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Abstract  5 

Complexity of epileptogenic zone (EZ) localisation contributes to failure of surgical resection 6 

to produce seizure freedom. This is to some extent a result of distinct patterns of epileptiform 7 

activity between (i.e., interictal) and during seizures (i.e., ictal) and their diversity across 8 

patients. This often leads to suboptimal localisation based on inspection of 9 

electroencephalography (EEG) features. We asked two open questions. First, whether neural 10 

signal reflecting epileptogenicity would be generalisable from interictal to ictal time window 11 

within each patient. This would be critical for patients who are monitored in hospital without 12 

having a seizure to help with EZ localisation, and more generally for understanding the 13 

predictive power of resting state (interictal) EEG data in determining EZ. Second, whether 14 

epileptiform patterns would generalise across patients, and if so, which aspects of those patterns 15 

are the most generalisable. 16 

We used an intracranial EEG dataset that included fifty-five patients with lesional and non-17 

lesional pathology, who had subsequently undergone cortical resection in frontal or temporal 18 

lobe with different levels of seizure freedom. We extracted a large set of simple to complex 19 

features from stereo-EEG (SEEG) and electrocorticographic (ECoG) neural signals recorded 20 

during interictal and ictal time windows. We fed those features to decision tree classifiers for 21 

EZ localisation and to quantify the diversity of ictal and interictal epileptiform patterns through 22 

a cross-time and cross-patient generalisation procedure. 23 
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We observed significant evidence (Bayes factor >> 10) for generalisability of patterns from 24 

interictal to ictal time windows across patients, which were dominantly reflected in signal 25 

power and high-frequency network-based features. Majority of patients showed consistent 26 

patterns of epileptogenicity across interictal and ictal time windows, reflected in above-chance 27 

area-under-curve (mean AUC = 0.6). We observed significant evidence (Bayes factor >> 10) 28 

that signal features of epileptogenic regions could generalise across patients in both interictal 29 

and ictal time windows with significant evidence for higher generalisability in ictal than 30 

interictal time window (mean AUC 0.75 vs. 0.59; Bayes factor >> 10). While signal power and 31 

moment features were the most contributory to the cross-patient generalisation in the interictal 32 

window, signal complexity features were the most contributory in the ictal window. 33 

These results provide new insights about features of epileptic neural activity that generalise 34 

across interictal-ictal time windows and patients, which can have implications for both 35 

qualitative and quantitative EZ localisation. The explainable machine-learning pipeline 36 

developed here can guide future developments in epilepsy investigations. 37 
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Introduction  49 

There are over 50 million people with epilepsy worldwide1. Anti-seizure medications cannot 50 

adequately control the disorder in about 30% of cases2. If the epilepsy is considered focal (i.e., 51 

seizures arising from part of one hemisphere3), those with drug-resistant focal epilepsy may 52 

undergo presurgical evaluation to detect areas involved in the generation of seizure activity, 53 

which may require intracranial electroencephalography (EEG) in some. These areas can be 54 

collectively referred to as the epileptogenic zone (EZ), a term that was conceptually developed 55 

from stereo-electroencephalography (SEEG)4, a method of intracerebral recording based on 56 

multiple depth electrodes. The EZ is considered as the region of primary seizure organization5. 57 

After localisation, if the clinical risk-benefit ratio is deemed favourable for a specific patient, 58 

the EZ can be removed and/or disconnected through surgical resection or laser-based ablation. 59 

Despite great progress in use of multimodal approaches (e.g., magnetic resonance imaging 60 

(MRI), electroencephalography (EEG), positron emission tomography (PET) scans, etc.) and 61 

wealth of clinical expertise, precise localisation of the EZ often remains difficult and may lead 62 

to failure to achieve seizure freedom6,7.  63 

Quantification methods have shown great promise in localising the EZ through quantification 64 

of intracranial EEG signals8–10(see11 for review). These methods generally investigate either 65 

the interictal or the ictal time window (see Supplementary Table 1 for an overview). In the ictal 66 

window, low voltage fast activity (LVFA), baseline shift, rhythmic spikes/spike-waves and 67 

preictal low frequency spiking, were found to be the most prevalent epileptiform activities12. 68 

These characteristics were successfully extracted from signals and used for EZ localisation in 69 

several studies13–19. In the interictal window, the traditional epileptiform characteristics include 70 

interictal spikes/discharges20 and high-frequency oscillations (HFOs21) with a debate on more 71 

efficacy of one over the other, and ultimately possible increased predictive EZ by measuring 72 

their co-occurrence22. Modelling approaches based on patient-specific imaging data can predict 73 

spatial extent of epileptogenicity23. 74 

The relation between electrical seizure onset and electrical disturbances detectable between 75 

seizures is of great clinical and neuroscientific importance and yet remains incompletely 76 

known20. Interictal spiking is a heterogeneous phenomenon that reflects the involvement of 77 

different neuronal networks and mechanisms (e.g., synaptic conductance) in different regions 78 

of an epileptic brain24 and has shown predictive value in differentiating underlying 79 

neuropathological substrates25. In fact, the original concept of “epileptic focus” arose not from 80 
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seizure recordings, but from observations of interictal spiking during ECoG5. Basing surgical 81 

excision extent on the zone of interictal spiking measured peri-operatively by ECoG was 82 

thought to help improve likelihood of surgical outcome, albeit with variable accuracy26. In 83 

pioneering SEEG work27, the regions involved by interictal spiking typically showed (partial) 84 

overlap with the zone of primary seizure organization. Observations from clinical data of this 85 

type as well as animal models suggest that interictal and ictal signal features may reflect some 86 

similar neuronal mechanisms24. Apart from spikes and HFOs, many other linear and nonlinear 87 

signal features including randomness, power and entropy have shown success in localising EZ 88 

in the interictal window28–35. While many of the classical methods for EZ localisation relied on 89 

univariate/single-channel signal activity, there has been a shift to multivariate/network-based 90 

localisation10,35–42, which aligns with the conceptualisation of epilepsy as a network disorder43–91 

45 and has shown better performance than univariate methods10,38,42,46–48. 92 

Despite the large literature on EZ localisation, using various signal analysis approaches applied 93 

to both interictal and ictal windows (Supplementary Table 1), the correspondence between the 94 

two windows has remained unclear. This might be because of the distinct, pre-defined sets of 95 

features which were looked for in the two windows and which appear visually different (e.g., 96 

interictal spikes and ictal LVFA). Nonetheless, if there are signal features which are shared 97 

between the two windows, interictal activity, which represents most of the patient’s brain state 98 

and is generally easier to record, could potentially be sufficient to predict EZ. As a first step to 99 

explore this, we looked at a heterogeneous group of epilepsies studied with intracranial EEG, 100 

available in an open-access dataset46,48. We compared a large battery of explainable signal 101 

characteristics, ranging from simple single-channel to computationally complex network-based 102 

features, from both interictal and ictal time windows, to see which features generalise across 103 

the two time-windows using the data from each individual patient (i.e., within-individual 104 

across-time generalisation1). Moreover, to see if there are features which are shared between 105 

individuals, we also evaluated the generalisability of features across patients within each 106 

individual time window (i.e., across-individual within-time generalisation). Finally, we 107 

evaluated the effect of surgical outcome (seizure-free/not seizure-free), EZ, pathology of 108 

epilepsy (lesional/non-lesional) and type of recording (SEEG/ECoG) on the EZ localisation 109 

performances. 110 

 
1 In this manuscript, the word “generalisation” refers to testing machine learning classifiers on data from unseen 

time windows/patients rather than the conventional epilepsy definition of seizure propagation over the brain. 
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Materials and methods  111 

Dataset  112 

This study uses a well-structured open-access intracranial dataset which brings together data 113 

from multiple centres46,48. The dataset includes 57 patients who had been implanted with either 114 

subdural grid/strip (termed “electrocorticography” (ECoG)47) or SEEG as their presurgical 115 

workup, and subsequently treated with surgical resection or laser ablation. Clinically 116 

determined seizure onset channels were provided, as well as marking of channels which 117 

overlap with the resection/ablation zone, which was rigorously determined by segmenting the 118 

resection cavity. Two patients’ data were excluded from our analyses as one had no interictal 119 

and the other no ictal recordings. Each patient had 2 interictal recordings and between 1 to 5 120 

(mean = 3.7) ictal recordings/seizures (110 interictal and 204 ictal recordings over all patients). 121 

The interictal data was selected from awake brain activities determined both by the selection 122 

of day-time epochs (8 am – 8 pm) and the use of a custom non-REM sleep detector (explained 123 

in detail in Bernabei et al.,48). The interictal data were at least 2 hours before the beginning of 124 

a seizure and at least 2 hours after a subclinical seizure, 6 hours after a focal seizure and 12 125 

hours after a generalised seizure. The sampling frequencies of the signals varied across patients 126 

and ranged from 256 to 1024 Hz. We adjusted the sampling rate of all datasets to 256 Hz across 127 

patients. The details of the patients included in the analyses are provided in Supplementary 128 

Table 2. Epileptogenic zones/resected areas ranged from frontal, frontoparietal, mesiofrontal, 129 

temporal, mesiotemporal, parietal and insular areas. 130 

Pre-processing 131 

We used a 5-minute signal from each interictal recording (10 minutes per patient) and a 58-132 

second signal from each ictal recording (-30 to +28 seconds around the time of seizure onset). 133 

Bad channels, as marked in the dataset, were excluded from analyses. An average of 105.6 134 

contacts (std = 38.04) per patient remained for analysis after bad channels were removed from 135 

the dataset. There was an average of 114.2 (std = 41.2) and 88.8 (std = 25.3) channels recorded 136 

in patients implanted with SEEG and ECoG, respectively. Among these, an average of 12.87% 137 

(std = 11.1%) of channels were in the EZ/resected area in each patient. We applied no filtering 138 

or artefact removal on the dataset. As the low- and high-frequency noise is shared across both 139 

groups of contacts, and as classifiers rely on the differences between classes rather than 140 
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similarities49, we did not apply filters. Moreover, by not applying any filters, we allowed easier 141 

replication of results in future studies as any choice of filters can potentially affect the results 142 

in some way50. 143 

Feature extraction 144 

We quantified the signal patterns by extracting 34 mathematically distinct features. Features 145 

were extracted in 2s non-overlapping sliding windows along the interictal and ictal signals as 146 

in previous studies51–54. This led to 14 pre- and 14 post-seizure onset time windows in the ictal 147 

period excluding the last window. To quantify changes to neural activities upon seizure onset, 148 

we normalised the extracted post-seizure onset data by the pre-seizure onset data using equation 149 

(1): 150 

𝑃𝑜𝑠𝑡(𝑤𝑖𝑛𝑑𝑜𝑤) =
𝑃𝑜𝑠𝑡(𝑤𝑖𝑛𝑑𝑜𝑤)−𝑚𝑒𝑎𝑛(𝑃𝑟𝑒)

𝑚𝑒𝑎𝑛(𝑃𝑜𝑠𝑡)+𝑚𝑒𝑎𝑛(𝑃𝑟𝑒)
         (1) 151 

where 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡 refer to the arrays of 14 feature values extracted from neural data. This 152 

led to 14 normalised ictal feature values which were used for analysis. In interictal data, we 153 

down sampled the number of extracted feature samples (n ~ 150) to 28 samples using the 154 

Matlab “resample” function. This led to approximately equal number of data points in interictal 155 

and ictal windows, from 110 interictal and 204 ictal recordings. A range of simple to complex 156 

signal features were extracted. All these features have been previously used to quantify EEG 157 

patterns55–57 and the reader is referred to Supplementary Text 1 and the mentioned publications 158 

for details. Briefly, we extracted four categories of signal features to obtain a relatively 159 

comprehensive view of signal characteristics. These include the signal moment features, 160 

nonlinear complexity features, frequency-domain features and network-based features. 161 

Multivariate pattern classification 162 

We used a standard multivariate pattern classification procedure to localise EZ (i.e., to 163 

discriminate epileptogenic/resected and non-epileptogenic/non-resected contacts). We use the 164 

term “epileptiform” patterns/activities in a general sense to refer to any patterns which 165 

discriminated epileptogenic and non-epileptogenic contacts. Accordingly, the classification 166 

performance indicates how discriminable were the signal patterns across these two sets of 167 

contacts. We quantified the classification performance by area-under-the-curve (AUC) to 168 

provide a comprehensive, threshold-free classification performance49. As in recent studies48,58, 169 

we used decision tree (DT) classifiers, and each contact was treated like an observation in 170 
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classification. Our DT classifiers used a random forest algorithm with 50 bags of feature 171 

combinations. DT classifiers are well suited for nonlinear feature classifications and provide 172 

insights into feature contributions. This method also provides a “feature contribution” metric 173 

by permuting the observation/contact labels in each feature separately and quantifying its effect 174 

on performance - contribution is in inverse proportion to performance drop. We performed 175 

three distinct types of classifications - one within patient and time (non-generalisation) and two 176 

which involved generalisation either across time or patients. In all three analyses, we classified 177 

epileptogenic and non-epileptogenic contacts (i.e., EZ localisation). In the non-generalisation 178 

classification, we performed the classification within the interictal and ictal time window 179 

separately for each patient using a 10-fold cross-validation procedure. In the cross-time 180 

generalisation, in each patient, we trained the classifier using the data from the two interictal 181 

recordings and tested the classifier using all the ictal recordings (mean = 3.7). In the cross-182 

patient generalisation, in each time window (interictal/ictal), we trained the classifier using the 183 

data from all patients minus one and tested the classifier using the data from the left-out patient 184 

and repeated this procedure until every patient was used once for testing the classifier. 185 

To equalise the number of epileptogenic to non-epileptogenic contacts (12.87% vs. 77.13% on 186 

average, respectively) which is essential for avoiding bias toward one class in classification49, 187 

we used a down-sampling procedure in our analyses and repeated every classification of data 188 

1000 times before averaging the results. 189 

To generate chance-level performances, against which we could evaluate the validity of our 190 

true classification performances, we shuffled (epileptogenic/non-epileptogenic) contact labels 191 

1000 times and recalculated the classification performance leading to 1000 chance-level 192 

classification results. 193 

Statistical analysis 194 

We used a Bayes Factor analysis for statistical inference59. We compared the levels of AUCs 195 

against chance-level AUCs as well as evaluated main effects on classifications. We used 196 

standard rules of thumb for interpreting levels of evidence60,61: Bayes factors between 3 and 10 197 

and between 1/10 and 1/3 were interpreted as evidence for the alternative and null hypotheses, 198 

respectively. Bayes factors > 10 and < 1/10 were interpreted as significant evidence for the 199 

alternative and null hypotheses, respectively. We considered the Bayes factors which fell 200 

between 1/3 and 3 as insufficient evidence either way. Insufficient evidence means that no 201 

conclusions can be made about difference between a pair of variables. 202 
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To evaluate the evidence for the null and alternative hypotheses of at-chance and above-chance 203 

classification, respectively, we compared the classification rates in each analysis and the 204 

classification rates obtained from the chance-level classification results (e.g., panel A in all 205 

figures). For that, we performed an unpaired Bayes factor t-test for alternative (i.e., difference 206 

from chance; H1) and the null (i.e., no difference from chance; H0) hypotheses. To evaluate 207 

the evidence for the null and alternative hypotheses of difference between classification levels 208 

across analyses (e.g., Interictal vs. Ictal), we compared the classification rates obtained from 209 

each of those analyses using paired Bayes factor t-test. To evaluate the main effects of resection 210 

outcome, EZ, pathology (lesional/non-lesional) and type of recording (SEEG/ECoG), we used 211 

a Bayes factor ANOVA, with these four factors as independent variables and 212 

classification/generalisation AUC as the dependent variable. For statistical power in ANOVA, 213 

we excluded patients with insular, frontoparietal, parietal and mesiofrontal resection which 214 

were under-sampled (n < 3). The priors for all Bayes factor analyses were determined based 215 

on Jeffrey-Zellner-Siow priors62,63 which are from the Cauchy distribution based on the effect 216 

size that is initially calculated in the algorithm using t-test59. 217 

Data and code availability  218 

The dataset used in this study was from previous studies and is available at 219 

https://openneuro.org/datasets/ds004100/versions/1.1.3. The code developed for this project is 220 

available at https://github.com/HamidKarimi-Rouzbahani/Intracranial_EEG_generalisation.  221 

Results  222 

We used a multivariate pattern analysis approach on features extracted from intracranial 223 

SEEG/ECoG data in patients with epilepsy to address two main questions. First, we wondered 224 

if there were similarities between the epileptiform patterns which discriminated epileptogenic 225 

from non-epileptogenic areas in interictal and ictal time windows. Second, we wondered how 226 

generalisable epileptiform patterns were across patients. 227 

 228 

How discriminable are epileptogenic and non-epileptogenic 229 

contacts? 230 
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As an initial step in our analyses, we quantified the discriminability of epileptogenic and non-231 

epileptogenic contacts. This was done for each patient and time window (interictal and ictal) 232 

separately. There was significant evidence (BF >> 10) for above-chance AUC which averaged 233 

to 0.97 (std = 0.03) in the interictal and 0.91 (std = 0.07) in ictal time windows, respectively 234 

(Fig. 1A). These showed that our multi-feature classification pipeline could robustly 235 

differentiate epileptogenic from non-epileptogenic contacts. 236 

Interestingly, there was significant evidence (BF >> 10) for higher classification in the 237 

interictal than ictal time window (Fig. 1A). This points to the importance of interictal neural 238 

activities in localisation of EZ. While the classification performances were high across all 239 

patients (AUC > 0.8), there was no correlation (r = -0. 17, p = 0.24; Pearson) between the level 240 

of AUCs in interictal and ictal time windows across patients (Fig. 1C). This suggests that 241 

patients with the clearest separation between epileptogenic and non-epileptogenic contacts in 242 

interictal window did not necessarily show the clearest separation between those contacts in 243 

the ictal window and vice versa. 244 

We then evaluated the contribution of each feature to the performance (Fig. 1B). In interictal 245 

data, variance from the moment features, Hjorth mobility from the complexity features, beta-246 

band power from the frequency features, and gamma-band coherence from the network 247 

features were among the most contributory features. In ictal data, variance from the moment 248 

features, approximate entropy from the complexity features, gamma-band power from the 249 

frequency features, and beta-band coherence from the network features were among the most 250 

contributory features. There was significant correlation between the features’ contributions 251 

across the two windows (r = 0.73, p<0.0001; Pearson; Fig. 1D) suggesting that similar sets of 252 

features dominantly contributed to the EZ localisation across interictal and ictal time windows. 253 

Next, we evaluated the effect of outcome, region of resection (EZ), pathology and recording 254 

type on the classification results in each window (Supplementary Fig. 1). In the interictal data, 255 

there was evidence (1/10 < BF < 1/3) against any effect of outcome, region of resection, 256 

pathology and recording type on classification results. In the ictal data, there was significant 257 

evidence (BF < 1/10) against any effect of outcome, evidence (3 < BF < 10) for an effect of 258 

region of resection, insufficient evidence (1/3 < BF < 3) for an effect of pathology and evidence 259 

(1/10 < BF < 1/3) against any effect of recording type on classification results (Supplementary 260 

Fig. 1). To check the direction of region of resection effect, we used Bayes-factor t-test which 261 

showed insufficient evidence (1 < BF < 3) for higher classification in patients where the 262 
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epileptogenic zone/resection was in temporal than frontal and mesiotemporal area  263 

(Supplementary Fig. 1).  264 

 265 

Figure 1 Classification of contacts with and without epileptogenic activities in each patient. (A) Area Under 266 

Curve (AUC) of classification performance for interictal and ictal classifications. Box plots show the distribution 267 

of data, its quartiles and median and whiskers indicate the maximum and minimum of the data over patients. Each 268 

BF >> 10BF >> 10

BF >> 10

A

Moment
features

Complexity
features

Frequency
features

Network
features

B

C D
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dot indicates the data from one patient. Numbers below the bars indicate Bayesian evidence for the difference 269 

between true and null classification performances. Horizontal dashed line refers to theoretical chance-level 270 

classification (0.5). Bayes factor reflecting evidence for the difference between interictal and ictal classifications 271 

are also shown. BF >> 10 indicates BF > 100. (B) Contribution of each feature to the classification performance 272 

shown in A, calculated using random permutation. Yellow, pink, green and purple dots indicate moment, 273 

complexity, frequency and network-based features. (C) Pearson correlation between interictal and ictal 274 

classification performances across patients with each dot showing one patient. (D) Pearson correlation between 275 

interictal and ictal feature contributions across features with each dot showing one feature. Correlation and the 276 

corresponding p values are shown on top of panel C and D with the dashed line showing the theoretical perfect 277 

positive correlation. 278 

 279 

Our classifications used all signal features simultaneously. To check if any individual feature 280 

could predict the resection outcome, we performed a direct comparison (unpaired Bayes factor 281 

t-test) between feature contributions in patients who became seizure-free (Engel I) vs. not 282 

seizure-free (Engel II-IV) outcomes (Supplementary Fig. 2). In interictal data, there was 283 

evidence (3 < BF < 10) that signal median contributed to better EZ localisation in patients who 284 

became seizure-free vs. those who did not. However, as median was among the least 285 

contributory features overall (c.f., Fig. 1B), we prefer not to put too much weight on this result. 286 

In ictal data, there was insufficient evidence (1/3 < BF < 3) for any feature to predict resection 287 

outcome. 288 

As our features relied on signal patterns which were relatively sustained, compared to transient 289 

patterns such as interictal spikes or HFOs, we wondered whether accurate classification was 290 

possible using even shorter time windows. To test this, we repeated the classifications using 291 

the earliest, the middle and the latest 2-second time window of data in interictal and ictal data 292 

separately. Interestingly, we found significant evidence (BF >> 10) for above-chance AUC in 293 

both interictal and ictal time, with significant evidence (BF >> 10) for higher classification in 294 

ictal than interictal data (Supplementary Fig. 3). This repeated the pattern observed when using 295 

all windows of data in interictal and ictal periods (c.f., Fig. 1A). 296 

Do epileptiform patterns generalise across time windows? 297 

We showed that a correlated set of features contributed to EZ localisation in both interictal and 298 

ictal windows (Fig. 1C), which might point to shared neural mechanisms underlying signal 299 

patterns in both time windows. We wondered if we could localise the EZ in the ictal window 300 

based on patterns of interictal activities. To test this, we trained our classifiers on interictal data 301 
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and tested them on ictal data for each patient separately. We observed that, while the 302 

performance was lower (mean AUC = 0.60, std = 0.1; Fig. 2A) than those obtained by training 303 

and testing the classifiers within each time window separately (c.f., Fig. 1A), there was still 304 

significant evidence for above-chance cross-time generalisation (interictal to ictal; BF >> 10). 305 

Feature contribution results showed an advantage for variance from the moment features, 306 

Higuchi fractal dimension from the complexity features, delta-band power from the frequency 307 

features, and gamma-band coherence from network features (Fig. 2B). There was evidence 308 

(1/10 < BF < 1/3) against any effect of outcome, region of resection, pathology and insufficient 309 

evidence (1/3 < BF < 3) for an effect of recording type on the cross-time generalisation results 310 

(Supplementary Fig. 4). 311 

Note that we only used two 5-minute windows of interictal recording to train the classifiers, 312 

which is relatively short given usual large clinical datasets of interictal activities recorded over 313 

several days. The generalisation performance is predicted to improve with higher volumes and 314 

more varied sets of training data. To check if increasing the diversity of the training data could 315 

improve the generalisation performance, we trained the classifiers using the ictal data and 316 

tested them using the interictal data. This would provide the classifiers with a more diverse 317 

training set as ictal data were obtained from more recordings than interictal recordings (3.7 vs. 318 

2). Numbers of observations were equalised between interictal and ictal time windows. 319 

While there was significant evidence (BF >> 10) for above-chance generalisation performance 320 

when training on the ictal data, there was insufficient evidence (BF = 0.91) for higher cross-321 

time generalisation when the training data was from the ictal than interictal time windows. 322 

Therefore, while a more diverse dataset seems to have improved the classification (shifted the 323 

mean AUC from 0.6 up to 0.63), more data is needed to establish an improvement effect. There 324 

was significant correlation (r = 0.60, p < 0.001, Pearson; Fig. 2C) between the level of 325 

performance in interictal-to-ictal and ictal-to-interictal generalisations across patients. This 326 

shows that patients who showed the best generalisation from interictal to ictal windows also 327 

showed the highest generalisation in the opposite direction. This suggests that each patient has 328 

a certain level of similarity between interictal and ictal epileptiform patterns. There was 329 

significant correlation between the features’ contributions across the interictal-to-ictal and 330 

ictal-to-interictal generalisations (r = 0.56, p < 0.001; Pearson; Fig. 2D) suggesting that 331 

generalisable epileptiform patterns were reflected in similar sets of features no matter if 332 

generalising from interictal to ictal or vice versa. 333 
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 334 

 335 

Figure 2 Classification of contacts with and without epileptogenic activities for each patient across time 336 

windows. (A) AUC of cross-time generalisation performance for interictal-to-ictal and ictal-to-interictal 337 

generalisations. Box plots show the distribution of data, its quartiles and median and whiskers indicate the 338 

maximum and minimum of the data over patients. Each dot indicates the data from one patient. Numbers below 339 

the bars indicate Bayesian evidence for the difference between true and null generalisation performances. 340 
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Horizontal dashed line refers to theoretical chance-level generalisation (0.5). Bayes factor reflecting evidence for 341 

the difference between interictal-to-ictal and ictal-to-interictal generalisations are shown. BF >> 10 indicates BF 342 

> 100. (B) Contribution of each feature to the generalisation performance shown in A, calculated using random 343 

permutation. Yellow, pink, green and purple dots indicate moment, complexity, frequency and network-based 344 

features. (C) Pearson linear correlation between interictal-to-ictal and ictal-to-interictal generalisation 345 

performances across patients with each dot showing one patient. (D) Pearson linear correlation between interictal-346 

to-ictal and ictal-to-interictal feature contributions across features with each dot showing one feature. Correlation 347 

and the corresponding p values are shown on top of panel C and D with the dashed line showing the theoretical 348 

perfect positive correlation. 349 

 350 

In interictal-to-ictal generalisation data, there was evidence or significant evidence (BF > 3) 351 

that features of Katz fractal dimension, energy ratio, theta-band power led to poorer EZ 352 

localisation in patients with seizure-free vs. not seizure-free outcome (Supplementary Fig. 5). 353 

In ictal-to-interictal generalisation, this pattern was repeated for features of energy ratio and 354 

delta-band power. These suggest that specific features such as energy ratio might be more 355 

informative for EZ localisation when they show differences between their interictal and ictal 356 

patterns (i.e., as reflected in lower cross-time generalisability; Fig. 2B). This might mean that, 357 

patients whose signals’ energy ratio changes from interictal to ictal windows (e.g., through a 358 

significant increase) have a higher chance for their EZ to be localised; energy ratio change was 359 

indeed the basis for the original Epileptogenicity Index method13. 360 

 361 

Do epileptiform patterns generalise across patients? 362 

So far, our analyses focused on within-time classification of contacts and cross-time 363 

generalisation of classifications both done within each patient. A clinically important aspect is 364 

to ascertain the generalisability of epileptiform patterns across patients, and test the feasibility 365 

of using the data from previous patients to help localise the EZ in new out-of-sample patients. 366 

To test this, we trained classifiers on the data from all patients minus one and tested the 367 

classifiers on the data from the left-out patient. This was done separately for interictal and ictal 368 

windows. 369 

In interictal data, there was significant evidence (BF >> 10) for above chance cross-patient 370 

generalisation (Fig. 3A), which suggests that there were interictal epileptiform patterns which 371 

had similarities across patients. We evaluated the features’ contribution to the generalisation 372 

(Fig. 3B). Results showed an advantage for kurtosis from the moment features, Higuchi fractal 373 
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dimension from the complexity features, beta-band power from the frequency features, and 374 

gamma-band coherence from the network features. There was significant evidence (BF < 1/10) 375 

against any effect of outcome, evidence (1/10 < BF < 1/3) against any effect of region of 376 

resection, insufficient evidence (1/3 < BF < 3) for an effect of pathology and significant 377 

evidence (BF > 10) for an effect of recording type on the cross-patient generalisation results 378 

(Supplementary Fig. 6). There was significant evidence (BF = 12) for higher generalisation to 379 

test patients with resection in mesiotemporal than temporal and significant evidence (BF >> 380 

10) for higher generalisation to test patients with SEEG than ECoG recording (Supplementary 381 

Fig. 6). 382 
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 383 

 384 

Figure 3 Classification of contacts with and without epileptogenic activities across patients. (A) AUC of 385 

cross-patient generalisation performance for interictal and ictal generalisations. Box plots show the distribution 386 

of data, its quartiles and median and whiskers indicate the maximum and minimum of the data over patients. Each 387 

dot indicates the data from one patient. Numbers below the bars indicate Bayesian evidence for the difference 388 

between true and null generalisation performances. Horizontal dashed line refers to theoretical chance-level 389 
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generalisation (0.5). Bayes factor reflecting evidence for the difference between interictal and ictal generalisations 390 

are shown. BF >> 10 indicates BF > 100. (B) Contribution of each feature to the generalisation performance 391 

shown in A, calculated using random permutation. Yellow, pink, green and purple dots indicate moment, 392 

complexity, frequency and network-based features. (C) Pearson linear correlation between interictal and ictal 393 

generalisation performances across patients with each dot showing one patient. (D) Pearson linear correlation 394 

between interictal-to-ictal and ictal-to-interictal feature contributions across features with each dot showing one 395 

feature. Correlation and the corresponding p values are shown on top of panel C and D with the dashed line 396 

showing the theoretical perfect positive correlation. 397 

 398 

In ictal data, there was significant evidence (BF >> 10) for above-chance cross-patient 399 

generalisation (Fig. 3A) which suggests that there were ictal epileptiform patterns which had 400 

similarities across patients. Results showed the highest contribution to generalisation by 401 

skewness from the moment features (however very low compared to other features), Hjorth 402 

mobility from the complexity features, mean frequency from the frequency features, and 403 

gamma-band coherence from the network features. There was evidence (1/10 < BF < 1/3) 404 

against any effect of outcome, insufficient evidence (1/3 < BF < 3) for an effect of region of 405 

resection and pathology and significant evidence (BF > 10) for an effect of recording type on 406 

the cross-patient generalisation. There was significant evidence (BF >> 10) for higher 407 

generalisation to test patients with resection in mesiotemporal than temporal and significant 408 

evidence (BF >> 10) for higher generalisation to test patients with SEEG than ECoG recording 409 

(Supplementary Fig. 6). 410 

There was significant correlation (r = 0.73, p < 0.001; Pearson) between the level of 411 

generalisation in interictal and ictal time windows across patients (Fig. 3C). This suggests that 412 

if a patient’s data (i.e., testing set) has similarities to the pool of other patients’ data (i.e., 413 

training set), this will reflect in both interictal and ictal generalisations. On the other hand, 414 

patients with very distinct epileptiform activity patterns show this distinction across both 415 

interictal and ictal time windows. There was no correlation (r = -0.23, p = 0.19; Pearson) 416 

between informative features in the interictal and ictal time windows. This suggests that distinct 417 

sets of features contributed to cross-patient generalisation in interictal and ictal time windows. 418 

In interictal data, there was significant evidence (BF >> 10; Bayes factor t-test) that 419 

approximate entropy led to better EZ localisation in patients who became seizure-free vs. those 420 

who did not (Supplementary Fig. 7). In ictal data, there was evidence or significant evidence 421 

(BF > 3) that mean and median led to better EZ localisation in patients who became seizure-422 

free vs. those who did not and median frequency led to the opposite pattern. As these were all 423 
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among the least contributory features to the overall cross-patient generalisation performance 424 

we avoid over-interpreting them. 425 

Discussion  426 

Precise localisation of epileptogenic zone has remained a challenging problem. It has recently 427 

been highlighted that data and code sharing are fundamental to moving computational 428 

epilepsy studies towards clinical translation11. The current work uses one of the few open-429 

access SEEG/ECoG datasets which provides epochs of interictal and ictal activities with 430 

meticulous labelling of electrode contacts, resection volume and clinical information 431 

including surgical outcome46,48. Using a rigorous ML-based pipeline, our study shows the 432 

feasibility of establishing generalisability of patterns within individuals from interictal to ictal 433 

periods, and across individuals during both interictal and ictal time windows. These results 434 

make several contributions to EZ localisation, explained below. 435 

First, to establish that our ML-based method could discriminate areas with and without 436 

epileptiform activities, we classified epileptogenic and non-epileptogenic areas (EZ 437 

localisation, based on clinician labelling of the dataset) within each patient and found 438 

significant differences between the two classes of areas. At the individual patient level, we 439 

observed a remarkable EZ localisation performance in the interictal time window, which 440 

counter-intuitively surpassed that obtained in the ictal time window. Therefore, while majority 441 

of available studies have been developed to localise EZ during the ictal time window13–19, this 442 

study finds significant information within the interictal signal that can be utilised for EZ 443 

localisation. It is important to note that our approach did not pre-select any specific feature 444 

(such as spikes, HFO) as biomarkers a priori, but rather analysed the ensemble of the neural 445 

signal over time, which appears to contain predictive information beyond these well-known 446 

features, even when analysing time-windows as short as 2 seconds (c.f., Supplementary Fig. 447 

3). This agrees with reports showing that interictal patterns are relatively stable over time36,40,64 448 

(also see65,66). 449 

While systematic comparison between interictal and ictal epileptiform patterns are rare in the 450 

literature, our result aligns with a surface EEG study in children with MRI-visible lesions which 451 

found better predictive value of interictal rather than ictal data67. We observed that the most 452 

informative features in interictal data included variance, beta-band power, correlation and 453 

gamma-band coherence, which in order support previous studies finding information in 454 
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multiscale entropy in the gamma band28,30 (a complexity measure) and relative entropy34(a 455 

network measure). Interictal network studies have shown a gradient of within-area connectivity 456 

decreasing progressively from epileptogenic regions to propagation regions to non-involved 457 

zones39,41,54, providing a proxy for EZ localisation. The prominence of network measures in all 458 

of our analyses also aligns with a recent study showing greater information in network 459 

measures compared to univariate power-based measures in EZ localisation48. While we cannot 460 

perfectly equalise the interictal and ictal data for fair comparison as there are systematic 461 

differences in their collection time, number of epochs and potential artefacts in ictal signals, 462 

these results provide valuable insights into the richness of interictal activity patterns for EZ 463 

localisation.  464 

The remarkable classification performance observed especially in the interictal window (> 465 

0.90; Fig. 1A) supports the value of ML-based interictal localisation methods, which here used 466 

multiple features. While these features could have overlapped in their selectivity, they worked 467 

in synergy to detect as much non-overlapping information as possible. DT classifiers are good 468 

at combining distinct combinations of features to generate representational spaces in which 469 

classes can be separated. We also tested Support Vector Machine and Linear Discriminant 470 

Analysis classifiers, but both provided poorer classification. Our approach of using a range of 471 

simple-to-complex features is different from older localisation methods which used one main 472 

feature such as high-to-low frequency energy ratio13,16, and aligns with later studies which have 473 

combined several features for EZ localisation17,31,68,69, temporal detection of seizures70 and 474 

quantification of seizure severity71. 475 

Second, we found prediction power in activity patterns of interictal data to localise EZ in the 476 

ictal period. While previous studies have localised EZ in interictal and ictal windows, the 477 

interictal-ictal correspondence has not been systematically investigated. In eleven patients with 478 

epilepsy who had been implanted with ECoG, one study found that the template of 479 

connectivity-based ictal epileptogenic areas could be helpful in informing the localisation of 480 

EZ interictally72. One recent study investigated the fine-grained timing and direction of 481 

interictal and ictal discharges using microelectrode grids, and suggested that interictal 482 

discharges are traveling waves that traverse the same path as seizure discharges73. After 483 

confirming a consistent temporal ordering of discharges in interictal and ictal windows, another 484 

study developed a novel source localisation method based on wave propagation, which 485 

successfully localised the EZ74. Our work evaluates the generalisability of a large battery of 486 

epileptiform features from interictal to ictal time windows and vice versa. The drop in cross-487 
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time generalisation performances (Fig. 2A) compared to the non-generalisation analysis (c.f., 488 

Fig. 1A) is supported by known differences in visualisable epileptogenic patterns from the 489 

interictal to the ictal time window75,76. In our study, the observed above-chance cross-time 490 

generalisation had not been necessarily predictable. It could be the case that epileptogenic areas 491 

would show higher value of a particular feature (e.g., power) than non-epileptogenic areas in 492 

the interictal window with this pattern flipping in the ictal window. This would have been 493 

detectable by our machine learning pipeline and would have reflected in below-chance (AUC 494 

< 0.5) generalisation performance. The potential of using interictal recording to predict EZ 495 

localisation is significant because many patients have insufficient or sometimes no seizures 496 

during their one/two-week hospitalisation for EZ localisation. This is an important limitation 497 

for visual localisation of EZ based on electrical patterns during seizures and for training ML 498 

algorithms, which, like humans, need enough samples to learn and localise epileptiform 499 

patterns from the data. 500 

The third contribution of this work is showing that, despite clear inter-subject differences, there 501 

were patterns of epileptiform activities which were shared across patients. Machine learning 502 

allowed us to train the classifiers using data from one set of patients and test the generalisability 503 

of patterns to the data from a new out-of-sample patient. While these performances were 504 

expectedly lower in the cross-patient generalisation than within-patient classification (Fig. 3A 505 

vs. Fig. 1A), this result is promising and informative. The decrease in performance can be 506 

explained by large differences across patients’ data including epilepsy characteristics as well 507 

as distinct sampling of the brain, recording type, etc. Moreover, significant inter-subject 508 

differences may be present in terms of patient-specific epileptogenic “signatures”, the features 509 

of which are detectable across both interictal and ictal time windows for that individual77. On 510 

the other hand, a few studies showed that specific patterns can be generalised across patients, 511 

but only evaluated it in either interictal or ictal time window (Supplementary Table 1). A 512 

universal repertoire of seizure patterns across species has previously been observed, which 513 

suggests that some invariant properties characterise seizures under different physiological and 514 

pathological conditions78. Here, we showed that ictal epileptogenic patterns, especially those 515 

captured by complexity features, were more generalisable across subjects than interictal 516 

patterns. The present results also showed that SEEG recordings provided advantageous 517 

generalisability compared to ECoG (Supplementary Fig. 6). This is likely explained by SEEG’s 518 

greater sampling of a wider range of brain structures, which contributes to a more consistent 519 

sampling of the brain across patients79. These cross-patient generalisable patterns make it 520 
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possible and desirable to use them on new out-of-sample data, to potentially build on these 521 

results by testing larger datasets. To facilitate future testing in novel datasets, we have shared 522 

our Matlab scripts. 523 

One of the main concerns when using artificial intelligence in applications such as EZ 524 

localisation is the explainability of algorithms. Lack of knowledge about how a ML algorithm 525 

decides why a contact is classified as “epileptogenic” makes the algorithm less trustworthy for 526 

clinicians80, who may not be able to validate if a specific feature of a signal is indicative of 527 

epileptogenicity or whether the algorithm is simply wrong. Methodologies incorporating 528 

explainable features can mitigate the explainability issue and provide complementary insights 529 

into the growing body of work in EZ localisation and seizure prediction, which tend to adopt 530 

unexplainable ML algorithms such as deep neural networks81,82. Every individual feature used 531 

in our work has clear mathematical definition and has been validated in previous quantification 532 

analysis of neural data55,56,83,84. We also quantified the contribution of each feature in our 533 

analyses, thus avoiding the “black box” effect encountered when using algorithms such as deep 534 

neural networks. Accordingly, our proposed pipeline can be added as a primary feature 535 

extractor to prediction pipelines to make them more explainable to humans. It is of note that, 536 

while the mathematical definition of each of our features are clear, the neurophysiological 537 

correlates of these features needs to be sought for in the future. 538 

There are several future directions which can facilitate the translation of this work to clinical 539 

practice. One can come through the improvement of the classification and generalisation 540 

performance. We used relatively short time windows of interictal (5-minute windows) and ictal 541 

(1-minute windows) data, both of which can be lengthened to potentially improve the 542 

classification performance. We did not apply any filtering or artefact removal, as ML 543 

classification algorithms are mainly sensitive to distinct patterns between classes (i.e., contacts 544 

with and without epileptiform patterns) rather than patterns which are common between classes 545 

(e.g., line noise). Nonetheless, one future direction would be to test if application of filters or 546 

artefact removal algorithms in the pre-processing stage can improve classification 547 

performance. Rather than an optimised work, the current study was only a feasibility effort to 548 

establish the generalisability of patterns of activities across time within patients and within time 549 

across patients. Another future direction would be to test the generalisability of the 550 

classification pipeline to datasets from other centres, which have undergone meticulous clinical 551 

evaluation and labelling. Finally, it would be interesting to evaluate the generalisability of the 552 

proposed pipeline to non-invasive modalities such as scalp EEG and magnetoencephalography 553 
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(MEG). As the features extracted here are not modality-specific and rely on characteristics of 554 

time series, these methods can be applied to sensor- or source-space E/MEG data. The 555 

generalisability of these methods to non-invasive modalities is significant because current gold-556 

standard invasive methods of SEEG and ECoG suffer from incomplete or sub-optimal 557 

sampling of the brain, and in addition these invasive methods are only indicated in a subset of 558 

patients. Delineation of likely spatial extent of epileptogenic zones could in theory be optimised 559 

using rigorous localisation methods developed here in conjunction with non-invasive E/MEG 560 

recording modalities, especially in the interictal time window. This will provide a more 561 

objective and fully automatic method for the localisation of EZ than current methods which 562 

often rely on visual detection, manual annotation and operator-dependent analysis of 563 

epileptiform patterns85,86. 564 

In conclusion, we showed that powerful classification patterns were embedded within the EEG 565 

signal, which could reliably differentiate epileptogenic from non-epileptogenic contacts in 566 

every individual. Such patterns could be identified in both interictal and ictal recordings 567 

through features such as signal variance, Hjorth mobility and complexity as well as high-568 

frequency power and network features, without taking account of any predetermined figures 569 

such as spikes, HFO or known ictal patterns. There were also features that could correctly 570 

predict EZ in ictal recordings from interictal recordings. Again, high-frequency power and 571 

network features were the most contributory features here. Finally, we showed that, while there 572 

were differences between epileptiform patterns across patients suggesting subject-specific 573 

effects, we could localise the EZ with well above chance precision using interictal and more 574 

dominantly ictal activities. The proposed methods and results provide new evidence for 575 

generalisability of epileptiform patterns across time and patients and open new avenues for 576 

future methods developed for epileptogenic zone localisation. Clues from neural signal changes 577 

could also provide new directions for investigating the biological correlates of interictal87 and 578 

ictal88 epileptiform activity. Their explainable nature is important for further investigation of 579 

pathophysiologic underpinnings of these signal changes. This could help contribute to efforts 580 

to develop paradigm-shifting therapeutic possibilities in epilepsy including disease-modifying 581 

treatments89, as well as further refining network-based surgical treatments90, seizure 582 

forecasting91 and seizure detection92. 583 
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