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Abstract 

Background: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of 

the main therapeutics used to treat the motor symptoms of Parkinson’s disease (PD). Previous 

evidence suggests a connection between LID and a disruption of the dopaminergic system as well as 

genes implicated in PD, including GBA1 and LRRK2.  

Objectives: To investigate the effects of genetic variants on risk and time to LID. 

Methods: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 

and LRRK2 variants. We also calculated polygenic risk scores including risk variants for PD and 

variants in genes involved in the dopaminergic transmission pathway. To test the influence of 

genetics on LID risk we used logistic regression, and to examine its impact on time to LID we 

performed Cox regression including 1,612 PD patients with and 3,175 without LID. 

Results: We found that GBA1 variants were associated with LID risk (OR=1.65, 95% CI=1.21-2.26, 

p=0.0017) and LRRK2 variants with reduced time to LID onset (HR=1.42, 95% CI=1.09-1.84, 

p=0.0098). The fourth quartile of the PD PRS was associated with increased LID risk 

(ORfourth_quartile=1.27, 95% CI=1.03-1.56, p=0.0210). The third and fourth dopamine pathway PRS 

quartiles were associated with a reduced time to development of LID (HRthird_quartile=1.38, 95% 

CI=1.07-1.79, p=0.0128; HRfourth_quartile=1.38, 95% CI=1.06-1.78, p=0.0147). 

Conclusions: This study suggests that variants implicated in PD and in the dopaminergic 

transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to 

examine how these findings can inform clinical care.  
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Introduction 

Levodopa is one of the most commonly administered therapies for Parkinson’s disease (PD), 

particularly to treat motor symptoms.1 However, as the disease progresses and patients are exposed 

to long-term levodopa therapy, a significant proportion develops levodopa-induced dyskinesia (LID), 

a debilitating side effect characterized by involuntary, uncontrolled, and often choreiform 

movements.2 LID is estimated to affect around 40-50% of PD patients within 4-6 years of initiating 

levodopa therapy,3, 4 however, a subset of them manifests LID also within the first year of the 

therapy,5 demonstrating the broad variability of LID risk and onset. The most widely accepted 

pathophysiologic hypothesis suggests that LID development is connected with a pulsatile stimulation 

of the dopamine receptors in the nucleus striatum.6 This phenomenon occurs due to the progressive 

dopaminergic loss in PD, resulting in impaired presynaptic storage capacity of dopamine, and is 

exacerbated by elevated doses of levodopa.6-8 Other pathways have also been implicated in LID 

development, including the glutamatergic, serotonergic and noradrenergic neural circuits.7, 8  

Multiple environmental risk factors affecting LID have been identified, including levodopa 

dosage and duration of the therapy, use of dopamine agonists, PD age at onset (AAO), disease 

duration and severity, female sex and lower body mass index (BMI).9-13 Most of the suggested 

genetic risk factors for LID are related to the dopamine pathway, including genes encoding the 

dopamine receptors, especially DRD2 and DRD3,14-16 the dopamine transporter SLC6A3,17, 18 or 

enzymes that metabolize dopamine and are targeted by PD therapeutics,19, 20 catechol-O-

methyltransferase (COMT)21-23 and monoamine oxidases A and B (MAOA, MAOB).22-24 Interestingly, 

variants in GBA1 and LRRK2, among the most frequent genetic risk factors for PD,25, 26 have also 

been identified as potential risk factors for LID.27-32 Carriers of GBA1 and LRRK2 variants show 

distinctive clinical presentations in PD, with GBA1 variants being associated with a more rapidly 

progressive PD with earlier onset,33 and LRRK2 variants with an overall more benign disease course, 

but with also more frequent postural instability and gait difficulty as well as slightly earlier AAO 
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compared to sporadic PD.34 Other variants reported in LID include those in BDNF, involved in 

neural plasticity,35, 36 GRIN2A, encoding a glutamatergic receptor,37 and ADORA2A, encoding the 

adenosine A2a receptor gene.38 However, the association between LID and most of the above-

mentioned putative genetic risk factors is still controversial, with most findings reported deriving 

from candidate genes studies that failed to be confirmed in replication studies. 39-44 

Here, we aimed to systematically evaluate how genetics affect the risk and rate of progression 

to LID including a total of 4,787 PD patients from multiple centers. For this purpose, we performed 

genome-wide association studies (GWAS) and downstream analyses focused on specific genes 

previously implicated in LID. In addition, we tested the effect produced by cumulative genetic risk 

on the occurrence and rate of progression to LID, including risk variants previously associated with 

PD and variants in genes involved in the dopaminergic transmission pathway.  

Methods 

Population 

The study population included a total of 4,787 PD patients, of which 1,612 with and 3,175 without 

LID (Table 1). PD was diagnosed by movement disorder specialists according to the UK Brain Bank 

or International Parkinson Disease and Movement Disorders Society criteria.45 LID diagnosis was 

made based on the Unified Parkinson's Disease Rating Scale (UPDRS) part IV and direct clinical 

evaluation. The participants were of European ancestry and their clinical and genetic data were 

collected from 15 different cohorts (Table 1), 12 of which were from the International Parkinson’s 

Disease Genomics Consortium (IPDGC) and 3 from the Accelerating Medicines Partnership 

Parkinson's Disease (AMP-PD, https://amp-pd.org/). The latter includes the Parkinson’s Disease 

Biomarkers Program (PDBP), Parkinson's Progression Markers Initiative (PPMI) and Harvard 

Biomarker Study (HBS) cohorts. The cohorts were included in the different analyses depending on 

data availability. The cohorts included in each analysis are specified in Supplementary Table 1. 
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Genetic analyses 

Excluding the AMP-PD cohorts, with whole genome sequencing (WGS) data, the other centers (Table 

1) were genotyped using the OmniExpress, NeuroX,46 NeuroChip47 or MegaChip GWAS array 

according to the manufacturer’s instructions (Illumina Inc.). Quality control was performed following 

standard pipelines (detailed in https://github.com/neurogenetics/GWAS-pipeline) using Plink 1.9.48 In 

brief, we filtered out heterozygosity outliers using an F-statistic cut-off of <-0.15 or >0.15. Individuals 

with a variant call rate <95% and sex mismatch were excluded. Variants missing in >5% of the 

participants, with disparate missingness between cases and controls (p<1E-04), or significantly 

deviating from Hardy-Weinberg equilibrium in controls (p<1E-04) were also removed. We used 

GCTA to check for relatedness closer than first cousins between participants (PIHAT>0.125). We 

performed imputation using the Michigan imputation server 

(https://imputationserver.sph.umich.edu/index.html#) with the Haplotype Reference Consortium 

reference panel r1.1 2016 under default settings. Ancestry outliers were detected using HapMap3 

principal component analysis (PCA) data in R version 4.0.1.  

After imputation, we selected variants with r2>0.8 and a minor allele frequency (MAF)>0.05, 

while retaining common risk variants in the GBA1 (p.N370S, p.E326K and p.T369M) and LRRK2 

(p.G2019S, p.M1646T and p.R1441G/C) regions, to perform specific analyses on these variants 

(detailed below). These genes were specifically selected given their importance in PD etiology25, 26 

and recent clinical trials49 as well as their previously suggested association with LID.27-32 The carrier 

status of GBA1/LRRK2 risk variants in individuals with and without LID is detailed in Supplementary 

Table 2 and Supplementary Table 3. Carriers of variants in the same gene were combined, so that the 

carrier status for GBA1 and LRRK2 refers to any aforementioned GBA1 and LRRK2 variants, 

respectively. To examine the association between the GBA1 and LRRK2 risk variant carrier status and 

LID occurrence we performed logistic regression, and to evaluate the association between the carrier 
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status and time to LID onset we performed Cox regression using the R package “survival” 

(https://cran.r-project.org/web/packages/survival/). The time to LID variable included in the Cox 

regression was defined as the period between the start of levodopa therapy and LID onset, as previously 

done.50 When LID did not manifest, this parameter was right-censored at the last follow-up. We 

adjusted the analyses by multiple covariates including principal components (PCs), PD AAO, sex, 

levodopa dosage, levodopa equivalent daily dose (LEDD),51, 52 dopamine agonist use, BMI, Hoehn 

and Yahr score (HY) and, exclusively for logistic regression, disease duration. For logistic regression 

analyses, we included the cumulative levodopa dosage and LEDD starting from the baseline (i.e., 

levodopa initiation) to the last time point (i.e., LID onset or last follow-up when LID was not present). 

In Cox regression, to avoid collinearity with the time to LID onset dependent variable, we replaced 

cumulative doses with doses at the last time point. All the covariates were selected using an Akaike 

Information Criterion (AIC)-based stepwise regression approach, which evaluated the model goodness 

of fit and selected the most appropriate covariates to include in the model. We performed the analyses 

separately in each cohort and then meta-analyzed the results using the R package “metafor” 

(https://cran.r-project.org/web/packages/metafor/index.html). Since variants in these genes have been 

previously associated with LID, we used a significance threshold of α=0.05.   

Similar to the analyses on specific genes, to investigate the overall impact of genetics on LID 

risk and time to onset we also performed GWAS with, respectively, logistic and Cox regression 

adjusted for the above-specified covariates. Cox regression was performed using the 

SurvivalGWAS_SV software (https://www.liverpool.ac.uk/population-

health/research/groups/statistical-genetics/survival-gwas-sv/).53 We conducted the analyses in each 

cohort separately, and then meta-analyzed the results using the METAL software 

(https://genome.sph.umich.edu/wiki/METAL_Documentation) with a fixed effects model weighted by 

β coefficients and the inverse of the standard errors.  
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PD risk variant-based polygenic risk score 

To assess the impact on LID of the cumulative genetic risk for PD we calculated polygenic risk score 

(PRS) for each PD patient including the 90 variants associated with PD in the most recent GWAS 

meta-analysis in Europeans.54 PRS calculation was performed based on the weighted allele dose as 

implemented in PRSice2 using default clumping (https://choishingwan.github.io/PRSice/).55 To 

investigate the association between the PRS and LID risk we performed logistic regression, while to 

evaluate the association between PRS and progression to LID we performed Cox regression. The 

analyses were adjusted for PCs, PD AAO, sex, HY and levodopa dosage, cumulative in logistic 

regression and at the last time point in Cox regression. These analyses were repeated using PRS as a 

continuous variable and then as a discrete variable by dividing the PRS into quartiles. For the analysis 

using PRS quartiles, we separately compared the association of individual membership to the second, 

third and fourth quartiles vs the first quartile with LID risk/progression.  

Dopamine pathway polygenic risk score 

To assess the impact of genes involved in the dopaminergic transmission pathway we also constructed 

a pathway polygenic risk score, or polygenic effect score (PES)56 using the PRSet feature of PRSice2 

(https://choishingwan.github.io/PRSice/prset_detail/). Genes involved in this pathway were obtained 

from Explore the Molecular Signatures Database (MSigDB, version 2023.1), a collection of annotated 

gene sets for use with Gene Set Enrichment Analysis (GSEA) software (https://www.gsea-

msigdb.org/gsea/msigdb/).  These genes included CDK5, FLOT1, PARK7, CHRNB2, ADORA2A, 

CRH, CRHBP, DRD1, DRD2, DRD3, DRD4, DRD5, TOR1A, RASD2, PNKD, GDNF, ARRB2, PRKN, 

PTGS2, RAB3B, PINK1, SLC6A2, SLC, 6A3, SLC6A4, SNCA, TH, CNTNAP4 (detailed at 

http://www.gsea-

msigdb.org/gsea/msigdb/human/geneset/GOBP_SYNAPTIC_TRANSMISSION_DOPAMINERGIC

). To select the variants in each of those genes to include in the analyses we used the LID GWAS meta-
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analysis summary statistics, filtering variants with a p-value less than or equal to 0.05.  In addition, we 

performed linkage disequilibrium (LD) clumping using the default r2=0.1 and selecting variants at 250 

Kb of distance from the pathway-related genes. A total of 1000 permutations were implemented to 

generate the empirical p-value corresponding to the optimized PES prediction of the dependent 

variable in the target cohort. We then calculated individual PES for each target cohort. To avoid 

potential inflation due to the presence of the target cohort in the meta-analysis summary statistics, each 

time we calculated the PES for a target cohort we excluded such cohort from the meta-analysis using 

a leave-one-out approach. To investigate the association between the dopamine pathway PES and LID 

risk we performed logistic regression, while to evaluate the association between the PES and 

progression to LID we performed Cox regression, as specified above for the PRS analyses.  

Results 

GBA1 and LRRK2 variants show significant associations with LID risk and time to LID 

Analyses focusing on GBA1 showed that GBA1 variants were significantly associated with LID risk 

(OR=1.65, 95% CI=1.21-2.26, p=0.0017, Fig. 1A). No association was found with time to LID 

(HR=1.25, 95% CI=0.99-1.58, p=0.0635, Fig. 1B). In contrast, LRRK2 variants showed no association 

with LID risk (OR=1.18, 95% CI=0.84-1.67, p=0.3484, Fig. 2A) but were significantly associated with 

reduced time to development of LID (HR=1.42, 95% CI=1.09-1.84, p=0.0098, Fig. 2B) 

In the GWAS genomic inflation was evaluated using quantile-quantile plots (Q-Q plots) and 

the lambda factor, showing no inflation and a slight deflation (lambda logistic regression=0.9709, 

lambda Cox regression=0.9555, Supplementary Fig. 1-2). GWAS using both logistic and Cox 

regression showed no significant association with LID risk or time to development of LID, respectively 

(Supplementary Fig. 3, Supplementary Fig. 4). We further examined whether variants previously 

associated with LID in the literature14-18, 21-24 and from the LIDPD website (http://LiDpd.eurac.edu/) 

showed associations in the current GWAS, but we found no significant results (Supplementary Tables 
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4-5). A recent GWAS in LID (Martinez et al., 2023, MedRxiv) nominated significant signals in a 

progression GWAS meta-analysis. However, our study failed to confirm these findings and the 

reported variants did not reach the nominal significance of 0.05 in our GWAS (Supplementary Table 

6). 

PD risk variant-based polygenic risk score is associated with increased risk for LID 

PRS analyses aggregating PD-associated variants showed that higher values of PRS were associated 

with a very mild increase in LID risk (OR=1.02, %95 CI=1.002-1.035, p=0.0298, Fig. 3B). When 

dividing the PRS in quartiles, logistic regression showed a significant association between the fourth 

quartile and LID, with a greater risk compared to the analyses using PRS as a continuous variable 

(ORfourth_quartile=1.27, 95% CI=1.03-1.56, p=0.0210, Fig. 3A, Supplementary Table 7). Cox regression 

did not show any significant associations between PRS and time to development of LID 

(Supplementary Fig. 5 A-B, Supplementary Table 8). 

Dopaminergic transmission pathway polygenic effect score is associated with a reduced time to 

development of LID 

Analyses on the dopaminergic transmission pathway PES showed that higher values of PES were 

associated with a reduced time to development of LID (HR=1.10, 95% CI=1.02-1.18, p=0.0088, Fig. 

4B). In addition, the third and fourth PES quartile were also associated with a reduced time to 

development of LID with a more elevated effect size compared to the analyses on PES as a continuous 

variable (HRthird_quartile=1.38, 95% CI=1.07-1.79, p=0.0128; HRfourth_quartile=1.38, 95% CI=1.06-1.78, 

p=0.0147, Fig. 4A, Supplementary Table 10). Logistic regression did not show any statistically 

significant associations between dopaminergic transmission PES and LID risk (Supplementary Fig. 6 

A-B, Supplementary Table 9). 

Discussion 
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In this study, we confirmed that GBA1 variants were associated with increased risk for LID and 

demonstrated that LRRK2 variants were associated with a reduced time to development of LID. 

Additionally, we found that PD PRS was associated with mildly increased risk for LID and that the 

dopaminergic transmission pathway PES is associated with a reduced time to development of LID. 

Albeit some studies found contradictory results on the association between the GBA1 and 

LRRK2 variants and LID,39-42 many others have shown that these variants play a role in LID 

development, 27-32 and in this study we also demonstrated that LRRK2 variants might also affect the 

time to development of LID. The absence of significant signals in the risk and progression GWAS and, 

in general, the difficulty finding congruent results between different genetic studies investigating LID, 

as also reflected by the divergent results between the recent LID progression GWAS (Martinez et al., 

2023, MedRxiv) and our study, may be due to the stronger contribution in LID development of 

environmental factors, especially pharmacologic- (dosage of dopaminergic drugs, use of amantadine) 

and disease-related factors.9-13  

The significant association between the two PRS analyses suggests that aggregating multiple 

common variants that might have a scarce effect on LID individually could contribute to uncovering 

the overall genetic impact on LID. In particular, the association between the PRS including PD risk 

variants suggests that patients with a stronger genetic risk profile for PD are also more at risk for LID, 

a factor to consider for patient counselling and potential clinical trials, although the magnitude of the 

increased risk was small. We also demonstrated that the dopaminergic synaptic transmission pathway 

PES was associated with an increased rate of LID development, which is in line with previous 

pathophysiologic hypotheses6-8 and studies suggesting an implication of dopamine pathway genes in 

the development of LID.14-18, 21-24 

Unravelling the etiologic bases of LID is crucial to implement a tailored therapy for PD patients 

taking levodopa, adapting the therapeutic choices, dosage and management depending on the 
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individual risk factors of each patient. Over time, it could be beneficial to define a risk profile 

accounting for the single genetic and environmental factors associated with LID as well as the 

cumulative genetic risk provided by the PRS. This might be used to stratify patients for LID prevention 

clinical trials and lead to a more refined and personalized therapeutic approach for each individual. In 

addition to the benefits of the current symptomatic therapies, uncovering and confirming genetic 

factors affecting the risk and time to development of LID could also have important implications for 

targeted therapies. In particular, GBA1 and LRRK2 pathways are already candidate targets for newly 

developing drugs in clinical trials.49 A LRRK2 inhibitor, BIIB122/DNL151, reached already 

experimental phase 3 (https://www.denalitherapeutics.com, 2021).57 In addition, Ambroxol, a 

pharmacological chaperone for GCase capable of increasing its enzymatic levels, completed phase 2 

and LTI-291, an activator of GCase, reached phase 1B.58-60 As these drugs would likely be used in 

conjunction with symptomatic therapies, knowing that these pathways can be targeted to reduce the 

risk or delay the time of LID development could considerably improve the compliance and quality of 

life of PD patients taking dopaminergic treatments.  

The current study has several limitations. First, the subjects were all of European ancestry and 

therefore the results in other populations might be different. Despite an overall large sample size, most 

of the individual cohorts included a limited number of participants, especially those having 

longitudinal data necessary for Cox regression, this impacted the power of the study and could have 

contributed to the lack of association in the GWAS. Some studies suggested that LID is affected more 

by the disease duration than by the therapy duration,61 on this line PD AAO would represent a better 

baseline than levodopa initiation for the time to LID onset. However, this parameter was chosen in 

accordance with what was previously done with LID GWAS50 and accounting for the recall bias that 

PD AAO suffers from, compared to levodopa initiation which represents a report made by the 

physicians. In addition, understanding the genetic basis of the time to LID from levodopa initiation 

can be of considerable relevance for patient counselling at the time of treatment administration. 
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Finally, we also accounted for the disease duration in each of our analyses with appropriate 

adjustments. Another limitation of this study was that not all the cohorts had the same amount of data 

available, which limited in part the design of the analytical model.  

In conclusion, in the current study we demonstrated that PD risk variants and the dopaminergic 

transmission PRS are associated with increased risk of LID/time to development of LID. A better 

understanding of the role of genetics in LID development could reduce the impact of this adverse effect 

and enhance therapeutic management in PD.  
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Fig. 1 A-B – Association between GBA1 variants and LID 

The meta-analysis forest plot shows the coefficient (black squares) and 95% confidence interval (bars) 

of the analyses in each single cohort. The size of the square is proportional to the weight the cohort 

had on the overall meta-analysis, based on their single standard error. The black diamond at the bottom 

represents the overall coefficient and confidence interval. A. Logistic regression between GBA1 

variants and LID risk; B. Cox regression between GBA1 variants and time to development of LID.  

FE: fixed effect model; AMP-PD: Accelerating Medicines Partnership Parkinson's disease, including 

the New Discovery of Biomarkers (BioFIND), the Harvard Biomarker Study (HBS) and the 

Parkinson’s Disease Biomarkers Program (PDBP) cohorts; Barcelona: Hospital Universitari Mutua de 

Terrassa, Spain; CORIELL: NINDS Exploratory Trials in PD Long-Term Study 1 (NET-PD LS1), 

Coriell Institute for Medical Research, USA; DIGPD: Drug Interaction With Genes in Parkinson's 

Disease, France; LEAP: Levodopa in Early Parkinson's Disease, Netherlands; Luxemburg: 

Luxembourg Centre for Systems Biomedicine; Mayo: Mayo Clinic, USA; McGill: McGill University, 

Canada; Oviedo: Central University Hospital of Asturias, Spain; PreCEPT: Parkinson Research 

Examination of CEP-1347 Trial; SCOPA: SCales for Outcomes in PArkinson's disease; Sevilla: 

Universidad de Sevilla; Tartu: University of Tartu 

Fig. 2 A-B - Association between LRRK2 variants and LID 

A. Logistic regression between LRRK2 variants and LID risk; B. Cox regression between LRRK2 

variants and time to development of LID.  

Fig- 3 A-B - Logistic regression between PRS aggregating PD risk variants and LID risk 

A. The plot shows the association between each PRS quartile and LID risk compared with the first 

quartile, meta-analyzing the results across the cohorts. The Y axis represents the PRS quartile, the X 

axis the odds ratio (red dot) and 95% confidence interval (red bar). The presence of an asterisk indicates 
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a significant association (p<0.05). B. The forest plot shows the association between PRS as a 

continuous variable and LID risk.  

CI: confidence interval. 

Fig. 4 A-B - Cox regression between the dopaminergic transmission pathway PES and time to 

development of LID 

A. The plot shows the association between each PES quartile and time to development of LID 

compared with the first quartile, meta-analyzing the results across the cohorts. The Y axis represents 

the PRS quartile, the X axis the hazard ratio (red dot) and 95% confidence interval (red bar). B. The 

forest plot shows the association between PES as a continuous variable and time to development of 

LID. 

Supplementary Fig. 1 - Q-Q plot of LID risk GWAS using logistic regression 

The Q-Q plot illustrates the negative log-adjusted p-values from the GWAS logistic regression for LID 

risk sorted into ascending order against the expected quantiles if the null hypothesis is true for all tests. 

Supplementary Fig. 2 - Q-Q plot of time to development of LID GWAS using Cox regression 

The Q-Q plot illustrates the negative log-adjusted p-values from the GWAS Cox regression for time to 

LID sorted into ascending order against the expected quantiles if the null hypothesis is true for all tests.  

Supplementary Fig. 3 - Manhattan plot of LID risk GWAS  

Manhattan plot showing the results of the GWAS meta-analysis, comparing PD patients with and 

without LID. The Y axis represents the negative logarithm of the p-value, the X axis represents the 

chromosomal position of the variants and each dot on the figure represents a variant. The red line 

represents the genome-wide Bonferroni-corrected statistical significance threshold (5x10-8), while the 

blue line is the false-discovery rate-corrected significance threshold (1x10-5). 
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Supplementary Fig. 4 - Manhattan plot of time to development of LID GWAS  

Manhattan plot showing the results of the GWAS meta-analysis investigating the time to development 

of LID. The Y axis represents the negative logarithm of the p-value, the X axis represents the 

chromosomal position of the variants and each dot on the figure represents a variant. The red line 

represents the genome-wide Bonferroni-corrected statistical significance threshold (5x10-8), whereas 

the blue line is the false-discovery rate-corrected significance threshold (1x10-5). 

Supplementary Fig. 5 A-B - Cox regression between PRS aggregating PD risk variants and time 

to development of to LID  

A. The plot shows the association between each PRS quartile and time to development of LID 

compared with the first quartile, meta-analyzing the results across the cohorts. The Y axis represents 

the PRS quartile, the X axis the hazard ratio (red dot) and 95% confidence interval (red bar). The 

presence of an asterisk indicates a significant association (p<0.05). B. The forest plot shows the 

association between PRS as a continuous variable and time to development of LID.  

CI: confidence interval. 

Supplementary Fig. 6 A-B - Logistic regression between the dopaminergic transmission pathway 

PES and LID risk 

A. The plot shows the association between each PES quartile and LID risk compared with the first 

quartile, meta-analyzing the results across the cohorts. The Y axis represents the PES quartile, the X 

axis the odds ratio (red dot) and 95% confidence interval (red bar). The presence of an asterisk indicates 

a significant association (p<0.05). B. The forest plot shows the association between PES as a 

continuous variable and LID risk.  

CI: confidence interval. 
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Table 1 - Demographic characteristics of PD patients in the individual cohorts 

AMP-PD: Accelerating Medicines Partnership Parkinson’s disease, including the Parkinson’s Disease 

Biomarkers Program (PDBP), Parkinson’s Progression Markers Initiative (PPMI) and Harvard 

Biomarker Study (HBS) cohorts; Barcelona: Hospital Universitari Mutua de Terrassa, Spain; 

CORIELL: NINDS Exploratory Trials in PD Long-Term Study 1 (NET-PD LS1), Coriell Institute for 

Medical Research, USA; DIGPD: Drug Interaction With Genes in Parkinson’s Disease, France; LEAP: 

Levodopa in Early Parkinson’s Disease, Netherlands; Luxemburg: Luxembourg Centre for Systems 

Biomedicine; Mayo Clinic Florida: Mayo Clinic Florida, USA; McGill: McGill University, Canada; 

Oviedo: Central University Hospital of Asturias, Spain; PreCEPT: Parkinson Research Examination 

of CEP-1347 Trial; SCOPA: SCales for Outcomes in PArkinson's disease; Sevillla: Universidad de 

Sevilla; Tartu: University of Tartu; LID-, n: individuals without levodopa-induced dyskinesia; LID+, 

n: individuals with levodopa-induced dyskinesia; Age (SD): mean age (standard deviation); %Mal: 

percentage of males; Tot: total number of individuals per cohort. 

Supplementary Table 1 - Cohorts included in the single analyses 

Table showing the cohorts included in the single logistic and Cox regression analyses, including 

GWAS, analyses focused on GBA1/LRRK2 variants and association analyses between PRS and LID. 

GWAS: genome-wide association study; GBA1: analyses focused on GBA1 variants; LRRK2: analyses 

focused on LRRK2 variants; PRS: polygenic risk score analyses; logistic: logistic regression; Cox: Cox 

regression. 

Supplementary Table 2 - Carriers of GBA1 variants across different cohorts 

Carrier status for GBA1 variants p.N370S, p.E326K and p.T369M. GBA1 carriers LID-, N/tot: carriers 

of GBA1 variants without LID out of all patients without LID; GBA1 carriers LID+, N/tot: carriers of 

GBA1 variants with LID out of all the patients with LID; GBA1 carriers LID-, %: percentage of 
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carriers of GBA1 variants without LID; GBA1 carriers LID+ , %: percentage of carriers of GBA1 

variants with LID 

Supplementary Table 3 - Carriers of LRRK2 variants across different cohorts 

Carrier status for LRRK2 variants p.G2019S, p.M1646T and p.R1441G/C. LRRK2 carriers LID- , 

N/tot: carriers of LRRK2 variants without LID out of all patients without LID; LRRK2 carriers LID+ 

, N/tot: carriers of LRRK2 variants with LID out of all patients with LID; LRRK2 carriers LID- , %: 

percentage of carriers of LRRK2 variants without LID; LRRK2 carriers LID+ , %: percentage of 

carriers of LRRK2 variants with LID 

Supplementary Table 4 - Logistic regression between variants previously associated with LID 

and LID risk 

Summary statistics from the LID risk GWAS of variants previously associated with LID. Coordinates: 

chromosome:base pair; rs ID: variant rs number; gene: nearest gene; OR: odds ratio; StdErr: standard 

error. 

Supplementary Table 5 - Cox regression between variants previously associated with LID and  

time to development of LID 

Summary statistics from the time to development of LID GWAS of variants previously associated with 

LID. Coordinates: chromosome:base pair; rs ID: variant rs number; gene: nearest gene; HR: hazard 

ratio; StdErr: standard error. 

Supplementary Table 6 - Logistic and Cox regression results for variants recently associated with 

time to development of LID 

Summary statistics of the LID risk and time to development of LID GWAS for the variants previously 

nominated in the most recent LID survival GWAS (Martinez et al., 2023, MedRxiv). 
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OR: odds ratio; HR: hazard ratio; SE standard error. 

Supplementary Table 7 – Logistic regression between PRS quartiles aggregating PD risk variants 

and LID risk 

Logistic regression results for the association between PD risk variant-based PRS divided into quartiles 

and LID risk.  

Quartile: quartile compared with the first quartile; OR: odds ratio; LB: lower bound of 95% confidence 

interval; UB: upper bound of 95% confidence interval; p: p-value; sig: the asterisk indicates the results 

are significant. 

Supplementary Table 8 – Cox regression between PRS quartiles aggregating PD risk variants 

and time to development of LID 

Cox regression results for the association between PD risk variant-based PRS divided into quartiles 

and time to development of LID.  

Quartile: quartile compared with the first quartile; HR: hazard ratio; LB: lower bound of 95% 

confidence interval; UB: upper bound of 95% confidence interval; p: p-value; sig: the asterisk indicates 

the results are significant. 

Supplementary Table 9 – Logistic regression between dopaminergic transmission pathway PES 

quartiles and LID risk 

Logistic regression results for the association between dopaminergic transmission pathway PES 

divided into quartiles and LID risk.  
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Quartile: quartile compared with the first quartile; OR: odds ratio; LB: lower bound of 95% confidence 

interval; UB: upper bound of 95% confidence interval; p: p-value; sig: the asterisk indicates the results 

are significant. 

Supplementary Table 10 – Cox regression between dopaminergic transmission pathway PES 

quartiles and time to development of LID 

Cox regression results for the association between dopaminergic transmission pathway PES divided 

into quartiles and time to development of LID.  

Quartile: quartile compared with the first quartile; HR: hazard ratio; LB: lower bound of 95% 

confidence interval; UB: upper bound of 95% confidence interval; p: p-value; sig: the asterisk indicates 

the results are significant. 
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Table 1 - Demographic characteristics of PD patients in the individual cohorts 

Center 
LID-, 

n 
Age LID- 

(SD) 
%Mal 
LID- 

LID+, 
n 

Age LID+ 
(SD) 

%Mal 
LID+ Tot 

Barcelona 103 73.3 (10.9) 50% 48 72.3 (7.7) 40% 151 
CORIELL 221 62.7 (8.9) 67% 117 61.7 (9.6) 59% 338 

DIGPD 220 67.5 (9.3) 62% 166 63.9 (10.4) 56% 386 
LEAP 336 68.9 (8.8) 75% 75 67.7 (8.5) 50% 411 

Luxembourg 330 67.8 (11.4) 66% 140 66.2 (10.0) 66% 470 
Mayo Clinic Florida 404 75.8 (9.9) 69% 151 72.0 (10.1) 62% 555 

McGill 258 63.2 (16.5) 34% 120 61.3 (15.7) 43% 378 
Oviedo-HUCA 80 69.8 (8.9) 51% 110 70.4 (10.5) 55% 190 

PDBP – PPMI – HBS 
(AMP-PD) 

580 58.4 (12.4) 66% 87 56.1 (12.2) 53% 667 

PreCEPT 181 61.6 (8.6) 68% 137 58.5 (9.7) 66% 318 
SCOPA 109 59.1 (10.9) 66% 177 60.0 (10.6) 62% 286 
Sevilla 180 69.7 (10.9) 61% 252 66.0 (11.1) 57% 432 
Tartu 173 73.0 (8.2) 38% 32 72.0 (8.6) 50% 205 

TOTAL 3175 67.0 (10.4) 52% 1612 65.2 (10.4) 54% 4787 

AMP-PD: Accelerating Medicines Partnership Parkinson’s disease, including the Parkinson’s 
Disease Biomarkers Program (PDBP), Parkinson’s Progression Markers Initiative (PPMI) and 
Harvard Biomarker Study (HBS) cohorts; Barcelona: Hospital Universitari Mutua de Terrassa, 
Spain; CORIELL: NINDS Exploratory Trials in PD Long-Term Study 1 (NET-PD LS1), Coriell 
Institute for Medical Research, USA; DIGPD: Drug Interaction With Genes in Parkinson’s Disease, 
France; LEAP: Levodopa in Early Parkinson’s Disease, Netherlands; Luxemburg: Luxembourg 
Centre for Systems Biomedicine; Mayo Clinic Florida: Mayo Clinic Florida, USA; McGill: McGill 
University, Canada; Oviedo: Central University Hospital of Asturias, Spain; PreCEPT: Parkinson 
Research Examination of CEP-1347 Trial; SCOPA: SCales for Outcomes in PArkinson's disease; 
Sevillla: Universidad de Sevilla; Tartu: University of Tartu; LID-, n: individuals without levodopa-
induced dyskinesia; LID+, n: individuals with levodopa-induced dyskinesia; Age (SD): mean age 
(standard deviation); %Mal: percentage of males; Tot: total number of individuals per cohort. 
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