0
S4 81.6 78.3 71.6
S5 96.6 95.0 91.6
S6 73.3 66.6 66.0

Table 4: Classification accuracy for VAM in binary classifi-
cation using LDA after spatial filtering.

vated during VAM are articulated in table 5, which reveals
how VAM mental tasks are processed by the brain.

The EEG channels Fp1, Cz, C4, T4, and Pz in the 10 –
20 system generally exhibited the best classification perfor-
mance. It is interesting to note that despite a subtle discon-
nect between electrode activity and brain activity directly
below due to volume conduction, the Brodmann areas near
these five channels belong to the list of possible Brodmann
areas that are associated with VAM.

4 Discussion

Brain-computer-interface technologies offer a profound
means of improving the lives of paralyzed patients and other
persons with debilitating neurological conditions. We in-
vestigated several mental tasks that more intuitively relate
to moving a computer cursor and require minimal training,
which may facilitate adoption by patients. All but one test
subjects in our study exhibited > 80% accuracy in binary
classification of VAM versus the baseline. Potential inter-
ference of eye or facial muscles movements in VAM mea-
surement was discredited by monitoring the subjects’ eyes,
examining EOG and EMG signals, and classifying DAM and
RAM offline using exclusively EOG and EMG signals. Facial
movements were monitored through EMG since involuntary
muscle movements are only expected on the head. The lack
of interference contamination from facial movements is cor-
roborated by spectral analysis of EEG signals, where EOG
and EMG noise contamination was not observed for any of
the EEG channels in any subject. These observations, in ad-
dition to the poor classification results from EOG and EMG
signals, indicate that the EEG signals used in classifying of
DAM and RAM investigation are not contaminated from
EOG and EMG artifacts.

Suitable channels for each subject have to be predeter-
mined at the training stage to practically apply VAM and
accommodate subject variability This variability, however,
may manifest from insufficient training with the mental
tasks. Discrepancy in the accuracy of binary classification of
RAM versus DAM may be attributable to the use of k-NN
classification after constructing feature vectors with Band
Power, since the SVM linear method out-performed kNN
for most subjects.

Spatial filters reduced effects from the head-volume con-
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Brodmann Area Brain region Associated activities

Area 1
Postcentral Gyrus Primary

This is the main sensory receptive area
for the sense of touch. It also participates

somatosensory area (SI)
in movement organization and performance as well as
“mirror neurons” that are vital to understanding
anticipation, imitation, and imagery.

Areas 5 & 7 Somatosensory Association Cortex
These areas participate in processing visuo-spatial,
activities spatial imagery, mental rotation, similar praxic
(motor planning) abilities and imitation of motor learning.

Areas 9 & 10
Dorsolateral / Anterior

Areas 9/10 have a substantial involvement in memory,

Prefrontal Cortex
particularly memory encoding, memory retrieval,
spatial memory and working memory.

Areas 17, 18, 19
Primary (V1), Secondary (V2),

In addition to main functions of V1, V2, and V3,

Associative (V3) Visual Cortex
these areas also participate in processing of visual patterns,
visuo-spatial information, tracking motion,
visual attention and visual mental imagery tasks.

Area 21 Middle Temporal Gyrus
It has been reported that this area is associated with function
such as observation of motion which is related to VAM.

Area 37 Fusiform Gyrus
This area is participating in functions like
visual motion processing and visual fixation

Area 40 Supramarginal Gyrus
Brodmann area 40 is associated in controlling movements
guided by visuo-spatial information and complex
motor activity such as motor planning plays.

Table 5: VAM mental tasks and associated Brodmann areas

ductor and improved local oscillations for motor imagery
mental tasks. Spatial filtering also enhanced the classifica-
tion accuracy significantly for VAM mental tasks: for ex-
ample, the binary classification accuracy from Band Power
and the kNN classifier improved 15% after spatial filtering
in four subjects. Several Brodmann areas that may be-
come activated were also identified, although, our limited set
of 20 channels was insufficient to localize VAM activity on
the scalp. High resolution cortex images from high-density
EEG, fMRI or fNIRS during VAM mental tasks would be
necessary to localize the neuro-physiology from VAMmental
tasks.

The offline study presented here demonstrates the abil-
ity of VAM to control both horizontal and vertical cursor
movements, and suggests applicability to in situ BCI sys-
tems. We believe that VAM, as an intuitive mental abstrac-
tion of controlling a computer mouse, will be more readily
adopted by patients relative to contemporary options and
can thereby improve the lifves of paralyzed and neurolog-
ically damaged persons. VAM may further be hybridized
with other visualizations, such as finger movements, to in-
tuitively simulate clicking mouse buttons and improve signal
accuracy, although, this may limit accessibility of the MI for
some paralyzed patients.
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