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ABSTRACT 

Introduction. Community-acquired pneumonia (CAP) is associated with high morbidity 

and hospitalization rate. In infectious diseases, host genetics plays a critical role in 

susceptibility and immune response, and the immune pathways involved are highly 

dependent on the microorganism and its route of entry. 

Objective. To identify genetic risk loci for CAP using a one-stage genome-wide 

association study (GWAS). 

Methods. We performed a GWAS on 3,765 Spanish individuals, including 257 adult 

patients hospitalized with CAP and 3,508 population controls. Pneumococcal CAP was 

documented in 30% of patients; the remaining 70% were selected among patients with 

unidentified microbiological etiology. Genotyping and imputation allowed testing the 

association of 7,6 million variants using logistic regressions. Subsequently, we 

prioritized genes and likely causal variants based on Bayesian fine mapping and 

functional evidence. Imputation and association testing of the classic HLA alleles and 

amino acids was also conducted.  

Results. We revealed six independent sentinel variants that were genome-wide 

significant (p<5x10
-8

), three located on chromosome 6p21.32, and one for each of the 

chromosomes 4q28.2, 11p12, and 20q11.22. Our analyses prioritized C4orf33 on 

4q28.2, TAPBP on 6p21.32, and ZNF341 on 20q11.22. Interestingly, genetic defects of 

TAPBP and ZNF341 are previously known inborn errors of immunity predisposing to 

bacterial pneumonia, including pneumococcus and Haemophyilus influenzae. 

Associations were all non-significant for the classic HLA alleles.  

Conclusions. We completed a GWAS of CAP and identified four novel risk loci involved 

in CAP susceptibility.  
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INTRODUCTION 

Infections are one of the main causes of death globally and nearly one in eight 

deaths continue to be due to bacterial and viral infections (Lanks et al., 2019). 

Community acquired pneumonia (CAP) is considered a major public health problem 

due to its high morbidity and mortality (Mortensen & Metersky, 2012; Theilacker et al., 

2021). Yearly CAP incidence varies widely worldwide, in Europe it ranges from 

20.6/10,000 in Iceland (Bjarnason et al., 2018) to 79.9/10,000 persons in the UK 

(Millett et al., 2013). The available data for adults in Spain estimates 46.3 cases per 

10,000 inhabitants (Rivero-Calle et al., 2016). One-ninth of hospitalized patients with 

CAP require admission to the intensive care unit (ICU) due to complications such as 

severe respiratory failure or septic shock (Ranzani et al., 2017; Rello & Perez, 2016). In 

fact, mortality is restricted mostly to the patients that are hospitalized (6–20%) 

(Ramirez et al., 2017; Welte et al., 2012), which could be as high as 50% among those 

admitted to the ICUs (Rello & Perez, 2016).  

Host genetics plays a central role in the response against pathogens and 

contribute to explain the differences in susceptibility and severity among patients 

(Casanova & Abel, 2022; Ishak et al., 2022; Lees et al., 2019). Specifically, SNP-based 

heritability assessments in pneumonia support that genetic host factors explain a 

greater proportion of severity than of susceptibility (Chen et al., 2021). However, there 

is a paucity of genetic studies aimed at identifying genetic factors involved in CAP 

susceptibility or prognosis. In addition, most of them have focused on candidate genes, 

especially on genes involved in the immune response such as those encoding the 

mannose-binding lectin (MBL), the surfactant proteins A (SFTPA1, SFTPA2) and D 
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(SFTPD), or the interleukins (IL-6, IL-10), to name a few (Gallagher et al., 2003; Garcia-

Laorden et al., 2008; García-Laorden et al., 2011; Kloek et al., 2019; Schaaf et al., 2005; 

Solé-Violán et al., 2011). A few other studies have relied on genome-wide association 

studies (GWAS) to reveal pneumonia susceptibility loci in the HLA, MUC5AC, IL6R, and 

TNFRSF1A (Reay et al., 2022; Tian et al., 2017), and pneumonia severity loci in CFTR, 

R3HCC1L, and HBB (Chen et al., 2021). However, it must be noted that typically these 

studies have not distinguished the source of infection, implying that the patients are a 

heterogeneous mixture of patients with CAP and with nosocomial infections, i.e., with 

hospital-acquired pneumonia (HAP).  

CAP is typically caused by several bacteria, including Streptococcus pneumoniae 

and Haemophylus influenzae, or viruses (Gadsby et al., 2016; Lanks et al., 2019; 

Musher et al., 2017; Su et al., 2023). S. pneumoniae is the leading cause of CAP and 

causes about one-third of hospitalized cases in Europe, although these frequencies are 

underestimated (Dion & Ashurst, 2022; Gadsby et al., 2016; Johansson et al., 2010; 

Musher et al., 2017; Pick et al., 2020; Torres et al., 2018, 2021). The immune response 

varies widely depending on the causative pathogen. Inborn errors of immunity (IEI, 

usually referred to as primary immunodeficiencies) strongly support that 

predisposition to infection by different microorganisms usually relies on different 

components of the immune system. For example, IEI impairing type I interferon-

mediated immunity predispose to susceptibility to severe pneumonia by SARS-CoV-2 

or influenza viruses, whereas IEI predisposing to pneumococcal infection are 

particularly involved in opsonization or phagocytosis of opsonized bacteria by splenic 

macrophages (Boisson, 2020; Casanova & Abel, 2021, 2022; Picard et al., 2003; Su et 

al., 2023). Therefore, studies aimed to identify the genetic basis of susceptibility or 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.29.23294759doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.29.23294759
http://creativecommons.org/licenses/by/4.0/


5 
 

severity of infections may benefit from a precise homogenization of the source of 

infection and the causative microorganism.  

Here we have conducted a GWAS of hospitalized patients with the only 

diagnosis of CAP, focusing on patients with pneumococcal infection or without 

identified causal microorganism. 

MATERIAL AND METHODS 

Study design 

We conducted a one stage case-control GWAS of adult subjects of European 

ancestry from Spain. A total of 259 adult hospitalized patients with CAP diagnosis were 

recruited between March 2001 and 2016 from six Spanish hospitals and constituted 

the cases.  It is assumed that pneumococci cause most CAP cases in which negative 

test results were found using conventional microbiological methods (Gadsby et al., 

2016; Johansson et al., 2010; Torres et al., 2018). Therefore, to keep homogeneous the 

causative microorganism of CAP, only patients with confirmed pneumococcal infection 

or those in whom no identified causative microorganism was identified were included. 

These cases have been used in previous candidate gene association studies of CAP 

(Garcia-Laorden et al., 2008; García-Laorden et al., 2011, 2020; Solé-Violán et al., 2011, 

2021). The study inclusion criteria and phenotype descriptions are available in the 

Supplementary material. The DNA from cases were extracted from whole blood 

samples combining standard phenol-chloroform procedures with automated column-

based nucleic acid purifications as previously described (Garcia-Laorden et al., 2008; 

García-Laorden et al., 2011, 2020; Solé-Violán et al., 2011, 2021). 
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As controls, we used the genetic data available from 3,526 donors from the 

Spanish DNA Biobank (https://www.bancoadn.org), collected from the National Blood 

Service and have been used in a previous GWAS of severe COVID-19 (Cruz et al., 2022). 

All control participants were clinically uncharacterized unrelated adults that self-

reported being of Spanish origin and the absence of personal or familial history of 

diseases, such as infectious, cancerous, circulatory, endocrine, mental, or behavioral, 

nervous, visual, auditory, respiratory, and immunological, among others. 

Written informed consent was obtained from all participants or their 

representatives. The study was conducted according to The Code of Ethics of the 

World Medical Association (Declaration of Helsinki), and the Research Ethics 

Committees from the coordinating centers approved this study (Hospital Universitario 

de Gran Canaria Dr. Negrín Ethics Committee FIS PI 16/00759; Hospital Universitario 

Nuestra Señora de Candelaria Ethics Committee PI-19/12). 

 Genotyping, quality control, and variant imputation 

Both cases and controls were genotyped with the Axiom Spain Biobank Array 

(Thermo Fisher Scientific) following the manufacturer’s instructions in the Santiago de 

Compostela Node of the National Genotyping Center (CeGen-ISCIII; 

http://www.usc.es/cegen). This array contains a total of 757,836 variants among which 

rare variants selected from the Spanish population are included. Variant calling was 

performed using the Axiom Analysis Suite software following the manufacturer's 

recommendations.  

The quality control steps were conducted for the cases and controls considered 

together using PLINK v.1.9 (Chang et al., 2015) and R v.4.1.1 (R Core Team, 2022) for 
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the variants located in autosomes. The filtering steps excluded the genetic variants 

with a minor allele frequency (MAF) <1%, a genotyping rate <95%, or showing 

evidence of large Hardy-Weinberg equilibrium deviations (HWE, p<1.0x10
−6

). 

Moreover, the individuals with some degree of relatedness (PIHAT > 0.2), deviations in 

heterozygosity, or incomplete clinical data, were excluded from the study. We also 

conducted a principal component (PC) analysis (PCA) with PLINK to discard genetic 

outliers and to derive the main PCs to then correct for the effect of the population 

stratification in the stage of association modelling. These procedures left us with a 

total of 603,603 genetic variants for 257 hospitalized CAP patients and 3,508 controls. 

Variant imputation was conducted on the resulting dataset using the Michigan 

Imputation Server, relying on Eagle v.2.4 (Loh et al., 2016) for pashing and the 

Haplotype Reference Consortium release 1.1 (2016) as the reference panel (McCarthy 

et al., 2016). 

Statistical analysis and the functional assessment of associated loci 

Variant association testing 

To test the association of genetic variants with CAP, we used additive logistic 

regression models across all the imputed variants satisfying a good imputation quality 

(Rsq≥0.3) and a MAF≥1% using EPACTS v.3.2.6 

(http://genome.sph.umich.edu/wiki/EPACTS). The association model was adjusted for 

sex and the first 3 PCs and the results were assessed using the genomic inflation factor 

(λ) calculated with the gap package for R. Variant associations were considered 

statistically significant at a threshold p<5.0x10
-8

. Independent sentinel variants were 
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identified as those surpassing p<5.0x10
-8

 and showing weak linkage disequilibrium 

(r
2
<0.1) with others in each locus after clumping in PLINK. 

A sensitivity analysis of the sentinel variants was conducted by including other 

covariates in the logistic regression model (e.g., age), and also testing their association 

with other two recorded severe pneumonia outcomes in the case series by separate 

and combined: i) severe sepsis or septic shock according to the criteria available at the 

moment of the start of the recruitment (Bone et al., 1992); and ii) severe respiratory 

failure, defined as oxygen saturation <90% on room air, or a partial pressure of oxygen 

[PaO2]<60 mmHg.  

Bayesian fine mapping 

We performed a fine mapping on the association results around the 

independent sentinel variants to identify the credible variant set that most likely 

harbors the causal variant with 95% confidence, assuming that there is only one causal 

variant in each locus and that such variant has been tested in the study. For this, we 

used the corrcoverage package (Hutchinson et al., 2020) for R to calculate the 

posterior probabilities of the variant being causal for all polymorphisms within a region 

of 2 Megabase pairs with the leading variant and had an r
2
>0.1 with it. The variants 

were considered part of the credible set until their sum of probabilities was ≥ 0.95. 

Functional analysis of the variants 

To assess the biological consequences of the variants included in the credible 

sets of the associated loci, we functionally annotated the variants using Ensembl 

Variant Effect Predictor (VEP) v.105 to obtain the scaled Combined Annotation 

Dependent Depletion (CADD) score v.1.6 of each variant. In addition, we used the 
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Variant-to-Gene (V2G) score to prioritize the genes that were most likely affected by 

the functional evidence based on expression quantitative trait loci (eQTL), chromatin 

interactions, in silico functional predictions, and distance between the prioritized 

variants and transcription start site (TSS), based on data from the Open Targets 

Genetics portal (Ghoussaini et al., 2021). To predict the biological impact of the 

variants on the prioritized genes, we used the Mutation Significance Cutoff (MSC) v.1.6 

of genes (Itan et al., 2016) with a confidence interval of 99% to interpret the CADD 

score. For those variants deemed to predict a high biological impact (with a CADD > 

MSC), we performed an in silico analysis to determine their potential regulatory roles, 

including the effects in enhancer and promoter histone marks, DNase I accessible sites, 

and other altered motifs by using HaploReg v.4.2 (Ward & Kellis, 2012) and 

RegulomeDB (Boyle et al., 2012). 

To assess tissue expression of the genes prioritized in the associated loci and 

the existence of expression quantitative trait loci (eQTL) in the sentinel variants on 

artery, esophagus, lung, and whole blood, we used The Genotype-Tissue Expression 

(GTEx) Release v.8 data (https://www.gtexportal.org/home/). In parallel, we accessed 

a public transcriptomic dataset (GSE65682) available from the Gene Expression 

Omnibus (GEO) to assess expression differences in the genes prioritized in the 

associated loci among 108 ICU patients with CAP diagnosis and 42 healthy controls as 

described in the study by Scicluna et al (Scicluna et al., 2015). The statistical differences 

in gene expression between healthy controls and the patients with sepsis by CAP were 

evaluated using a t-test for the prioritized genes on each locus. Detailed information of 

this analysis is available in the Supplementary material. 
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Association of classic HLA alleles and amino acids  

Due to the sequence complexity of the human leukocyte antigen (HLA) 

complex, its key role in immunity, and the previously reported association with 

pneumonia susceptibility (Tian et al., 2017), we also performed a targeted association 

testing of the variation in genes of the HLA complex with CAP. To this end, we imputed 

the genetic variation at eight classical HLA genes (-A, -B, -C, -DPA1, -DPB1, -DQA1, -

DQB1, and -DRB1) with the Michigan Imputation Server using four-digit Multi-ethnic 

HLA v.1 as a reference panel (Luo et al., 2021). Subsequently, we tested the association 

of the amino acids and the classical four-digit HLA alleles for the alleles with a 

frequency >1%. For this purpose, we followed the workflow described in HLA-Tapas 

(Luo et al., 2021), and the significance was established through the Bonferroni 

correction at p<1.93x10
-5

 for the amino acids and p<4.35x10
-4

 for the classical HLA 

alleles. 

RESULTS 

The study tested the association with CAP in a total of 7,638,472 variants from 

3,508 controls and 257 patients (Figure 1), in which S. pneumoniae was identified in 

30% of cases, and the remaining 70% were patients where the causative 

microorganism was not identified. The clinical and demographic characteristics of the 

study subjects are shown in Supplementary Table 1. Overall, we did not detect 

inflation of the association results as the lambda of the study barely deviated from the 

expected under the null (λ=1.04). Association testing revealed a total of 67 genome-

wide significant variants (Supplementary Table S2) which were located on 
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chromosomes 4q28.2, 6p21.32, 11p12, and 20q11.22. Regional association plots for 

these results are provided in the Supplementary Figure S1.  

 

Figure 1. Manhattan plot of the genome-wide association study results for adult 

CAP. The x-axis represents the chromosome positions while the y-axis represents the 

transformed p-values (–log10 p-value). The horizontal line represents the genome-wide 

significance threshold (p-value=5.0×10
−8

). The inset of the top right represents the 

Quantile-Quantile (QQ) plot with the observed (y-axis) vs. the expected (x-axis) -log10 

p-values of the association study (inflation λ= 1.04). 

 

There were six independently associated sentinel variants (Table 1): 

rs34955650 at 4q28.2 (p=2.41x10
-8

) intergenic to C4orf33 and LINC02466; three at 

6p21.32, rs456261 and rs2076775 that are both intronic to PFDN6 (p=4.00x10
-28

) and 

SYNGAP1 (p=7.26x10
-10

), respectively, and rs213226 that is intergenic to RING1 and 

HCG25 (p=8.64x10
-9

); rs117203606 at 11p12 (p=2.90x10
-8

) which is intergenic to 

LINC02740 and HNRNPKP3; and rs45577437 at 20q11.22 (p=1.21x10
-14

) that is exonic 

to ZNF341. The latter locates in exon 5 of ZNF341 and predicts a missense variant from 

a nonpolar to a polar uncharged amino acid at position 185 of the protein 
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(p.Pro185Ser). The functional annotation suggests that rs45577437 may have a 

biological impact based on its high CADD score (CADD=17.92), despite it is lower than 

the MSC for this gene (MSC=31.62). Models adjusting for other covariates did not 

substantially modify these results (Supplementary Table S3). 

Table 1. Results of the sentinel variants independently associated with CAP. 
Variant Position p-value MAF OR [95% CI] A1/A2 Func.Gene Nearest gene(s) 

rs34955650 4:130254264 2.41x10
-8 0.05 2.46 [1.80-3.38] C/T intergenic C4orf33, LINC02466 

rs213226 6:33209310 8.64x10
-9 0.17 1.84 [1.49-2.26] A/G intergenic RING1, HCG25 

rs456261 6:33258443 4.00x10
-28 0.02 8.23 [5.65-11.99] G/A intronic PFDN6 

rs2076775 6:33394253 7.26x10
-10 0.14 0.50 [0.41-0.63] C/G intronic SYNGAP1 

rs117203606 11:42330132 2.90x10
-8 0.11 0.21 [0.12-0.36] G/A intergenic 

LINC02740, 

HNRNPKP3 

rs45577437 20:32341041 1.21x10
-14 0.44 0.46 [0.37-0.56] C/T exonic ZNF341 

Position: chromosome and base pair according to GRCh37/hg19; MAF: minor allele frequency in the study population; OR: 

odds ratio; CI: confidence interval; A1: Non-effect allele; A2: Effect allele; Func.Gene: gene location. 
 

The results for the association of the two severe pneumonia outcomes 

considered by separate or combined (i.e., severe sepsis or septic shock and severe 

respiratory insufficiency) for the six independently sentinel variants are shown in 

Supplementary Table S4. For these sub-analyses, despite the low sample size 

reduction, all variants reach significance at the nominal level and the direction of effect 

is still maintained. 

Bayesian fine mapping around each of the four chromosome loci to identify the 

most likely causal variants driving the association was unable to prioritize variants for 

11p12 and 20q11.22. However, it was able to delineate a credible set of 52 variants for 

4q28.2 and 25 variants for 6p21.32 (Supplementary Table S5 and Figure S2). The 

variant from each credible set with the highest V2G score was used to assign the most 

likely gene involved in the association. At 6p21.32, the ranking prioritized the TAPBP 
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gene (V2G max. score=0.41 and MSC=4.26), encoding the TAP binding protein. At 

4q28.2, the C4orf33 gene was prioritized (V2G max. score=0.15 and MSC=4.87). For 

downstream functional analysis, we selected those genetic variants with the highest 

probability of biological effect based on the CADD score from the delineated credible 

sets in the associated loci. For the 6p21.32 locus, we assessed 10 variants 

(CADD>MSC), and the predictions suggest a relevant biological impact since some of 

these SNPs predict the affectation of transcription factor binding and regulatory motif 

and DNase I hypersensitive sites. Furthermore, rs381847, rs2247385, and rs456261 

may affect enhancer (H3K4me1 and H3K27ac) and promoter (H3K4me3 and H3K9ac) 

histone marks in several cell lines, including lung tissue and immune cells. Moreover, 

these 10 variants are eQTLs of immunity genes, including HLA genes and TAPBP 

(Supplementary Table S6). For the credible set of 4q28.2, we selected 13 variants with 

CADD>MSC. Two of these are rs17014611 and rs35004602, both linked to predictions 

of enhancer histone marks affectation in lung and immune cell lines, and DNase I 

hypersensitive sites in fetal lung (Supplementary Table S7). 

According to GTEx, the highest TAPBP gene expression was detected on spleen, 

lungs, lymphocytes, and whole blood. In fact, the three independent sentinel variants 

of 6p21.32 were eQTLs for the TAPBP gene on artery, esophagus, lung, and whole 

blood (Supplementary Table S8). No significant eQTLs were found for any tissue at 

GTEx for the other three independent sentinel variants at chromosomes 4q28.2, 

11p12, and 20q11.22 (rs34955650, rs117203606, and rs45577437). Furthermore, we 

found a significant upregulation of TAPBP (lowest p=1.44x10
-6 

among the four probe 

sets available) and for C4orf33 (p=9.67x10
-5

) among ICU patients with CAP compared 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.29.23294759doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.29.23294759
http://creativecommons.org/licenses/by/4.0/


14 
 

to controls (GEO: GSE65682). ZNF341 did not show a significant gene expression 

difference (Supplementary Figure S3). 

Finally, we assessed the association of 155 classical HLA alleles and the 2,584 

amino acids for eight classical HLA genes with CAP. Despite the key implication of the 

HLA genes in infectious diseases, all associations tested were found non-significant 

(Supplementary Figure S4, and Table S9). 

DISCUSSION 

Here, we describe the results of a GWAS of CAP conducted in Spanish 

population. We identified six independently associated variants from four 

chromosome loci (4q28.2, 6p21.32, 11p12, and 20q11.22) reaching genome-wide 

significance. This GWAS focusing on only CAP patients, enriched for pneumococcus as 

causative etiology, has allowed to identify novel loci associated with CAP susceptibility. 

Mutations at two of these loci, ZNF341 and TAPBP, cause previously known IEIs 

involved in the susceptibility to bacterial infections, particularly pneumonia. 

One of the independent variants detected is located on 4q28.2, intergenic to 

C4orf33 and a long non-coding RNA (LINC02466) which has been involved in cancer (Li 

et al., 2021). Besides, the sentinel variants on chromosome 6 have been previously 

associated with platelet and blood cell count, type-I diabetes, or celiac disease, among 

other traits (GWAS data available at Open Target Genetics). The most significant 

variant, rs456261, is intronic to the PFDN6 gene, which encodes a member of the beta 

subunit of the prefoldin complex involved in protein folding and implicated in 

tumorigenesis (Liang et al., 2020). Gao and colleagues reported that this gene may be 

involved in susceptibility to COVID-19 in patients with lung adenocarcinoma and 
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associated with mortality (Gao et al., 2021). Another intronic variant was detected at 

SYNGAP1, which encodes for the synaptic Ras GTPase activating protein 1 which has 

been associated with neurodevelopmental disorders (Llamosas et al., 2020). Finally, 

another variant was prioritized in 11p12 intergenic to a long non-coding RNA and a 

pseudogene (HNRNPKP3). To our knowledge, these genes have not been associated 

with prior predisposition or severity of infections. However, further studies of 

functional characterization are needed to assess the biological effects of the identified 

genes and variants in pneumonia. 

The sentinel variant of the 20q11.22 locus observed in this study is located in 

exon 5 of ZNF341 and predicts a missense change (p.Pro185Ser). ZNF341 acts as a 

DNA-binding transcription factor, primarily as an activator of Signal Transducer and 

Activator of Transcription STAT3 gene, and, to a lesser extent, a number of other genes 

such as STAT1 (Asano et al., 2021; August, 2018; Béziat et al., 2018; Frey-Jakobs et al., 

2018). STAT3 plays a critical role in responses to many cytokines as well as to several 

growth factors. Autosomal dominant (AD) mutations at STAT3 are the main cause of 

hyper-immunoglobulin E syndrome (HIES). HIES is characterized by elevated serum IgE 

levels, recurrent bacterial and candida infections, eczema with cold staphylococcal skin 

abscesses, and other non-immunologic features that affect the skeleton, dentition, and 

connective tissue. HIES patients have recurrent pneumonia caused by S. aureus, S. 

pneumoniae, or Haemophilus influenzae, and the pulmonary recovery can involve 

abnormalities characterized by bronchiectasis and pneumatoceles (Minegishi, 2021, 

2023; Tsilifis et al., 2021). HIES caused by ZNF341 deficiency has been described as a 

phenocopy of HIES due to STAT3 mutations, although with fewer extrahematopoietic 

manifestations (Béziat et al., 2018; Frey-Jakobs et al., 2018; Minegishi, 2021, 2023; 
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Tsilifis et al., 2021). In addition, the lymphocyte subsets of ZNF341-deficient patients 

closely resemble that of STAT3-HIES, including decreased Th17 cells, T follicular helper 

cells, and memory B cell deficiency (Béziat et al., 2018; Frey-Jakobs et al., 2018; 

Minegishi, 2021, 2023). The susceptibility to pneumonia by pneumococcus and H. 

influenzae in patients with STAT3- and ZNF341-HIES is caused by the defective 

development of B cells and antibody production (Béziat et al., 2018; Frey-Jakobs et al., 

2018; Tsilifis et al., 2021). Based on this evidence, variants affecting the function of 

ZNF341 could also play an important role in CAP and its severity.  

The study also prioritized possibly damaging variants in the TAPBP gene that 

were eQTLs for that gene in different tissues. It also revealed that TAPBP gene 

expression was upregulated among ICU patients with CAP compared to controls, 

although the role of profound inflammatory dysregulation in critical patients cannot be 

discarded. The TAPBP gene encodes the transporter associated with antigen 

processing (TAP) binding protein, also called tapasin. Tapasin is part of the peptide 

loading complex (PLC), which coordinates loading of high affinity peptides onto 

nascent HLA class I (HLA-I) molecules (Blees et al., 2017; Grandea et al., 2000; Grandea 

& Van Kaer, 2001; Jiang et al., 2022; Mantel et al., 2022; Peh et al., 1998; Pishesha et 

al., 2022). Tapasin has a central role in the classical pathway of HLA-I presentation of 

endogenous peptides and in cross-presentation of exogenous antigens by professional 

antigen presenting cells (Mantel et al., 2022). Multiple HLA-I molecules have been 

reported to be tapasin-dependent, among them the HLA-B*08:01 allele (Rizvi et al., 

2014). In spite that a previous GWAS found this class I HLA allele associated with 

pneumonia susceptibility (Tian et al., 2017), HLA-B*08:01 was not associated with CAP 

in our study (p=0.45). Gene defects in TAPBP or in other PLC components cause an 
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extremely rare IEI known as bare lymphocyte syndrome type I (BLS-I) (Darazam et al., 

2023; Hanalioglu et al., 2017; Hanna & Etzioni, 2014; Shrestha et al., 2012; Su & 

Lenardo, 2014; Yabe et al., 2002). Despite the clinical and biological heterogeneity, 

BLS-I patients usually develop symptoms well into late childhood, although some 

patients remain asymptomatic even in adulthood. They are characterized by recurrent 

respiratory tract infections, mostly by S. pneumoniae and H. influenzae, associated 

with the development of bronchiectasis and respiratory insufficiency, as well as to 

cutaneous manifestations (Darazam et al., 2023; Hanna & Etzioni, 2014; Shrestha et al., 

2012; Yabe et al., 2002; Zimmer et al., 2005). It is not clear how defects of HLA-I 

antigen presentation predispose to infections by extracellular bacteria. However, 

impaired antibody production (Kobrynski et al., 2005; Su & Lenardo, 2014; Yucesoy et 

al., 2013), a macrophage survival defect, and/or a defect of the elimination of bacteria 

by macrophages (Lapenna et al., 2017) may be involved. 

We acknowledge some limitations of the study. First and foremost, the study 

was based on a small sample of cases. The increase in sample size will allow revealing 

more susceptibility loci beyond those identified here. Secondly, half of the patients had 

a low Pneumonia Severity Index. However, when the analyses only included the 

patients with severe sepsis or septic shock, or those with severe respiratory 

insufficiency, association results of the sentinel variants were maintained. Thirdly, our 

study lacks a formal assessment of the full spectrum of genetic variants (including 

other types of variation beyond SNPs and small INDELs, and rare variants) for which 

complementary approaches based on Next-Generation Sequencing, such as whole 

exome or genome sequencing, would be necessary. Fourth, the etiology of CAP was 

undetermined in 70% of the patients studied. Previous studies suggest that 
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pneumococci cause most CAP cases in which negative test results were found using 

conventional microbiological methods, particularly in Spain (Gadsby et al., 2016; 

Johansson et al., 2010; Torres et al., 2018). However, infection by other bacteria and 

viruses is still expected. Some other common bacteria in CAP, such as H. influenzae or 

Moraxella catharralis, are also probably increased in the patients without confirmed 

microbial etiology (Gadsby et al., 2016; Johansson et al., 2010; Musher et al., 2017; 

Shoar et al., 2021). These bacteria are also frequently observed in IEI predisposing to 

pneumococcal pneumonia, such as in HIES and TAPBP deficiency (Hanna & Etzioni, 

2014; Shrestha et al., 2012; Zimmer et al., 2005). In addition, a substantial proportion 

of patients with viral infections present with bacterial coinfection, particularly 

pneumococcus (Gadsby et al., 2016; Hedberg et al., 2022; Johansson et al., 2010; Liu et 

al., 2023; Musher et al., 2017). Finally, we used controls that could have introduced 

some bias in the results since, despite hospitalization for CAP was not recorded for 

these donors during the recruitment, we cannot discard that they could develop it 

during their lifetime. These types of controls, however, are widely used in genetic 

studies for multiple infectious diseases by convenience and by providing equivalent 

results as if controls comprise mild or asymptomatic patients (Chen et al., 2021; Cruz 

et al., 2022; Degenhardt et al., 2022). 

CONCLUSION 

In summary, we report four novel loci associated with CAP, including two genes that 

were previously known to cause IEIs predisposing to bacterial pneumonia. 

Complementary studies are required to better define the mechanistic links of these 

variants and genes on predisposition to pneumonia.  
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