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 10 
Abstract: Throughout history, Influenza A viruses (IAVs) have caused significant harm and 11 
catastrophic pandemics. The presence of host barriers results in viral host tropism, where 12 
infected hosts are subject to strict restrictions due to the hindered spread of viruses across hosts. 13 
Therefore, the identification of host tropism of IAVs, particularly in humans, is crucial to 14 
preventing the cross-host transmission of avian viruses and their outbreaks in humans. 15 
Nevertheless, efficiently and effectively identifying host tropism, especially for early host 16 
susceptibility warnings based on viral genome sequences during outbreak onset, remains 17 
challenging. To address this challenge, we propose Flu-CNN, a deep neural network model 18 
based on classical character-level convolutional networks. By analyzing the genomic segments 19 
of IAVs, Flu-CNN can accurately identify the host tropism, with a particular focus on avian 20 
influenza viruses that may infect humans. According to our experimental evaluations, Flu-CNN 21 
achieved an accuracy of 99% in identifying virus hosts via only a single genomic segment, even 22 
for subtypes with a relatively small number of viral strains such as H5N1, H7N9, and H9N2. 23 
The superiority of Flu-CNN demonstrates its effectiveness in screening for critical amino acid 24 
mutations, which is important to host adaptation, and zoonotic risk prediction of viral strains. 25 
Flu-CNN is a valuable tool for identifying evolutionary characterization, monitoring potential 26 
outbreaks, and preventing epidemical spreads of IAVs, which contribute to the effective 27 
surveillance of influenza A viruses. 28 
Keywords: Influenza A virus; Host tropism; Deep learning; Amino acid substitutions; 29 
Zoonotic strains. 30 

 31 

1 Introduction 32 
Influenza A virus (IAV) is capable of infecting a wide range of hosts, including humans, birds, 33 
and other mammals [1]. Throughout history, IAV has become a frequent and leading cause of 34 
respiratory infections in both human and avian species, which may result in significant 35 
morbidity and mortality [2]. For human beings, IAV has caused several pandemics throughout 36 
history, among which the 1918-19 H1N1 influenza pandemic stands out, as it resulted in the 37 
deaths of nearly 50 million people and inflicted significant damage upon human health and 38 
well-being [3]. In terms of birds, the H5N1 avian influenza viruses have swept through Asia, 39 
Africa, Europe and North America since 2021, leading to the death of millions of poultry and 40 
wild birds [4]. To date, IAVs have caused several pandemics and have become a major and 41 
persistent threat to human and avian health. 42 
One phenomenon is that IAVs can only infect specific hosts, which indicates that the IAV is 43 
restricted by its host tropism, i.e., host specificity [5]. This implies that IAVs have the 44 
adaptability of hosts [6]. The host tropism of IAVs is due to the presence of host barriers, which 45 
typically impedes the easy spread of these viruses across hosts. Consequently, avian influenza 46 
viruses are prevented from causing disease in humans by host barriers. However, IAVs may 47 
break host barriers through evolution, by acquiring mutations and reassortments that alter their 48 
receptor binding affinity and antigenicity [7, 8]. Some avian influenza viruses, such as H5N1, 49 
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H7N9, and H9N2, have been reported to infect humans occasionally [9-11]. From January 2003 50 
to April 2023, 868 cases of human infection with H5N1 avian influenza have been reported 51 
from 21 countries, including 457 deaths [12]. Therefore, these subtypes can be greatly 52 
dangerous to human beings. Meanwhile, phylogenetic studies have shown that the genes in 53 
waterfowl are often considered to be the origin of IAVs from other species [13]. This suggests 54 
that the changes in host tropism may be the main cause of cross-species transmission. Although 55 
the host barrier can protect humans from avian influenza viruses to some extent, avian influenza 56 
viruses can still pose a great threat to human health once they change their host tropism. 57 
Therefore, predicting host tropism of IAVs is of great importance in the surveillance of 58 
pandemics, especially for monitoring the cross-species transmission of IAVs. 59 
Previous experimental studies have identified numerous factors that influence the host tropism 60 
of IAVs, including receptor binding affinity, viral genome replication, and host immunity 61 
antagonization [14-16]. However, it is still difficult to determine the host tropism of large 62 
numbers of IAVs efficiently and effectively, using experimental methods. Besides, performing 63 
such biological experiments also requires high standards of biological laboratories, which 64 
limits the scalability of such investigations. Therefore, many computational tools have been 65 
developed to analyze viral sequences for their host tropism, including distinct host tropism 66 
protein signatures, zoonotic risk of IAVs, avian influenza transmission from avian to human, 67 
and prediction of human-adapted IAVs based on viral nucleotide composition [17-19]. Most of 68 
these methods can be effective, but they require feature extraction from the input sequence and 69 
even particular analysis of host genomic information, which may limit their application. 70 
Furthermore, current methods may not fully leverage the vast amount of genomic data available 71 
for IAVs, resulting in the potential loss of critical information during the analysis process. 72 
Therefore, the performance and application of those methods may be greatly limited. 73 
In this study, we propose a novel approach using Character-level Convolutional Neural 74 
Networks (Char-CNN) [20]. Inspired by classical Char-CNN models, our method analyzes the 75 
whole genome or some segments of IAVs to predict the viral host tropism. We had collected a 76 
large-scale dataset from three major databases, including NCBI Virus 77 
(https://www.ncbi.nlm.nih.gov/labs/virus) [21], GISAID (https://www.gisaid.org) [22], and 78 
BV-BRC (https://www.bv-brc.org) [23], which comprises both human and avian categories for 79 
model training and evaluation. To our knowledge, this is the first work which has used such a 80 
large-scale dataset for IAVs host tropism prediction. The evaluation result demonstrates that our 81 
approach can effectively identify the host tropism of IAVs with an accuracy rate of 99%, using 82 
just a single genomic segment of IAV. Moreover, our method can likewise achieve a stable and 83 
high accuracy across various subtypes, particularly on avian influenza subtypes with a small 84 
number of viral strains such as H5N1, H7N9, and H9N2. Furthermore, we have also explored 85 
our method in other perspectives. We have investigated the interpretability of Flu-CNN, and 86 
our method can learn the key features to distinguish the hosts by convolution. We also use 87 
Flu-CNN to explore the important amino acid substitutions which can change the IAV 88 
adaptation. Based on Flu-CNN, we have screened on PB2, PA (polymerase acidic protein) and 89 
NP (nucleoprotein) proteins to obtain some key amino acid substitutions. Moreover, we use 90 
Flu-CNN to identify the zoonotic risk of IAVs strains for estimating the potential high-risk 91 
strains circulating in avian. Our result demonstrates that H5N1, H7N9, and H9N2 subtypes 92 
have the highest zoonotic risk. This research produces a valuable tool for identifying the host 93 
tropism of IAV as well as innovative insights into the evolutionary characterization of IAV, 94 
which may contribute to the surveillance of potential outbreaks and spread of IAVs. 95 

2 Materials and Methods 96 
2.1 Workflow and Data Processing 97 
To predict IAVs host tropism, we employed a 4-step workflow, as depicted in Figure 1. Firstly, 98 
we collected the genome data of IAVs and only retained high-quality sequences. Subsequently, 99 
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we separated the genome data into training, validation, and test sets. Moreover, genome data 100 
were also encoded into amino acid sequences so that they can be processed by computers. Then, 101 
we used the constructed neural network of Flu-CNN for model training. Finally, we employed 102 
Flu-CNN to perform evaluations and further downstream analysis. This workflow enabled us to 103 
predict IAVs host tropism rapidly and accurately. 104 
To obtain high-quality IAV genomic sequences, we retrieved RNA FASTA sequences of IAVs 105 
whole genome coding region from three major databases, including NCBI Virus, IRD and 106 
GISAID, as of October 14, 2022. As these databases contain numerous duplicate entries, we 107 
discarded strains with ambiguous characters, mislabeled epidemiological information, and 108 
incomplete metadata, and only retained one strain with consistent strain name and sequence. 109 
The reference strain (accession number A/New York/392/2004) on the NCBI Virus was used as 110 
the baseline, and only sequences within 10% difference in length were retained, and other 111 
sequences considered outliers (too long or too short) were discarded. Meanwhile, only 112 
sequences with hosts of human and avians are retains, with sequences of other hosts discarded. 113 
Consequently, a total of 911,098 sequences of 156,671 strains were obtained, including 630,656 114 
sequences of 78,832 strains with the whole genome of eight segments. The sample distribution 115 
of these strains by host, subtype, year, and geographic region is presented in the supplementary 116 
material. We divided the genome data into training, validation, and test sets by a ratio of 6:2:2. 117 
 118 

119 
 120 

Fig. 1 The workflow of IAVs host tropism prediction. The workflow is designed from left to right as follows: A. Data 121 
downloading and cleaning to generate datasets. B. Data preprocessing to partition datasets, translation and coding. C. 122 
Flu-CNN construction and training. D. Tropism prediction and downstream tasks, including predicting IAVs host tropism, 123 
screening key amino acid substitutions, and predicting zoonotic strains. 124 
 125 
To enable the neural network model to recognize protein sequences, we use a unique one-hot 126 
encoding method that transforms each protein sequence into a matrix of values , where  127 
represents the type of amino acid and  represents the length of the protein sequence. Each 128 
amino acid is represented by a particular row in the matrix. For instance, a sequence of  129 
amino acids in length would become a rectangular matrix of  after unique thermal 130 
encoding; for the -th column, the first position is  if the -th residue in the sequence is 131 
Alanine, and the rest positions are all . 132 
2.2 Flu-CNN Structure and Model Training 133 
Besides the size of the training data, the parameter size is also important to models, which 134 
determines whether the model can fit complex real-world scenarios. Convolutional Neural 135 
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Network (CNN) is a type of deep learning model which is commonly used in computer vision 136 
and natural language processing, such as image recognition and object detection [38]. CNN 137 
models can extract local features from inputs like images or texts. Among them, the Char-CNN 138 
model has a simple structure with high accuracy and efficiency, making it suitable for text 139 
classification tasks. The basic structure of Char-CNN consists of two kinds of layers: a 140 
convolutional layer and a fully connected layer. The output of the pooling layer summarizes the 141 
input data to some extent. The fully connected layer uses the features extracted by convolution 142 
and pooling to output classification results, which uses the Softmax function as the activation 143 
function to normalize the predicted probability of each category. 144 
Inspired by Char-CNN, we construct a deep network called Flu-CNN. It comprises six 145 
convolutional layers and three fully connected layers, with ReLU and Pooling in the 146 
convolutional layers and ReLU and Dropout in the fully connected layers [39, 40]. The final 147 
output is a two-dimensional vector, indicating the possibility of viral human/avians tropism. 148 
ReLU introduces nonlinearity, which addresses the gradient disappearance problem and 149 
reduces the dependency between neurons. Dropout is a regularization method that randomly 150 
discards some of the neurons in the neural network. Dropout can prevent the network from 151 
becoming too dependent on specific local features and can learn more robust features, which 152 
improves the performance on new samples. 153 
In this study, we set the training epoch to 200, with a batch size of 128. The cross-entropy is 154 
used as the loss function, as shown in the following equation: 155 

���� � �����	�
 � �1 � ���	�1 � �
 
where � represents the true label, which takes the value of 0 or 1, and �
 is the predicted label, 156 
which indicates the probability that the sample belongs to the positive case and takes the value 157 
from 0 to 1. The above equation is equivalent to ���	�
  when � � 1 and �log�1 � �
, 158 
when � � 0. For a binary classification problem, the loss function converges to 0 if the model 159 
predicts correctly (�
 is close to the true label value), and increases otherwise. 160 
To evaluate the model, four metrics are taken into account, including accuracy, precision, recall, 161 
and F1-score, which are calculated as follows: 162 
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The above metrics are computed based on True Positive (TP), True Negative (TN), False 163 
Positive (FP), and False Negative (FN). TP represents the number of samples for which the 164 
classifier predicts positive cases as positive cases; TN is the number of samples for which the 165 
classifier predicts negative cases as negative cases; FP denotes the number of samples for which 166 
the classifier predicts negative cases as positive cases; and FN represents the number of 167 
samples for which the classifier predicts positive cases as negative cases. 168 
The model was trained based on a specific given segment, or the whole genome as a 169 
conjunction of all segments. We selected the model parameter with the highest accuracy in the 170 
validation set throughout the training cycle as the final weights for each segment model. Once 171 
the training was completed, we used the best performing model weights to predict the test set. 172 
2.3 Included Methods for Comparisons 173 
We compared Flu-CNN with several state-of-the-art studies for a comprehensive study on our 174 
performance on predicting influenza viruses host tropism. 175 
VIrus Deep learning HOst Prediction (VIDHOP) is a fast and accurate deep learning approach 176 
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used for viral host prediction [41]. It requires partial sequences of the viral genome (100–400 177 
bp long) without other virus features and predicts hosts at the species level for three viruses 178 
(IAVs, rabies hemolytic virus, and rotavirus A. VIDHOP can predict up to 36 host types for 179 
IAVs, 32 of which are closely related avian species. The architecture of VIDHOP for IAVs 180 
consists of three bidirectional Long short-term memory (LSTM) layers and two fully connected 181 
layers. 182 
ML-(d)nts is a machine learning model used for predicting the nucleotide compositions of 183 
human-adapted IAVs [19]. Nucleotide compositions includes characterized mononucleotides 184 
(nts) and dinucleotides (dnts). The human adaptation of IAVs sequences were predicted by 185 
computing (d)nts features of six viral gene segments. The principal components analysis (PCA) 186 
and hierarchical clustering analysis revealed the linear separability of optimized (d)nts between 187 
the human-adaptive and avian-adaptive sets. The confusion matrix results and the area under 188 
the receiver operating characteristic curve indicate that the machine learning model has high 189 
performance in predicting human tropism of IAVs. 190 
FluPhenotype is an online platform for early warning of IAVs, which accepts complete or 191 
partial genomic sequences to determine the virus phenotype rapidly [25]. An extensive 192 
collection of identified influenza virus molecular markers is available in FluPhenotype. 193 
Analysis of these molecular markers enables integrated inference of potential hosts of the 194 
viruses, including host type (avian, human, swine and other mammals), detailed host species, 195 
and probabilities for each host type. This method can be used for rapid determination of IAVs 196 
hosts, antigenicity, virulence, and drug resistance. 197 
In addition, hosts of viral strains can be determined based on the phylogenetic tree of IAVs, 198 
which serves as a supplementary validation. The evolutionary tree of IAVs reveals different 199 
strains and their evolutionary relationships. Different epitope structures carried by different 200 
strains cause differences in host affinity, transmission ability, and so on. Information about the 201 
transmission paths, evolutionary patterns, and related characteristics of IAVs in different 202 
regions and time periods can also be revealed in the evolutionary tree. 203 

3 Results 204 
3.1 Host Tropism Prediction 205 
3.1.1 General Prediction of Host Tropism 206 
To investigate the effectiveness of our approach, we compared Flu-CNN with two other 207 
methods, i.e., ML-(d)nts and VIDHOP, on a test set comprising 16,001 viral genomes that 208 
contained various subtypes. FluPhenotype and phylogenetic methods are not included because 209 
they cannot support a large number of strains. Phylogenetic presents challenges in constructing 210 
trees and distinguish virus host at a significant scale, and FluPhenotype requires individual 211 
genome-level operations on an online site. Table 1 presents the performance of studied methods, 212 
in which Flu-CNN outperformed other methods, both in individual gene segments and in the 213 
whole genome. In particular, our model achieved scores over 99% across all metrics for PB2, 214 
PA, HA, and the whole genome. On average, Flu-CNN outperforms VIDHOP by 9% in Recall 215 
and Accuracy, and by 5% in F1-score. And all four performance parameters were better than 216 
ML-(d)nts. 217 
In summary, our results demonstrate that Flu-CNN exhibits superior performance compared to 218 
state-of-the-art methods in predicting the host tropism of IAVs. 219 

 220 
Table 1. Performance of Flu-CNN and compared methods on the test set. Because the ML-(d)nts method is not recommended 221 
for MP segment and NS segment, the corresponding result is not applicable (NA). 222 
 223 

Segment PB2 PB1 PA 

Method Flu-CNN ML-(d)nts VIDHOP Flu-CNN ML-(d)nts VIDHOP Flu-CNN ML-(d)nts VIDHOP 

Accuracy 0.9963 0.9828 0.8253 0.9838 0.9781 0.7735 0.9908 0.9585 0.9116 
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Precision 0.9963 0.9836 0.9863 0.9839 0.9794 0.9859 0.9907 0.9628 0.9864 
Recall 0.9963 0.9828 0.8253 0.9838 0.9781 0.7735 0.9908 0.9585 0.9116 

F1-score 0.9963 0.9829 0.8950 0.9837 0.9783 0.8586 0.9907 0.9592 0.9465 

Segment HA NP NA 
Method Flu-CNN ML-(d)nts VIDHOP Flu-CNN ML-(d)nts VIDHOP Flu-CNN ML-(d)nts VIDHOP 

Accuracy 0.9928 0.9819 0.9801 0.9850 0.9843 0.9350 0.9898 0.9816 0.9783 
Precision 0.9928 0.9829 0.9867 0.9850 0.9849 0.9864 0.9898 0.9825 0.9868 

Recall 0.9928 0.9819 0.9801 0.9850 0.9843 0.9350 0.9898 0.9816 0.9783 
F1-score 0.9928 0.9821 0.9832 0.9849 0.9844 0.9592 0.9897 0.9818 0.9823 

Segment MP NS All Segments 
Method Flu-CNN ML-(d)nts VIDHOP Flu-CNN ML-(d)nts VIDHOP Flu-CNN ML-(d)nts VIDHOP 

Accuracy 0.9861 NA 0.7600 0.9886 NA 0.9543 0.9955 0.9819 0.9775 
Precision 0.9865 NA 0.9860 0.9886 NA 0.9866 0.9955 0.9830 0.9869 

Recall 0.9861 NA 0.7600 0.9886 NA 0.9543 0.9955 0.9819 0.9775 
F1-score 0.9862 NA 0.8486 0.9885 NA 0.9697 0.9955 0.9821 0.9819 

 224 
3.1.2 Performance across Different Subtypes 225 
Further, we explore different performance of each method on different subtypes. The test set is 226 
separated according to the subtype and the performance is further evaluated on this dimension. 227 
The performance on different subtypes is shown in Figure 2. Those approaches can all perform 228 
well on some subtypes, such as H2N1 and H3N2. However, in term of subtypes such as H1H1, 229 
H2N2 and H7N9, those methods can have different performance: Flu-CNN still maintains high 230 
accuracy, but the accuracy of other methods is limited. This shows that Flu-CNN not only has 231 
the best overall accuracy, but also achieves a high accuracy on individual subtypes. Hence, 232 
Flu-CNN exhibits its stability and performs the best across all subtypes. Such a stable 233 
performance across different subtypes of IAVs demonstrate the generality of our method in the 234 
field of IAV. 235 
 236 

 237 
 238 

Fig. 2 Histogram of accuracies on different subtypes. Each subtype is a subplot with horizontal coordinates indicating 239 
individual genome segments and genome-wide synthesis (Mix), and vertical coordinates indicating accuracy. Because the 240 
ML-(d)nts method is not recommended for MP segment and NS segment, the corresponding result is not applicable (NA). 241 
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 242 
3.1.3 Specific Investigation on H5N1, H7N9, and H9N2 243 
H3N2 and H1N1 are the predominating IAV subtypes, and they also account for the vast 244 
majority of our dataset. However, for some of the less abundant and minority subtypes, such as 245 
H5N1, H7N9, and H9N2, their insufficient data and significant bias may cause limited 246 
performance on these subtypes. Despite minority, they are the top three most infected human in 247 
avian influenza. So, this subsection particularly investigates the performance on those subtypes. 248 
And all the four state-of-the-art methods, ML-(d)nts and, VIDHOP, we have added other two 249 
methods, phylogenetic and FluPhenotype, and the phylogenetic method, are included, because 250 
the experiment is conducted on small-scale dataset. 251 
All sequences of the above three subtypes, including the training set, validation set and test set, 252 
are analyzed and compared using Flu-CNN and other methods. We randomly sampled 100 253 
sequences from three subtypes by the ratio of human to avian 1:1 for 20 times, as the dataset for 254 
performance evaluation. In this subsection, the experiment is conducted on small-scale dataset, 255 
so all the four state-of-the-art methods, ML-(d)nts, VIDHOP, FluPhenotype, and the 256 
phylogenetic method, are included.  257 
The scatter plots of sampling accuracy of different methods on H5N1, H7N9, and H9N2 258 
subtypes are shown in Figure 3. It can be observed that VIDHOP and ML-(d)nts methods may 259 
have difficulty in identifying the host species in these three subtypes, with the accuracy only 260 
around 50%. Although the phylogenetic and FluPhenotype may be unstable in accuracy, they 261 
performed better compared to the VIDHOP and ML-(d)nts methods. Among all the five 262 
methods, our Flu-CNN still achieves the best performance, presenting both the most stable and 263 
highest accuracy across all three subtypes. 264 
 265 

 266 
 267 

Fig. 3 Ring bar chart of accuracy on certain subtypes: A. H5N1. B. H7N9. C. H9N2. Each sector area represents a genomic 268 
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segment. Each point represents one sample of accuracy result of methods: the blue dots for VIDHOP, the orange dots for 269 
ML-(d)nts method, the green dots for FluPhenotype method, the purple dots for phylogenic method, and the red dots for 270 
Flu-CNN. 271 
 272 
3.2 Interpretability of Flu-CNN 273 
Neural networks are often considered as a black box, and it is challenging to understand their 274 
underlying working mechanisms and internal computation process intuitively. In this 275 
subsection, we visualize the middle layer of Flu-CNN to understand the feature representation 276 
inside the model and investigate whether it learns the valuable feature information. We utilized 277 
Uniform Manifold Approximation and Projection (UMAP) to conduct the dimension reduction 278 
[24], by which we projected the middle layer vectors into a two-dimensional space for further 279 
visualizations. 280 
To take HA and NA segments as examples, their UMAP visualizations are shown in Figure 4. 281 
Obviously, different host tropism can be clearly distinguished in the UMAP visualization, and 282 
therefore Flu-CNN can learn the key features to distinguish the hosts by convolution layers. In 283 
addition to hosts, Flu-CNN is also capable of extracting important features to distinguish 284 
subtypes. The UMAP visualization shows that sequences of different subtypes can be separated 285 
by the model. Consequently, the convolutional network of Flu-CNN not only extracts the host 286 
tropism information of IAVs, but also can support the classification of different subtypes. 287 
Notably, Flu-CNN has only six convolutional layers and three fully connected layers, with less 288 
than 10 million parameters. Compared with other large models with hundreds of layers and 289 
billions of parameters, our model may appear simple. Even so, Flu-CNN can still extract 290 
important features, and achieves remarkable performance in predicting the host tropism of IAV, 291 
which demonstrate the effectiveness of our method.   292 
 293 

  294 
 295 

Fig. 4 UMAP visualization of the convolutional layer output in Flu-CNN. Different hosts and subtypes are represented by 296 
different color points. A. HA segment colored by hosts. B. HA segment colored by subtypes. C. NA segment colored by hosts. 297 
D. NA segment colored by subtypes. 298 
 299 
3.3 Identifying Key Amino Acid Substitutions for Host Tropism Transition of IAVs 300 
The antigenicity of influenza virus proteins is an important factor in the host tropism [18]. 301 
Previous studies have detected numerous amino acid phenotypes as biomarkers of 302 
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human-adapted IAVs, which plays a critical role in cross-host transmission of avian influenza 303 
[25]. Hence, identifying human adaptive amino acid phenotypes of influenza viruses is of great 304 
significance to the surveillance and pre-warning of the influenza. Conventionally, these 305 
phenotypes have been determined primarily through biological experiments, which can be 306 
generally accurate. However, experimental methods can be both time-consuming and 307 
labor-intensive, and further requires a laboratory of biosafety level 3 [26], which may be vastly 308 
expensive for large-scale studies. 309 
From a computational perspective, such substitutions can be identified by Flu-CNN. 310 
Specifically, we can examine individual substitutions respectively, by using Flu-CNN to 311 
investigate the change of host tropism after applying mutations to the gene segment. Thus, 312 
Flu-CNN can effectively identify specific amino acid mutations by estimating the effect of each 313 
mutation on the IAV host tropism. With a focus on PB2, PA, and NP, we have identified several 314 
key amino acid substitutions affecting human tropism of avian influenza viruses. 315 
To take the PB2 protein as an example, Flu-CNN screened eight important amino acid 316 
substitutions (T108V, A274S, S286G, Q591R, Q591K, E627K, D701N, D701E) for host 317 
adaptability. Figure 5 visualizes these eight substitutions in the visualized structure of PB2 318 
protein. It can be found that these substitutions are all located on the outer surface of the protein. 319 
Of these, five mutations (S286G, Q591R, Q591K, E627K, D701N) have been biologically 320 
validated as key amino acid phenotypes for human tropism of IAV, by current literatures 321 
[27-29]. The other three substitutions (T108V, A274S, D701E) are also located in important 322 
functional regions. The T108V mutation is at the N-terminal of PB2 protein, in the minimal 323 
recognition sequence for the binding of PB1 protein and NP protein in the polymerase 324 
heterotrimer. A274S is at the N-terminal of PB2 protein, in the sequence associated with cap 325 
binding. D701E is at the C-terminal of PB2 protein, in the same position as the D701N 326 
substitution. Considering their structural functions, it can be concluded that they may play a 327 
part in the host tropism, although their detailed effects still remain to be elucidated in future 328 
investigations. Results and visualizations for PA and NP segments are presented in 329 
Supplementary Material. 330 
 331 

 332 
 333 
Fig. 5 The key human-adapted amino acid substitutions of PB2 protein (PDB: 6QPF) [34] screened by Flu-CNN, visualized 334 
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by Visual Molecular Dynamics (VMD) [35, 36]. The selected amino acid substitutions are denoted in blue and yellow. Yellow 335 
indicates that the substitution has been experimentally verified, and blue indicates that the substitution has not been reported 336 
in the current literature, with other areas in grey. 337 
 338 
3.4 Verification on Zoonotic IAV Strains 339 
Zoonotic IAVs can pose a significant threat, which may bring about global epidemics. In case of 340 
such a threat, Flu-CNN can serve for the identification and prediction of zoonotic strains. 341 
Christine L. P. Eng have retrieved and studied discriminating zoonotic strains in four groups, 342 
including 5,685 typical avian influenza strains, 5,110 human typical influenza strains, 126 343 
confirmed zoonotic influenza strains of human origin, and 346 suspected zoonotic influenza 344 
strains of avian origin [16]. Based on those strains, we employed our model to categorize their 345 
host tropism, which is colored by hosts and visualized in groups.  346 
The categorized zoonotic IAVs are visualized in Figure 6. As shown in Figure 6, most of the 347 
IAVs had only a single host tropism. Both the typical avian strains in Figure 6A and human 348 
strains in Figure 6D demonstrate the uniformity in host tropism. In contrast, the suspected 349 
zoonotic strains isolated from avian sources (Figure 6B) and confirmed zoonotic strains 350 
isolated from human sources during zoonotic outbreaks (Figure 6C) displayed a mosaic mixing 351 
pattern in their genomic segments. Among the confirmed zoonotic strains, the proportion of 352 
human tropic strains was significantly higher than that of suspected zoonotic strains. This 353 
phenomenon shows that these strains do have some zoonotic risk and the risk of confirmed 354 
zoonotic strains is higher than that of suspected zoonotic strains. 355 
Notably, the result of Flu-CNN is consistent with the work of Christine. This indicates that the 356 
species barrier does exist between various classes of influenza virus host, which prevents most 357 
avian Influenza viruses with only avian genes from free cross-host transmissions.  358 
 359 

 360 
 361 
Fig. 6 Segmental host tropism signatures of human, avian and zoonotic strains from Christine. Each row represents a strain, 362 
and each column represents a gene segment, with red representing human adaption and blue representing avian adaption. A. 363 
Typical avian strain. B. Suspected zoonotic strains isolated from avian during zoonotic outbreaks. C. Confirmed zoonotic 364 
strains isolated from human during zoonotic outbreaks. D. Typical human strain. 365 
 366 
Furthermore, we utilized Flu-CNN to identify zoonotic strains in the entire dataset collected in 367 
this research. As shown in Figure 7, the vast majority of strains are single host-adapted, which 368 
is incapable of cross-host transmissions. However, there are seven lineages that may have 369 
zoonotic risks, which show a mosaic pattern of host adaptability. These strains cover four 370 
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subtypes of H5N1, H5N6, H7N9 and H9N2, as depicted in Figure 7. 371 
 372 

  373 
 374 
Fig. 7 Segmental host tropism signatures of human, avian and zoonotic strains from the entire data in this research. Each 375 
column represents a strain, and each row represents a gene segment, with red representing human adaption and blue 376 
representing avian adaption. A. Avian strains. B. Human strains. 377 
 378 

4 Discussion 379 
The host that IAV can infect is strictly limited by its host tropism, and changes in host tropism 380 
may lead to cross-host transmission. While numerous factors can function in the viral host 381 
tropism, there is no systematic criterion for assessing those factors. Therefore, the identification 382 
of IAVs host tropism has been an important research issue. Meanwhile, deep learning has been 383 
widely applied in the fields of protein structure prediction, protein function prediction, and 384 
genetic engineering, and is vastly promising for the host tropism investigation of IAVs [30-32]. 385 
Benefitted from this, we used a powerful deep network to distinguish viral tropism in different 386 
hosts more effectively and efficiently. 387 
This research focuses on analyzing patterns of IAV tropism in humans and avian species and 388 
establishing a method of rapid identification of IAV host tropism. We collected the largest 389 
dataset of IAV sequences to date, which is approximate to one million sequences. These 390 
sequences showed a clear bias, mostly for the H3N2 and H1N1 subtypes, originating from the 391 
United States and China. We constructed Flu-CNN, which demonstrated outstanding 392 
performance with an accuracy of over 99% in all segments of the genome. Compared to other 393 
methods, Flu-CNN exhibited exceptional stability and superior performance, especially for 394 
H5N1, H7N9, and H9N2 subtypes with cross-host transmission. Compared with Flu-CNN, 395 
other methods may have slightly weaker performance due to various reasons. In general, it 396 
could be that the IAVs data used has a significant bias. Specifically, the ML-(d)nts method 397 
innovatively proposes that nucleotide composition features are related to IAVs host adaptation, 398 
the VIDHOP method is better at identifying hosts at the species level, and the FluPhenotype 399 
method focuses on comprehensive analysis of IAVs phenotypes. 400 
The better performance of Flu-CNN can be explained by various reasons, including the large 401 
size of training data, the sufficient number of training sessions, and the effective learning 402 
structure by our proposed model. Besides, our analysis of intermediate layer vectors generated 403 
by Flu-CNN indicated that the convolutional network could effectively extract 404 
high-dimensional information from genome sequences. It is generally believed that 405 
convolutional networks are effective in extracting local features of the input data. With more 406 
convolutional layers and pooling layers, convolutional networks can also contribute to the 407 
extraction of global features. Notably, the capability of our approach for distinguishing 408 
subtypes and establishing key viral features suggests that convolutional networks can reveal the 409 
underlying information within viral sequences and even accomplish additional tasks. 410 
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All methods show fluctuating performance on subtypes. The accuracy of different subtypes 411 
varies greatly, and the accuracy of some subtypes is relatively poor. There may be many reasons 412 
for this situation. Some subtypes have a small number of sequences, low richness within the 413 
sequence, and high sequence similarity between different subtypes. So far, how these subtypes 414 
spread across hosts and how to evolve in the next step have yet to be studied which demonstrate 415 
that we still know little about them. Accurate identification of different subtypes of host tropism 416 
is not a simple matter. Even so, our method can still effectively mine useful information and 417 
maintain high accuracy, which shows the effectiveness of our method. 418 
Although there has been no clear evidence of direct human-to-human transmission of avian 419 
influenza viruses, the possibility for their evolving into human-to-human transmissible viruses 420 
cannot be utterly denied. Once the mutations or reassortment occurs in such viruses, it is likely 421 
that they can acquire the ability to transmit between human beings and therefore change the 422 
host tropism. Accordingly, it is crucial to identify human-adapted amino acid phenotypes in 423 
IAVs, which can significantly contribute to the study on antigenic epitope signatures and the 424 
assessment of viral risk. Nevertheless, such an identification solely based on experimental 425 
screening can be inefficient and resource-intensive. In the present study, we screened key amino 426 
acid substitutions of certain segmental proteins using Flu-CNN and found several important 427 
mutations. Most of the discovered substitutions can be validated to be effective by supportive 428 
literature references, which demonstrate the effectiveness of our screening. For those with no 429 
supportive references, they may serve as candidates for human-adapted amino acid 430 
substitutions, which serves as the guidance for future biological investigations. 431 
While identifying human-adapted amino acid phenotypes, we take the PB2 protein as a major 432 
example, because it is indispensable to virus replication and is a pivotal determinant of host 433 
range [33]. Researchers have discovered that distinct PB2 proteins affect viral growth 434 
performance, pathogenicity, and infection range [34-36]. Moreover, PB2 proteins are 435 
implicated in signaling pathways that follow viral infection, including blocking JAK1/STAT 436 
signaling via targeting JAK1 for degradation through proteasomal mechanisms, indicating that 437 
the PB2 protein is essential in regulating the interaction between virus and host [37]. 438 
Meanwhile, we have also screened PA and NP, whose results are presented in Supplementary 439 
Material. 440 
The avian influenza viruses that threaten humans are usually zoonotic influenza viruses. 441 
Human infections by those viruses are usually through direct contact with infected animals or 442 
contaminated environments, which do not spread from human to human. However, if these 443 
viruses acquire the capability of sustainable human-to-human transmission, they could cause a 444 
pandemic because humans have very limited immunity to them. Hence, the early detection and 445 
surveillance of zoonotic influenza viruses is vastly important. This study shows that Flu-CNN 446 
is capable of detecting avian influenza strains that may cross over from avian to human by 447 
identifying zoonotic strains. From the zoonotic results by Flu-CNN, the host tropism of each 448 
segment gene is mostly the same. Subtypes H5N1, H7N9, and H9N2 account for the majority 449 
of zoonotic strains, and geographically, China and Southeast Asia are frequent outbreaks, and 450 
these subtypes and regions should be the focus of our outbreak surveillance. 451 

5 Conclusion 452 
This paper has proposed a deep neural network approach named Flu-CNN as a valuable tool for 453 
identifying the host tropism of IAVs. Our approach can rapidly identify the host tropism of 454 
viruses merely by viral genomic sequences, without extracting any abstract features. It achieves 455 
more than 99 % accuracy and maintains its stability in accuracy, which enjoys the best 456 
performance across different gene segments and subtypes. The interpretability study 457 
demonstrate that our model can capture valuable features from genome sequences, and can 458 
even support the classification of subtypes. We have also used Flu-CNN to identify amino acid 459 
substitutions that affect host adaptability of IAV and to assess the zoonotic risk of viral strains. 460 
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In summary, this is a valuable approach for analyzing the potential risk and the genomic data of 461 
IAVs. This research also produces innovative insights into the evolutionary characterization of 462 
IAV, which may contribute to the surveillance of potential outbreaks and spread of IAVs. 463 

Highlights 464 
� The proposed Flu-CNN is currently the most accurate method to predict IAV host tropism. 465 
� Key amino acid substitutions that affect IAV host adaption can be identified by Flu-CNN.  466 
� Flu-CNN can effectively predict the zoonotic risk of IAV strains. 467 
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