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Abstract  

Complexity of epileptogenic zone (EZ) localisation contributes to failure of surgical resection 

to produce seizure freedom. This is to some extent a result of distinct patterns of epileptiform 

activity between (i.e., interictal) and during seizures (i.e., ictal) and their diversity across 

patients. This often leads to suboptimal localisation based on inspection of 

electroencephalography (EEG) features. We asked two under-investigated questions. First, 

whether neural signal reflecting epileptogenicity would be generalisable from interictal to 

ictal time window within each patient. This would be critical for patients who are monitored 

in hospital without having a seizure to help with EZ localisation, and more generally for 

understanding the predictive power of resting state (interictal) EEG data in determining EZ. 

Second, whether epileptiform patterns would generalise across patients, and if so, which 

aspects of those patterns are the most generalisable. 

We used an intracranial EEG dataset that included fifty-five patients with lesional and non-

lesional pathology, who had subsequently undergone cortical resection in frontal or temporal 

lobe with different levels of seizure freedom. We extracted a large set of simple to complex 

features from stereo-EEG (SEEG) and electrocorticographic (ECoG) neural signals recorded 

during interictal and ictal time windows. We fed those features to decision-tree classifiers for 

EZ localisation and to quantify the diversity of ictal and interictal epileptiform patterns 

through a cross-time and cross-patient generalisation procedure. 
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We observed significant evidence (Bayes factor >> 10) for generalisability of patterns from 

interictal to ictal time windows across patients, which were dominantly reflected in signal 

power and high-frequency network-based features. Majority of patients showed consistent 

patterns of epileptogenicity across interictal and ictal time windows, reflected in above-

chance area-under-curve (mean AUC = 0.6). We observed significant evidence (Bayes factor 

>> 10) that signal features of epileptogenic regions could generalise across patients in both 

interictal and ictal time windows with significant evidence for higher generalisability in ictal 

than interictal time window (mean AUC 0.75 vs. 0.59; Bayes factor >> 10). While signal 

power and moment features were the most contributory to the cross-patient generalisation in 

the interictal window, signal complexity features were the most contributory in the ictal 

window. 

These results provide new insights about features of epileptic neural activity that generalise 

across interictal-ictal time windows and patients, which can have implications for both 

qualitative and quantitative EZ localisation. The explainable machine-learning pipeline 

developed here can guide future developments in epilepsy investigations. 
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Introduction  

There are over 50 million people with epilepsy worldwide1. Anti-seizure medications cannot 

adequately control the disorder in about 30% of cases2. If the epilepsy is considered focal 

(i.e., seizures arising from part of one hemisphere3), those with drug-resistant focal epilepsy 

may undergo presurgical evaluation to detect areas involved in the generation of seizure 

activity, which may require intracranial electroencephalography (EEG) in some. These areas 

can be collectively referred to as the epileptogenic zone (EZ), a term that was conceptually 

developed from stereo-electroencephalography (SEEG)4, a method of intracerebral recording 

based on multiple depth electrodes. The EZ is considered as the region of primary seizure 

organization5. After localisation, if the clinical risk-benefit ratio is deemed favourable for a 

specific patient, the EZ can be removed and/or disconnected through surgical resection or 

laser-based ablation. Despite great progress in use of multimodal approaches (e.g., magnetic 

resonance imaging (MRI), electroencephalography (EEG), positron emission tomography 

(PET) scans, etc.) and wealth of clinical expertise, precise localisation of the EZ often 

remains difficult and may lead to failure to achieve seizure freedom6,7.  

Quantification methods have shown great promise in localising the EZ through quantification 

of intracranial EEG signals8–10(see11 for review). These methods generally investigate either 

the interictal or the ictal time window (see Table 1 for an overview). In the ictal window, low 

voltage fast activity (LVFA), baseline shift, rhythmic spikes/spike-waves and preictal low 

frequency spiking, were found to be the most prevalent epileptiform activities12. These 

characteristics were successfully extracted from signals and used for EZ localisation in 

several studies13–19. In the interictal window, the traditional epileptiform characteristics 

include interictal spikes/discharges20 and high-frequency oscillations (HFOs21) with a debate 

on more efficacy of one over the other, and ultimately possible increased predictive EZ by 

measuring their co-occurrence22. Modelisation approaches based on patient-specific imaging 

data can predict spatial extent of epileptogenicity23. 
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The relation between electrical seizure onset and electrical disturbances detectable between 

seizures is of great clinical and neuroscientific importance and yet remains incompletely 

known20. Interictal spiking is a heterogeneous phenomenon that reflects the involvement of 

different neuronal networks and mechanisms (e.g., synaptic conductance) in different regions 

of an epileptic brain24 and has shown predictive value in differentiating underlying 

neuropathological substrates25. In fact, the original concept of “epileptic focus” arose not 

from seizure recordings, but from observations of interictal spiking during ECoG5. Basing 

surgical excision extent on the zone of interictal spiking measured peri-operatively by ECoG 

was thought to help improve likelihood of surgical outcome, albeit with variable accuracy26. 

In pioneering SEEG work27, the regions involved by interictal spiking typically showed 

(partial) overlap with the zone of primary seizure organization. Observations from clinical 

data of this type as well as animal models suggest that interictal and ictal signal features may 

reflect some similar neuronal mechanisms24. Apart from spikes and HFOs, many other linear 

and nonlinear signal features including randomness, power and entropy have shown success 

in localising EZ in the interictal window28–35. While many of the classical methods for EZ 

localisation relied on univariate/single-channel signal activity, there has been a shift to 

multivariate/network-based localisation10,35–42, which aligns with the conceptualisation of 

epilepsy as a network disorder43–45 and has shown better performance than univariate 

methods10,38,42,46–48. 

Despite the large literature on EZ localisation, using various signal analysis approaches 

applied to both interictal and ictal windows (Table 1), the correspondence between the two 

windows has remained under-investigated. This might be because of the distinct, pre-defined 

sets of features which were looked for in the two windows and which appear visually 

different (e.g., interictal spikes and ictal LVFA). Nonetheless, if there are signal features 

which are shared between the two windows, interictal activity, which represents most of the 

patient’s brain state and is generally easier to record, could potentially be sufficient to predict 

EZ. As a first step to explore this, we looked at a heterogeneous group of epilepsies studied 

with intracranial EEG, available in an open-access dataset46,48. We compared a large battery 

of explainable signal characteristics, ranging from simple single-channel to computationally 

complex network-based features, from both interictal and ictal time windows, to see which 

features generalise across the two time-windows using the data from each individual patient 

(i.e., within-individual across-time generalisation). Moreover, to see if there are features 

which are shared between individuals, we also evaluated the generalisability of features 
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across patients within each individual time window (i.e., across-individual within-time 

generalisation). Finally, we evaluated the effect of surgical outcome (success/failure), EZ, 

pathology of epilepsy (lesional/non-lesional) and type of recording (SEEG/ECoG) on the EZ 

localisation performances. 

 

Table 1. Overview of methods developed for EZ localisation. The list presented is not 
comprehensive but represents the trend in method development for EZ localisation. Gen. (cross-

patient generalisation); Feature Category (which of this study’s feature categories, would the method 
fall into). 

Year 
First author 

(Journal) 

Gen. 

(Y/N) 

Ictal/ 

Interictal 

Category of 

features 
Method description 

2008 
Bartolomei 

(Brain) 
N Ictal Frequency 

The ratio of high (e.g., >12 Hz) to low (e.g., <12 Hz) 

frequency energy and the time it significantly 

surpasses a threshold is combined into a single 

Epileptogenicity Index (EI). Channels with the highest 

EIs are defined as the Epileptogenic Zone (EZ). 

Threshold and frequencies are set manually. 

2011 
David 

(Brain) 
N Ictal Frequency 

Ratio of high (e.g., >12 Hz) to low (e.g., <12 Hz) 

frequency energy post seizure onset is statically 

compared to baseline (pre-onset) on cortical surface 

to localise EZ. Frequency bands are set manually. 

2014 
Gnatkovsky 

(Epilepsia) 
N Ictal 

Moment 

Frequency 

Three markers of (i) power in high-(gamma) band 

activity, (ii) slow polarising shift and (iii) signal 

flattening are combined and a thresholding method 

defines the EZ. 

2018 

 

Grinenko 

(Brain) 
N 

Ictal Frequency 

Three signal characteristics of (i) sharp transients or 

spikes, preceding seizure onset followed by (ii) 

multiband fast activity concurrent, with (iii) 

suppression of lower frequencies are combined using 

machine learning methods to localise EZ. 
2020 

Li 

(Hum Brain 

Mapp) 

Y 

2018 

Li 

(Netw 

Neurosci) 

Y Ictal Network 

Cross-power spectra in the gamma band (>30Hz) 

quantifies the connection between contacts and 

contact centrality trends over time localises EZ. 

2019 
Kini 

(Brain) 
N Ictal Network 

Inter-channel coherence (frequency-domain 

correlation) in different frequency bands (> 5 Hz) and 

broad-band time-domain correlation is calculated to 

develop a connectivity graph. The level of 

synchronisability indicates the EZ using manual 

thresholding. 

2020 

Balatskaya 

(Clin 

Neurophysiol) 

N Ictal 
Frequency 

Network 

The original EI (see above) is combined with inter-

contact directed correlation (out-degree). 

Thresholding localises EZ. 

2021 
Li 

(Nat Neurosci) 
Y Ictal Network 

Level of connectivity between contacts is quantified so 

that it keeps the data-driven dynamical model stable. 

Then the level of perturbation to contact connections 
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which could destabilise the model indicates the most 

“fragile” contacts (EZ). 

2022 

Nakatani 

(Brain 

Commun) 

N Ictal Frequency 

Sustained direct current shifts and high-frequency 

(>80Hz) oscillations are manually detected at the start 

of seizure and used to localise EZ. 

2023 

Runfola 

(Commun 

Nonlin Sci 

Num Simulat) 

N Ictal Network 

In a dynamical network modelling, contacts with (i) 

high correlation, (ii) increased variance, and (iii) 

decorrelation from other contacts in the network 

indicate the EZ. 

2009 

Dauwels 

(Annu Int Conf 

IEEE Eng Med 

Biol Soc) 

N Interictal Network 

Cross-correlation, phase synchrony, magnitude 

coherence and Granger causality are used to localise 

hyper-synchronous areas which correspond to EZ. 

2011 

Gazit 

(J Neurosci 

Methods) 

N Interictal 
Complexity 

Network 

Frequency-entropy measure is developed to quantify 

the inter-contact connectivity using time-frequency 

information. 

2012 
Andrzejak 

(Phys Rev E) 
N Interictal 

Complexity 

Network 

Nonlinear randomness (defined as unpredictability of 

future values using present values) of signals and 

nonlinear dependence is quantified across contacts. 

Contacts within the EZ have higher non-randomness 

and inter-dependence. 

2016 

Mooij 

(Clin 

Neurophysiol) 

N* Interictal Frequency 

Mean and standard deviation of wavelet entropy are 

calculated in high-frequency bands (>80 Hz) to 

quantify signal complexity, which indicates higher 

complexity inside than outside the EZ. 

2019 

Sato 

(Epilepsy 

Behav) 

N Interictal 
Complexity 

Frequency 

Regularity of gamma band (30-80 Hz) oscillations is 

quantified using multiscale entropy, which indicates 

higher regularity inside than outside EZ. 

2019 

Cimbalnik 

(Clin 

Neurophysiol) 

Y 

Interictal 

Moment 

Complexity 

Frequency 

Network 

Multiple HFO-, univariate- (linear) and connectivity-

based features, most dominantly, relative entropy, 

which evaluates the randomness and spectral richness 

between two contacts, is extracted in different 

frequency bands (1-1000 Hz) to localise EZ. 
2023 

Travnicek 

(Epilepsia) 
N 

2019 

Shah 

(Neuroimage 

Clin) 

N Interictal 
Frequency 

Network 

Inter-channel (time-domain) correlation and 

coherence are calculated in different frequency bands 

(>5 Hz) which indicate higher values inside than 

outside the resected zone. 

2020 

Mooij 

(Clin 

Neurophysiol) 

Y** Interictal 
Moment 

Frequency 

Skewness of signal power, which potentially correlates 

with spikes and HFOs, in different frequency bands (> 

1 Hz) indicate higher skewness inside than outside EZ. 

2022 
Taylor 

(Brain) 
Y Interictal Frequency 

Signal power in different frequency bands (>1 Hz) are 

calculated in non-epileptogenic contacts to develop a 

normative brain power map. Then, it is used for EZ 

localisation in new patients. 

2022 
Bernabei 

(Brain) 
Y Interictal 

Frequency 

Network 

In addition to signal power (see the above row), inter-

channel coherence is quantified in different frequency 

bands (> 1 Hz) to develop a normative brain map. 

Then, it is used for EZ localisation in new patients. 

2022 
Gunnarsdottir 

(Brain) 
Y Interictal Network 

A dynamical system modelling algorithm is developed 

to determine contacts which dominantly send or 
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receive signals. The receiving contacts (“sinks”) are 

dominantly inside the EZ. 

2023 
Diamond 

(Brain) 
N Interictal Network 

Interictal discharges are shown to follow the same 

direction as seizure waves. An algorithm uses time 

differences of discharge receipt at nearby electrodes 

to localise EZ. 

2023 
Johnson 

(Brain) 
Y Interictal Network 

Undirected and directed connectivity are quantified in 

different frequency bands (>4 Hz) using coherence 

and partial directed coherence, respectively. 

Connectivity is dominantly inward and higher for 

contacts inside than outside the EZ. 

* Data from all patients were concatenated and analysed simultaneously, and generalisation was not 
checked systematically. 

** Data from several patients were concatenated separately for training and testing sets. 

Materials and methods  

Dataset  

This study uses a well-structured open-access intracranial dataset46,48. The dataset includes 57 

patients who had been implanted with either subdural grid/strip (termed 

“electrocorticography” (ECoG)47) or SEEG as their presurgical workup, and subsequently 

treated with surgical resection or laser ablation. Clinically determined seizure onset channels 

were provided, as well as marking of channels which overlap with the resection/ablation 

zone, which was rigorously determined by segmenting the resection cavity. Two patients’ 

data were excluded from our analyses as one had no interictal and the other no ictal 

recordings. Each patient had 2 interictal recordings and between 1 to 5 (mean = 3.7) ictal 

recordings/seizures (110 interictal and 204 ictal recordings over all patients). The interictal 

data was selected from awake brain activities determined both by the selection of day-time 

epochs and the use of a custom non-REM sleep detector. The interictal data were at least 2 

hours before the beginning of a seizure and at least 2 hours after a subclinical seizure, 6 hours 

after a focal seizure and 12 hours after a generalised seizure. The sampling frequencies of the 

signals varied across patients and ranged from 256 to 1024 Hz. The details of the patients 

included in the analyses are provided in Supplementary Table 1. Epileptogenic zones/resected 

areas ranged from frontal, frontoparietal, mesiofrontal, temporal, mesiotemporal, parietal and 

insular areas. 
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Pre-processing 

We applied no filtering or artefact removal on the dataset. We used a 5-minute signal from 

each interictal recording (10 minutes per patient) and a 58-second signal from each ictal 

recording (-30 to +28 seconds around the time of seizure onset). Bad channels, as marked in 

the dataset, were excluded from analyses. An average of 105.6 contacts (std = 38.04) per 

patient remained for analysis after bad channels were removed from the dataset. There was an 

average of 114.2 (std = 41.2) and 88.8 (std = 25.3) channels recorded in patients implanted 

with SEEG and ECoG, respectively. Among these, an average of 12.87% (std = 11.1%) of 

channels were in the EZ/resected area in each patient. 

Feature extraction 

We quantified the signal patterns by extracting 34 mathematically distinct features. Features 

were extracted in 2s non-overlapping sliding windows along the interictal and ictal signals. 

This led to 14 pre- and 14 post-seizure onset time windows in the ictal period excluding the 

last window. To quantify changes to neural activities upon seizure onset, we normalised the 

extracted post-seizure onset data by the pre-seizure onset data using equation (1): 

��������	��
 �
��������	��
��
�����



�
�������
��
�����


         (1) 

where ��
 and ���� refer to the arrays of 14 feature values extracted from neural data. This 

led to 14 normalised ictal feature values which were used for analysis. In interictal data, we 

down sampled the number of extracted feature samples (n ~ 150) to 28 samples using the 

Matlab “resample” function. This led to approximately equal number of data points in 

interictal and ictal windows, from 110 interictal and 204 ictal recordings. A range of simple 

to complex signal features were extracted. All these features have been previously used to 

quantify EEG patterns49–51 and the reader is referred to Supplementary Text 1 and the 

mentioned publications for details. Briefly, we extracted four categories of signal features to 

obtain a relatively comprehensive view of signal characteristics. These include the signal 

moment features, nonlinear complexity features, frequency-domain features and network-

based features. 

Multivariate pattern classification 
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We used a standard multivariate pattern classification procedure to localise EZ (i.e., to 

discriminate epileptogenic/resected and non-epileptogenic/non-resected contacts). We use the 

term “epileptiform” patterns/activities in a general sense to refer to any patterns which 

discriminated epileptogenic and non-epileptogenic contacts. Accordingly, the classification 

performance (as measured by area-under-the-curve (AUC)) indicates how discriminable were 

the signal patterns across these two sets of contacts. We used decision tree (DT) classifiers, 

and each contact was treated like an observation in classification. Our DT classifiers used a 

random forest algorithm with 50 bags of feature combinations. This method also provides a 

“feature contribution” metric by permuting the observation/contact labels in each feature 

separately and quantifying its effect on performance - contribution is in inverse proportion to 

performance drop. We performed three distinct types of classifications - one within patient 

and time (non-generalisation) and two which involved generalisation either across time or 

patients. In all three analyses, we classified epileptogenic and non-epileptogenic contacts 

(i.e., EZ localisation). In the non-generalisation classification, we performed the classification 

within the interictal and ictal time window separately for each patient using a 10-fold cross-

validation procedure. In the cross-time generalisation, in each patient, we trained the 

classifier using the data from the two interictal recordings and tested the classifier using all 

the ictal recordings (mean = 3.7). In the cross-patient generalisation, in each time window 

(interictal/ictal), we trained the classifier using the data from all patients minus one and tested 

the classifier using the data from the left-out patient and repeated this procedure until every 

patient was used once for testing the classifier. 

To equalise the number of epileptogenic to non-epileptogenic contacts (12.87% vs. 77.13% 

on average, respectively) for unbiased classification52, we used a down-sampling procedure 

in non-generalisation analysis and up-sampling procedures in the two generalisation analyses 

(10 repetitions). These choices maximised our classification performances. 

To generate chance-level performances, against which we could evaluate the validity of our 

true classification performances, we shuffled (epileptogenic/non-epileptogenic) contact labels 

1000 times and recalculated the classification performance leading to 1000 chance-level 

classification results. 

Statistical analysis 

We used a Bayes Factor analysis for statistical inference53. We compared the levels of AUCs 

against chance-level AUCs as well as evaluated main effects on classifications. We used 
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standard rules of thumb for interpreting levels of evidence54,55: Bayes factors between 3 and 

10 and between 1/10 and 1/3 were interpreted as evidence for the alternative and null 

hypotheses, respectively. Bayes factors > 10 and < 1/10 were interpreted as significant 

evidence for the alternative and null hypotheses, respectively. We considered the Bayes 

factors which fell between 1/3 and 3 as insufficient evidence either way. 

To evaluate the evidence for the null and alternative hypotheses of at-chance and above-

chance classification, respectively, we compared the classification rates in each analysis and 

the classification rates obtained from the chance-level classification results (e.g., panel A in 

all figures). For that, we performed an unpaired Bayes factor t-test for alternative (i.e., 

difference from chance; H1) and the null (i.e., no difference from chance; H0) hypotheses. To 

evaluate the evidence for the null and alternative hypotheses of difference between 

classification levels across analyses (e.g., Interictal vs. Ictal), we compared the classification 

rates obtained from each of those analyses using paired Bayes factor t-test. To evaluate the 

main effects of resection outcome, EZ, pathology (lesional/non-lesional) and type of 

recording (SEEG/ECoG), we used a Bayes factor ANOVA, with these four factors as 

independent variables and classification/generalisation AUC as the dependent variable. For 

statistical power in ANOVA, we excluded patients with insular, frontoparietal, parietal and 

mesiofrontal resection which were under-sampled (n < 3). The priors for all Bayes factor 

analyses were determined based on Jeffrey-Zellner-Siow priors56,57 which are from the 

Cauchy distribution based on the effect size that is initially calculated in the algorithm using 

t-test53. 

Data and code availability  

The dataset used in this study was from previous studies and is available at 

https://openneuro.org/datasets/ds004100/versions/1.1.3. The code developed for this project 

is available at https://github.com/HamidKarimi-

Rouzbahani/Intracranial_EEG_generalisation.  

Results  

We used a multivariate pattern analysis approach on features extracted from intracranial 

SEEG/ECoG data in epileptic patients to address two main questions. First, we wondered if 

there were similarities between the epileptiform patterns which discriminated epileptogenic 
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from non-epileptogenic areas in interictal and ictal time windows. Second, we wondered how 

generalisable epileptiform patterns were across patients. 

How discriminable are epileptogenic and non-epileptogenic 

contacts? 

As an initial step in our analyses, we quantified the discriminability of epileptogenic and non-

epileptogenic contacts. This was done for each patient and time window (interictal and ictal) 

separately. There was significant evidence (BF >> 10) for above-chance AUC which 

averaged to 0.97 (std = 0.03) in the interictal and 0.91 (std = 0.07) in ictal time windows, 

respectively (Fig. 1A). These showed that our multi-feature classification pipeline could 

robustly differentiate epileptogenic from non-epileptogenic contacts. 

Interestingly, there was significant evidence (BF >> 10) for higher classification in the 

interictal than ictal time window (Fig. 1A). This points to the importance of interictal neural 

activities in localisation of EZ. While the classification performances were high across all 

patients (AUC > 0.8), there was no correlation (r = -0. 17, p = 0.24; Pearson) between the 

level of AUCs in interictal and ictal time windows across patients (Fig. 1C). This suggests 

that patients with the clearest separation between epileptogenic and non-epileptogenic 

contacts in interictal window did not necessarily show the clearest separation between those 

contacts in the ictal window and vice versa. 

We then evaluated the contribution of each feature to the performance (Fig. 1B). In interictal 

data, variance from the moment features, Hjorth mobility from the complexity features, beta-

band power from the frequency features, and gamma-band coherence from the network 

features were among the most contributory features. In ictal data, variance from the moment 

features, approximate entropy from the complexity features, gamma-band power from the 

frequency features, and beta-band coherence from the network features were among the most 

contributory features. There was significant correlation between the features’ contributions 

across the two windows (r = 0.73, p<0.0001; Pearson; Fig. 1D) suggesting that similar sets 

of features dominantly contributed to the EZ localisation across interictal and ictal time 

windows. 

Next, we evaluated the effect of outcome, region of resection (EZ), pathology and recording 

type on the classification results in each window (Supplementary Fig. 1). In the interictal 

data, there was evidence (1/10 < BF < 1/3) against any effect of outcome, region of resection, 
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pathology and recording type on classification results. In the ictal data, there was significant 

evidence (BF < 1/10) against any effect of outcome, evidence (3 < BF < 10) for an effect of 

region of resection, insufficient evidence (1/3 < BF < 3) for an effect of pathology and 

evidence (1/10 < BF < 1/3) against any effect of recording type on classification results 

(Supplementary Fig. 1). To check the direction of region of resection effect, we used Bayes-

factor t-test which showed insufficient evidence (1 < BF < 3) for higher classification in 

patients where the epileptogenic zone/resection was in temporal than frontal and 

mesiotemporal area (Supplementary Fig. 1). 
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Figure 1 Classification of contacts with and without epileptogenic activities in each 

patient. (A) Area Under Curve (AUC) of classification performance for interictal and ictal 

classifications. Box plots show the distribution of data, its quartiles and median and whiskers 

indicate the maximum and minimum of the data over patients. Each dot indicates the data 

from one patient. Numbers below the bars indicate Bayesian evidence for the difference 

between true and null classification performances. Horizontal dashed line refers to theoretical 

chance-level generalisation (0.5). Bayes factor reflecting evidence for the difference between 

interictal and ictal classifications are also shown. BF >> 10 indicates BF > 100. (B) 

Contribution of each feature to the classification performance shown in A, calculated using 

random permutation. Yellow, pink, green and purple dots indicate moment, complexity, 

frequency and network-based features. (C) Pearson correlation between interictal and ictal 

classification performances across patients with each dot showing one patient. (D) Pearson 

correlation between interictal and ictal feature contributions across features with each dot 

showing one feature. Correlation and the corresponding p values are shown on top of panel C 

and D with the dashed line showing the theoretical perfect positive correlation. 

 

Our classifications used all signal features simultaneously. To check if any individual feature 

could predict the resection outcome, we performed a direct comparison (unpaired Bayes 

factor t-test) between feature contributions in patients with successful (Engel I) vs. 

unsuccessful (Engel II-IV) outcomes (Supplementary Fig. 2). In interictal data, there was 

evidence (3 < BF < 10) that signal median contributed to better EZ localisation in patients 

with successful vs. unsuccessful outcome. However, as median was among the least 

contributory features overall (c.f., Fig. 1B), we prefer not to put too much weight on this 

result. In ictal data, there was insufficient evidence (1/3 < BF < 3) for any feature to predict 

resection outcome. 

As our features relied on signal patterns which were relatively sustained, compared to 

transient patterns such as interictal spikes or HFOs, we wondered whether accurate 

classification was possible using even shorter time windows. To test this, we repeated the 

classifications using the earliest, the middle and the latest 2-second time window of data in 

interictal and ictal data separately. Interestingly, we found significant evidence (BF >> 10) 

for above-chance AUC in both interictal and ictal time, with significant evidence (BF >> 10) 

for higher classification in ictal than interictal data (Supplementary Fig. 3). This repeated the 

pattern observed when using all windows of data in interictal and ictal periods (c.f., Fig. 1A). 
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Do epileptiform patterns generalise across time windows? 

We showed that a correlated set of features contributed to EZ localisation in both interictal 

and ictal windows (Fig. 1C), which might point to shared neural mechanisms underlying 

signal patterns in both time windows. We wondered if we could localise the EZ in the ictal 

window based on patterns of interictal activities. To test this, we trained our classifiers on 

interictal data and tested them on ictal data for each patient separately. We observed that, 

while the performance was lower (mean AUC = 0.60, std = 0.1; Fig. 2A) than those obtained 

by training and testing the classifiers within each time window separately (c.f., Fig. 1A), 

there was still significant evidence for above-chance cross-time generalisation (interictal to 

ictal; BF >> 10). 

Feature contribution results showed an advantage for variance from the moment features, 

Higuchi fractal dimension from the complexity features, delta-band power from the 

frequency features, and gamma-band coherence from network features (Fig. 2B). There was 

evidence (1/10 < BF < 1/3) against any effect of outcome, region of resection, pathology and 

insufficient evidence (1/3 < BF < 3) for an effect of recording type on the cross-time 

generalisation results (Supplementary Fig. 4). 

Note that we only used two 5-minute windows of interictal recording to train the classifiers, 

which is relatively short given usual large clinical datasets of interictal activities recorded 

over several days. The generalisation performance is predicted to improve with higher 

volumes and more varied sets of training data. To check if increasing the diversity of the 

training data could improve the generalisation performance, we trained the classifiers using 

the ictal data and tested them using the interictal data. This would provide the classifiers with 

a more diverse training set as ictal data were obtained from more recordings than interictal 

recordings (3.7 vs. 2). Numbers of observations were equalised between interictal and ictal 

time windows. 

While there was significant evidence (BF >> 10) for above-chance generalisation 

performance when training on the ictal data, there was insufficient evidence (BF = 0.91) for 

higher cross-time generalisation when the training data was from the ictal than interictal time 

windows. Therefore, while a more diverse dataset seems to have improved the classification 

(shifted the mean AUC from 0.6 up to 0.63), more data is needed to establish an improvement 

effect. There was significant correlation (r = 0.60, p < 0.001, Pearson; Fig. 2C) between the 

level of performance in interictal-to-ictal and ictal-to-interictal generalisations across patients. 
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This shows that patients who showed the best generalisation from interictal to ictal windows 

also showed the highest generalisation in the opposite direction. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.29.23294708doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.29.23294708
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.08.29.23294708doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.29.23294708
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

Figure 2 Classification of contacts with and without epileptogenic activities for each 

patient across time windows. (A) AUC of cross-time generalisation performance for 

interictal-to-ictal and ictal-to-interictal generalisations. Box plots show the distribution of 

data, its quartiles and median and whiskers indicate the maximum and minimum of the data 

over patients. Each dot indicates the data from one patient. Numbers below the bars indicate 

Bayesian evidence for the difference between true and null generalisation performances. 

Horizontal dashed line refers to theoretical chance-level generalisation (0.5). Bayes factor 

reflecting evidence for the difference between interictal-to-ictal and ictal-to-interictal 

generalisations are shown. BF >> 10 indicates BF > 100. (B) Contribution of each feature to 

the generalisation performance shown in A, calculated using random permutation. Yellow, 

pink, green and purple dots indicate moment, complexity, frequency and network-based 

features. (C) Pearson linear correlation between interictal-to-ictal and ictal-to-interictal 

generalisation performances across patients with each dot showing one patient. (D) Pearson 

linear correlation between interictal-to-ictal and ictal-to-interictal feature contributions across 

features with each dot showing one feature. Correlation and the corresponding p values are 

shown on top of panel C and D with the dashed line showing the theoretical perfect positive 

correlation. 

 

This suggests that each patient has a certain level of similarity between interictal and ictal 

epileptiform patterns. There was significant correlation between the features’ contributions 

across the interictal-to-ictal and ictal-to-interictal generalisations (r = 0.56, p < 0.001; 

Pearson; Fig. 2D) suggesting that generalisable epileptiform patterns were reflected in 

similar sets of features no matter if generalising from interictal to ictal or vice versa. 

In interictal-to-ictal generalisation data, there was evidence or significant evidence (BF > 3) 

that features of Katz fractal dimension, energy ratio, theta-band power led to poorer EZ 

localisation in patients with successful vs. unsuccessful outcome (Supplementary Fig. 5). In 

ictal-to-interictal generalisation, this pattern was repeated for features of energy ratio and 

delta-band power. These suggest that specific features such as energy ratio might be more 

informative for EZ localisation when they show differences between their interictal and ictal 

patterns (i.e., as reflected in lower cross-time generalisability; Fig. 2B). This might mean that, 

patients whose signals’ energy ratio changes from interictal to ictal windows (e.g., through a 

significant increase) have a higher chance for their EZ to be localised; energy ratio change 

was indeed the basis for the original Epileptogenicity Index method13. 
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Do epileptiform patterns generalise across patients? 

So far, our analyses focused on within-time classification of contacts and cross-time 

generalisation of classifications both done within each patient. A clinically important aspect 

is to ascertain the generalisability of epileptiform patterns across patients, and test the 

feasibility of using the data from previous patients to help localise the EZ in new out-of-

sample patients. To test this, we trained classifiers on the data from all patients minus one and 

tested the classifiers on the data from the left-out patient. This was done separately for 

interictal and ictal windows. 

In interictal data, there was significant evidence (BF >> 10) for above chance cross-patient 

generalisation (Fig. 3A), which suggests that there were interictal epileptiform patterns which 

had similarities across patients. We evaluated the features’ contribution to the generalisation 

(Fig. 3B). Results showed an advantage for kurtosis from the moment features, Higuchi 

fractal dimension from the complexity features, beta-band power from the frequency 

features, and gamma-band coherence from the network features. There was significant 

evidence (BF < 1/10) against any effect of outcome, evidence (1/10 < BF < 1/3) against any 

effect of region of resection, insufficient evidence (1/3 < BF < 3) for an effect of pathology 

and significant evidence (BF > 10) for an effect of recording type on the cross-patient 

generalisation results (Supplementary Fig. 6). There was significant evidence (BF = 12) for 

higher generalisation to test patients with resection in mesiotemporal than temporal and 

significant evidence (BF >> 10) for higher generalisation to test patients with SEEG than 

ECoG recording (Supplementary Fig. 6). 

In ictal data, there was significant evidence (BF >> 10) for above-chance cross-patient 

generalisation (Fig. 3A) which suggests that there were ictal epileptiform patterns which had 

similarities across patients. Results showed the highest contribution to generalisation by 

skewness from the moment features (however very low compared to other features), Hjorth 

mobility from the complexity features, mean frequency from the frequency features, and 

gamma-band coherence from the network features. There was evidence (1/10 < BF < 1/3) 

against any effect of outcome, insufficient evidence (1/3 < BF < 3) for an effect of region of 

resection and pathology and significant evidence (BF > 10) for an effect of recording type on 

the cross-patient generalisation.  
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Figure 3 Classification of contacts with and without epileptogenic activities across 

patients. (A) AUC of cross-patient generalisation performance for interictal and ictal 

generalisations. Box plots show the distribution of data, its quartiles and median and whiskers 

indicate the maximum and minimum of the data over patients. Each dot indicates the data 

from one patient. Numbers below the bars indicate Bayesian evidence for the difference 

between true and null generalisation performances. Horizontal dashed line refers to 

theoretical chance-level generalisation (0.5). Bayes factor reflecting evidence for the 

difference between interictal and ictal generalisations are shown. BF >> 10 indicates BF > 

100. (B) Contribution of each feature to the generalisation performance shown in A, 

calculated using random permutation. Yellow, pink, green and purple dots indicate moment, 

complexity, frequency and network-based features. (C) Pearson linear correlation between 

interictal and ictal generalisation performances across patients with each dot showing one 

patient. (D) Pearson linear correlation between interictal-to-ictal and ictal-to-interictal feature 

contributions across features with each dot showing one feature. Correlation and the 

corresponding p values are shown on top of panel C and D with the dashed line showing the 

theoretical perfect positive correlation. 

 

There was significant evidence (BF >> 10) for higher generalisation to test patients with 

resection in mesiotemporal than temporal and significant evidence (BF >> 10) for higher 

generalisation to test patients with SEEG than ECoG recording (Supplementary Fig. 6). 

There was significant correlation (r = 0.73, p < 0.001; Pearson) between the level of 

generalisation in interictal and ictal time windows across patients (Fig. 3C). This suggests 

that if a patient’s data (i.e., testing set) has similarities to the pool of other patients’ data (i.e., 

training set), this will reflect in both interictal and ictal generalisations. On the other hand, 

patients with very distinct epileptiform activity patterns show this distinction across both 

interictal and ictal time windows. There was no correlation (r = -0.23, p = 0.19; Pearson) 

between informative features in the interictal and ictal time windows. This suggests that 

distinct sets of features contributed to cross-patient generalisation in interictal and ictal time 

windows. 

In interictal data, there was significant evidence (BF >> 10; Bayes factor t-test) that 

approximate entropy led to better EZ localisation in patients with successful vs. unsuccessful 

outcome (Supplementary Fig. 7). In ictal data, there was evidence or significant evidence (BF 
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> 3) that mean and median led to better EZ localisation in patients with unsuccessful vs. 

successful outcome and median frequency led to the opposite pattern. As these were all 

among the least contributory features to the overall cross-patient generalisation performance 

we avoid over-interpreting them. 

Discussion  

Precise localisation of epileptogenic zone has remained a challenging problem. It has recently 

been highlighted that data and code sharing are fundamental to moving computational 

epilepsy studies towards clinical translation11. The current work uses one of the few open-

access SEEG/ECoG datasets which provides epochs of interictal and ictal activities with 

meticulous labelling of electrode contacts, resection volume and clinical information 

including surgical outcome46,48. Using a rigorous ML-based pipeline, our study confirms the 

feasibility of establishing generalisability of patterns within individuals from interictal to ictal 

periods, and across individuals during both interictal and ictal time windows. These results 

make several contributions to EZ localisation, explained below. 

First, to establish that our ML-based method could discriminate areas with and without 

epileptiform activities, we classified epileptogenic and non-epileptogenic areas (EZ 

localisation, based on clinician labelling of the dataset) within each patient and found 

significant differences between the two classes of areas. At the individual patient level, we 

observed a remarkable EZ localisation performance in the interictal time window, which 

counter-intuitively surpassed that obtained in the ictal time window. Therefore, while 

majority of available studies have been developed to localise EZ during the ictal time 

window13–19, this study finds significant information within the interictal signal that can be 

utilised for EZ localisation. It is important to note that our approach did not pre-select any 

specific feature (such as spikes, HFO) as biomarkers a priori, but rather analysed the 

ensemble of the neural signal over time, which appears to contain predictive information 

beyond these well-known features, even when analysing time-windows as short as 2 seconds 

(c.f., Supplementary Fig. 3). This agrees with reports showing that interictal patterns are 

relatively stable over time36,40,58. 

While systematic comparison between interictal and ictal epileptiform patterns are rare in the 

literature, our result aligns with a surface EEG study in children with MRI-visible lesions 

which found better predictive value of interictal rather than ictal data59. We observed that the 
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most informative features in interictal data included variance, beta-band power, correlation 

and gamma-band coherence, which in order support previous studies finding information in 

multiscale entropy in the gamma band28,30 (a complexity measure) and relative entropy34(a 

network measure). Interictal network studies have shown a gradient of within-area 

connectivity decreasing progressively from epileptogenic regions to propagation regions to 

non-involved zones39,41,60, providing a proxy for EZ localisation. The prominence of network 

measures in all of our analyses also aligns with a recent study showing greater information in 

network measures compared to univariate power-based measures in EZ localisation48. While 

we cannot perfectly equalise the interictal and ictal data for fair comparison as there are 

systematic differences in their collection time, number of epochs and potential artefacts in 

ictal signals, these results provide valuable insights into the richness of interictal activity 

patterns for EZ localisation.  

The remarkable classification performance observed especially in the interictal window (> 

0.90; Fig. 1A) supports the value of ML-based interictal localisation methods, which here 

used multiple features. While these features could have overlapped in their selectivity, they 

worked in synergy to detect as much non-overlapping information as possible. DT classifiers 

are good at combining distinct combinations of features to generate representational spaces in 

which classes can be separated. We also tested Support Vector Machine and Linear 

Discriminant Analysis classifiers, but both provided poorer classification. Our approach of 

using a range of simple-to-complex features is different from older localisation methods 

which used one main feature such as high-to-low frequency energy ratio13,16, and aligns with 

later studies which have combined several features for EZ localisation17,31,61,62, temporal 

detection of seizures63 and quantification of seizure severity64. 

Second, we found prediction power in activity patterns of interictal data to localise EZ in the 

ictal period. While previous studies have localised EZ in interictal and ictal windows, the 

interictal-ictal correspondence has not been systematically investigated. In eleven epileptic 

patients who had been implanted with ECoG, one study found that the template of 

connectivity-based ictal epileptogenic areas could be helpful in informing the localisation of 

EZ interictally65. One recent study investigated the fine-grained timing and direction of 

interictal and ictal discharges using microelectrode grids, and suggested that interictal 

discharges are traveling waves that traverse the same path as seizure discharges66. After 

confirming a consistent temporal ordering of discharges in interictal and ictal windows, 

another study developed a novel source localisation method based on wave propagation, 
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which successfully localised the EZ67. Our work evaluates the generalisability of a large 

battery of epileptiform features from interictal to ictal time windows and vice versa. The drop 

in cross-time generalisation performances (Fig. 2A) compared to the non-generalisation 

analysis (c.f., Fig. 1A) is supported by known differences in visualisable epileptogenic 

patterns from the interictal to the ictal time window68,69. In our study, the observed above-

chance cross-time generalisation had not been necessarily predictable. It could be the case 

that epileptogenic areas would show higher value of a particular feature (e.g., power) than 

non-epileptogenic areas in the interictal window with this pattern flipping in the ictal 

window. This would have been detectable by our machine learning pipeline and would have 

reflected in below-chance (AUC < 0.5) generalisation performance. The potential of using 

interictal recording to predict EZ localisation is significant because many patients have 

insufficient or sometimes no seizures during their one/two-week hospitalisation for EZ 

localisation. This is an important limitation for visual localisation of EZ based on electrical 

patterns during seizures and for training ML algorithms, which, like humans, need enough 

samples to learn and localise epileptiform patterns from the data. 

The third contribution of this work is showing that, despite clear inter-subject differences, 

there were patterns of epileptiform activities which were shared across patients. Machine 

learning allowed us to train the classifiers using data from one set of patients and test the 

generalisability of patterns to the data from a new out-of-sample patient. While these 

performances were expectedly lower in the cross-patient generalisation than within-patient 

classification (Fig. 3A vs. Fig. 1A), this result is promising and informative. The drop in 

performance can be explained by large differences across patients’ data including epilepsy 

characteristics as well as distinct sampling of the brain, recording type, etc. Moreover, 

significant inter-subject differences may be present in terms of patient-specific epileptogenic 

“signatures”, the features of which are detectable across both interictal and ictal time 

windows for that individual70. On the other hand, a few studies showed that specific patterns 

can be generalised across patients, but only evaluated it in either interictal or ictal time 

window (Table 1). A universal repertoire of seizure patterns across species has previously 

been observed, which suggests that some invariant properties characterise seizures under 

different physiological and pathological conditions71. Here, we showed that ictal 

epileptogenic patterns, especially those captured by complexity features, were more 

generalisable across subjects than interictal patterns. The present results also showed that 

SEEG recordings provided advantageous generalisability compared to ECoG (Supplementary 
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Fig. 6). This is likely explained by SEEG’s greater sampling of a wider range of brain 

structures, which contributes to a more consistent sampling of the brain across patients72. 

These cross-patient generalisable patterns make it possible and desirable to use them on new 

out-of-sample data, to potentially build on these results by testing larger datasets. To facilitate 

future testing in novel datasets, we have shared our Matlab scripts. 

One of the main concerns when using artificial intelligence in applications such as EZ 

localisation is the explainability of algorithms. Lack of knowledge about how a ML algorithm 

decides why a contact is classified as “epileptogenic” makes the algorithm less trustworthy 

for clinicians73, who may not be able to validate if a specific feature of a signal is indicative 

of epileptogenicity or whether the algorithm is simply wrong. Methodologies incorporating 

explainable features can mitigate the explainability issue and provide complementary insights 

into the growing body of work in EZ localisation and seizure prediction, which tend to adopt 

unexplainable ML algorithms such as deep neural networks74,75. Every individual feature 

used in our work has clear mathematical definition and has been validated in previous 

quantification analysis of neural data49,50,76,77. We also quantified the contribution of each 

feature in our analyses, thus avoiding the “black box” effect encountered when using 

algorithms such as deep neural networks. Accordingly, our proposed pipeline can be added as 

a primary feature extractor to prediction pipelines to make them more explainable to humans. 

There are several future directions which can facilitate the translation of this work to clinical 

practice. One can come through the improvement of the classification and generalisation 

performance. We used relatively short time windows of interictal (5-minute windows) and 

ictal (1-minute windows) data, both of which can be lengthened to potentially improve the 

classification performance. We did not apply any filtering or artefact removal, as ML 

classification algorithms are mainly sensitive to distinct patterns between classes (i.e., 

contacts with and without epileptiform patterns) rather than patterns which are common 

between classes (e.g., line noise). Nonetheless, one future direction would be to test if 

application of filters or artefact removal algorithms in the pre-processing stage can improve 

classification performance. Rather than an optimised work, the current study was only a 

feasibility effort to establish the generalisability of patterns of activities across time within 

patients and within time across patients. Another future direction would be to test the 

generalisability of the classification pipeline to datasets from other centres, which have 

undergone meticulous clinical evaluation and labelling. Finally, it would be interesting to 

evaluate the generalisability of the proposed pipeline to non-invasive modalities such as scalp 
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EEG and magnetoencephalography (MEG). As the features extracted here are not modality-

specific and rely on characteristics of time series, these methods can be applied to sensor- or 

source-space E/MEG data. The generalisability of these methods to non-invasive modalities 

is significant because current gold-standard invasive methods of SEEG and ECoG suffer 

from incomplete or sub-optimal sampling of the brain, and in addition these invasive methods 

are only indicated in a subset of patients. Delineation of likely spatial extent of epileptogenic 

zones could in theory be optimised using rigorous localisation methods developed here in 

conjunction with non-invasive E/MEG recording modalities, especially in the interictal time 

window. This will provide a more objective and fully automatic method for the localisation 

of EZ than current methods which often rely on visual detection, manual annotation and 

operator-dependent analysis of epileptiform patterns78,79. 

In conclusion, we showed that powerful classification patterns were embedded within the 

EEG signal, which could reliably differentiate epileptogenic from non-epileptogenic contacts 

in every individual. Such patterns could be identified in both interictal and ictal recordings 

through features such as signal variance, Hjorth mobility and complexity as well as high-

frequency power and network features, without taking account of any predetermined figures 

such as spikes, HFO or known ictal patterns. There were also features that could correctly 

predict EZ in ictal recordings from interictal recordings. Again, high-frequency power and 

network features were the most contributory features here. Finally, we showed that, while 

there were differences between epileptiform patterns across patients suggesting subject-

specific effects, we could localise the EZ with well above chance precision using interictal 

and more dominantly ictal activities. The proposed methods and results provide new evidence 

for generalisability of epileptiform patterns across time and patients and open new avenues 

for future methods developed for epileptogenic zone localisation. Clues from neural signal 

changes could also provide new directions for investigating the biological correlates of 

interictal80 and ictal81 epileptiform activity. Their explainable nature is important for further 

investigation of pathophysiologic underpinnings of these signal changes. This could help 

contribute to efforts to develop paradigm-shifting therapeutic possibilities in epilepsy 

including disease-modifying treatments82, as well as further refining network-based surgical 

treatments83, seizure forecasting84 and seizure detection85. 
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