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Abstract
Most end-stage renal disease (ESRD) patients face a risk of malnutrition, partly due to dietary
restrictions on phosphorous and, in some cases, potassium intake. These restrictions aim to
regulate plasma phosphate and potassium concentrations and prevent the adverse effects of
hyperphosphatemia or hyperkalemia. However, individual responses to nutrition are known to
vary, highlighting the need for personalized recommendations rather than relying solely on
general guidelines. In this study, our objective was to develop a Bayesian hierarchical
multivariate model that estimates the individual effects of nutrients on plasma concentrations
and to present a recommendation algorithm that utilizes this model to infer personalized dietary
intakes capable of achieving normal ranges for all considered concentrations. Considering the
limited research on the reactions of ESRD patients, we collected dietary intake data and
corresponding laboratory analyses from a cohort of 37 patients. The collected data were used to
estimate the common hierarchical model, from which personalized models of the patients’ diets
and individual reactions were extracted. The application of our recommendation algorithm
revealed substantial variations in phosphorus and potassium intakes recommended for each
patient. These personalized recommendations deviate from the general guidelines, suggesting
that a notably richer diet may be proposed for certain patients to mitigate the risk of malnutrition.
Furthermore, all the participants underwent either hospital, home, or peritoneal dialysis
treatments. We explored the impact of treatment type on nutritional reactions by incorporating it
as a nested level in the hierarchical model. Remarkably, this incorporation improved the fit of the
nutritional effect model by a notable reduction in the normalized root mean square error
(NRMSE) from 0.078 to 0.003. These findings highlight the potential for personalized dietary
modifications to optimize nutritional status, enhance patient outcomes, and mitigate the risk of
malnutrition in the ESRD population.

Introduction 1

The majority of end-stage renal disease (ESRD) patients receiving dialysis fail to meet the 2

recommended energy and protein intakes, leading to an elevated risk of malnutrition [1]. 3
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Paradoxically, these patients often exceed the recommended levels of phosphorus and saturated 4

fats, associated with an increased risk of cardiovascular diseases [2]. While decreased appetite is 5

a common contributing factor to malnutrition [3], the issue may also stem from the general 6

nutritional guidelines provided to ESRD patients. Currently, patients with end-stage renal 7

disease are provided with general restrictions on dietary phosphorus and, in some cases, 8

potassium intakes to maintain optimal plasma concentrations of potassium, phosphate, and 9

albumin. However, an increasing body of knowledge suggests that individual responses to the 10

same nutrition can vary significantly [4–6]. Given the varying individual responses, it becomes 11

evident that personalized dietary approaches are necessary to achieve target plasma 12

concentration ranges, rather than relying solely on general guidelines. 13

Personalized diets are also endorsed for renal failure patients. The National Kidney 14

Foundation (NKF) in the United States publishes the Kidney Disease Outcomes Quality 15

Initiative (KDOQI) nutritional guidelines [7], which suggest personalized adjustments for dietary 16

phosphorous and potassium intakes to maintain normal ranges of serum phosphate and serum 17

potassium. Implementing these personalized guidelines is a paradigm shift away from fixed 18

general guidelines [8]. However, there is a pressing need for a systematic method to derive such 19

personalized guidance. To address this, a statistical approach that models a patient’s diet and 20

individual reactions can provide valuable support to clinical nutritionists in justifying 21

personalized recommendations. 22

In statistical methodology, multivariate methods encompass techniques that simultaneously 23

model multiple response variables, such as several plasma concentrations associated with a given 24

dietary input. These response variables can exhibit direct relations, seeming unrelatedness, or 25

complete independence [9]. Graphical models, such as directed acyclic graphs (DAGs) or 26

Bayesian networks, can be employed to capture the joint distribution of the response variables by 27

treating the current levels of dietary nutrients and their concentration responses as random 28

variables. These graphical models provide a framework for representing the system and enabling 29

efficient modeling, particularly in large systems. The efficiency is achieved with the Markov 30

boundaries determining the necessary set of predictor variables, allowing sparse and 31

computationally efficient modeling [10]. Turkia et al. [11] proposed a Bayesian network 32

approach for modeling the personal effects of nutrients using mixed-effect parameterization [12]. 33

While sparse graphical model offers computational efficiency, it may potentially overlook 34

valuable information regarding the interconnectedness of concentrations. To address this issue, 35

Bottolo and Banterle et al. [13] have provided an efficient Bayesian implementation of seemingly 36

unrelated regressions (SURs) [9] within the context of sparse high-dimensional quantitative trait 37

loci discovery. An efficient implementation of SURs can serve as a useful alternative to 38

Bayesian networks, offering effective modeling of interconnected responses and complementing 39

the benefits of graphical models. 40

To implement personalized nutritional guidance, we developed personalized graphical 41

models [10] for each of the studied end-stage renal disease patients to simulate their individual 42

reactions to diet modifications. Food intake data and corresponding laboratory analyses were 43

collected from the patients, which were then utilized to construct personalized models of their 44

diets and reactions. Our hypothesis was that the examined concentrations would exhibit a rapid 45

response to variations in nutrient intake, potentially allowing us to statistically estimate the 46

impact of nutrients on concentration levels. While there is limited direct knowledge regarding 47

the relationships between plasma potassium, phosphate, or albumin concentrations, modeling the 48

system using hierarchical seemingly unrelated regression (SUR) allowed for exploratory analysis 49

of potential cross-correlations among these concentrations. Given the limited size of the 50

analyzed data set and the presence of some missing laboratory analyses, the estimated 51

cross-correlations were used to predict the missing values, ensuring the utilization of all available 52

data. It is worth noting that the patients in our study underwent different treatments; either 53

hospital, home, or peritoneal dialysis. To account for this treatment grouping, we included it as a 54

nested level in our hierarchical model of responses. The final personalized models incorporate 55
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both the current estimations of the patients’ diets and the hierarchically estimated individual 56

responses, thereby representing each patient’s unique composition of plasma concentrations. 57

In addition to providing insights into the current composition of concentrations, these 58

personalized graphical models can be utilized to infer targeted nutritional guidance. One of our 59

key contributions is the development of an algorithm that generates personalized diet proposals, 60

taking into account specific conditions related to selected plasma concentration limits, and 61

providing individualized intake recommendations. Optimal concentration limits vary based on 62

factors such as age and sex, and our analysis incorporates personalized limits for enhanced 63

accuracy. It is important to note that several diet recommendation options may satisfy the given 64

conditions with equal probability, and the selection of the ideal option requires the expertise of a 65

clinical nutritionist who can consider other personal factors. In our analysis, the objective is to 66

identify the minimum necessary restrictions on phosphorus and potassium intake for patients 67

with renal failure, aiming to provide dietary recommendations that are as accommodating as 68

possible. 69

Our primary objective in this study is to present a Bayesian approach for estimating 70

hierarchical graphical models of personal nutritional behavior, accompanied by an algorithm to 71

infer personalized diet recommendations. We apply these methods to a cohort of patients with 72

end-stage renal disease, highlighting the methods’ effectiveness in tailoring phosphorus and 73

potassium intakes to each patient’s specific needs. The results of our study reveal considerable 74

variations in recommended intakes, enabling greater dietary flexibility for certain patients while 75

mitigating the risk of malnutrition. By demonstrating the potential of personalized graphical 76

models and individualized diet recommendations, this work contributes to the advancement of 77

personalized nutrition strategies for patients with renal failure. 78

Dialysis patient data 79

We recruited end-stage renal disease (ESRD) patients for this nutritional study at Kuopio 80

University Hospital dialysis center; 15 women and 22 men participated (𝑛 = 37). We considered 81

all patients who were in dialysis treatment and healthy enough to participate. The data collection 82

took place from March to September 2018. The ages of the patients ranged from 26 to 81 with 83

an average age of 61. The data consist of food records and laboratory analyses from the same 84

time periods. For each patient, we performed two observations three months apart. On both 85

occasions, the patients were interviewed about their diet in the past 48 hours (48-hour recall 86

method), and the nutrients of reported diets were calculated with Aivodiet software (v. 2.0.2.1, 87

Aivo Finland, Turku). The interview dates were selected so that the patients had their regular 88

laboratory tests at the hospital within a week from the interview, either close before or after the 89

laboratory test. The average actualized difference between interviews and laboratory tests was 90

five days, but this delay was over a week for nine patients, and for five of them, as long as three 91

weeks. The laboratory tests always occurred before the dialysis treatments so that the treatment 92

did not affect the test. Table 1 presents the analyzed nutrients with patients’ average levels as 93

well as personal minimums and maximums within the data. Table 2 displays medications and 94

other personal details that were used to predict the plasma concentration levels. One notable 95

detail is the type of dialysis treatment, which was hospital hemodialysis (𝑛 = 21), home 96

hemodialysis (𝑛 = 9), or peritoneal dialysis (𝑛 = 7). The dialysis type was also included as a 97

predictor for intake recommendations. 98

Laboratory tests for renal patients included several measurements, from which 99

concentrations of plasma potassium (P-K), fasting plasma phosphorous (fP-Pi), and plasma 100

albumin (P-Alb) were selected as targets of this analysis for exploring the possibility of less 101

restricted phosphorous and potassium intake. The selected predictors were assumed to reflect the 102

composition of these concentrations; all the energy nutrients, vitamin D, minerals, and fluids. 103

Also, the selected medications were known to directly affect the concentrations. Patients fasted 104

before the laboratory tests although there were analyses that did not require fasting. The schema 105
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Table 1. Nutrient predictors of the model.
Nutrient Study avg. (min-max)
Carbohydrates, E% 43.6 (27.1 - 63.6) E%
Fat E% 38.9 (23.4 - 54.1) E%
Monounsaturated Fatty Acids, E% 14.7 (5.6 - 25.1) E%
Polyunsaturated Fatty Acids, E% 7.1 (2.2 - 15.8) E%
Protein, E% 15.1 (9.2 - 22.4) E%
Saturated Fatty Acids, E% 13.7 (5.9 - 24.5) E%
Fiber 17 (5 - 42) g/d
Protein, g/kg 0.8 (0.2 - 2.1) g/kg/d
Energy, kcal/kg 21.8 (5.6 - 58.6) kcal/kg
Calcium 570 (123 - 1741) mg/d
Sodium 2588 (813 - 5487) mg/d
Phosphorous 1042 (304 - 2184) mg/d
Potassium 2785 (1026 - 5713) mg/d
Salt 6560 (201 - 13863) mg/d
Water 1804 (601 - 3613) ml/d
Vitamin D 8 (0 - 31) ug/d

The amount of fatty acids, carbohydrates, and protein is considered as % of total energy intake
(E).

Table 2. Personal details that are used as predictors.
Personal detail Percentage of patients
Act. D-vit 43%
Blood lipid medication 68%
Diabetes medication 51%
Phosphate binder med. 22%
Renavit 97%
Gender 41% female
Home hemodialysis 24%
Hospital hemodialysis 57%
Peritoneal dialysis 19%

Of these predictors, the type of dialysis treatment (home hemodialysis, hospital hemodialysis,
and peritoneal dialysis) is used to form a nested level of hierarchy in the model to estimate their
effects on other nutrition and medication.

for data collection is outlined in Fig. 1. Patients’ targeted normal ranges are reported in Table 3. 106

These ranges adhere to the statements of the hospital laboratory staff who analyzed the 107

concentrations. The numbers provided a normal range for fasting plasma phosphate (fP-Pi) only 108

for healthy persons, but all end-stage renal disease patients (CKD 5D) in this analysis were 109

undergoing dialysis, and for them, a normal range of 1.13-1.78 mmol/l is the target, according to 110

KDOQI guidelines [14]. The laboratory staff stated that the normal range of plasma albumin 111

(P-Alb) varies depending on the patient’s age, and this varying target was considered in our 112

recommendation. Supplementary S1 Fig presents potassium and phosphorous intake levels from 113

the collected food records and their observed effects on these concentrations; the recommended 114

normal ranges are denoted with white areas. General intake recommendations [8] for potassium 115

(2500 mg/d) and phosphorous (1000 mg/d) are indicated with black vertical lines. The 2020 116

update of the KDOQI Clinical Practice Guidelines [7] omitted these strict general guides and 117

advised adjusting dietary phosphorus and potassium intakes to maintain normal ranges of serum 118
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phosphate and potassium concentrations. 119

Table 3. Personalized normal ranges for plasma concentrations depending on the age of the
patient.

Plasma concentration Normal range Target group
Plasma potassium (P-K) 3.4-4.7 mmol/l Everyone
Fasting plasma phosphate (fP-Pi) 1.13-1.78 mmol/l Dialysis patients, CDK 5D
Plasma albumin (P-Alb) 36-48 g/l 39 years or younger
Plasma albumin (P-Alb) 36-45 g/l 40-69 years old
Plasma albumin (P-Alb) 34-45 g/l 70 years and older

Normal plasma potassium and albumin ranges are used according to the hospital laboratory that
analyzed the concentrations. All end-stage renal patients in this analysis are in dialysis (CKD
5D) and for they a normal range 1.13-1.78 mmol/l is targeted according to National Kidney
Dialysis Outcomes Quality Initiative (KDOQI) guideline. [14].

Diet interview

Fasting Laboratory test Dialysis treatment

Patients' usual treatment routine

Additional data collection during the routine

Fig 1. Data collection during the patients’ usual treatment routine. The figure is drawn with
diagrams.net (v 22.0.6, https://app.diagrams.net).

A research permit for this study was granted by Kuopio University Hospital Research 120

Assistance Center (”KYS Tiedepalvelukeskus” in Finnish) which is an Institutional Review 121

Board of Kuopio University Hospital. The permit waived ethical approval because participants 122

were not subjected to any additional procedures, visits, or tests beyond their usual routine. 123

Instead, only authorized researchers were allowed to handle sensitive and identifying information 124

according to the permit. Patients were given information about the study in writing and orally 125

before starting the study. Before the interviews and data collection, informed written consent 126

was obtained from all participants. The patients had the right to stop their participation in the 127

study at any stage. Participation in the study did not harm the patients and did not affect their 128

treatment. Interviews with the patients took place during their dialysis treatment, and the 129

participants granted permission to utilize their laboratory analyses for the study. Research data 130

were treated confidentially; no individual patient could be identified from the collected data or 131

the results of this study, and thus, no dietary modifications have been done based on this study. 132

The authors of this study cannot identify the participating patients from the collected data or by 133

any other means. Patient IDs in the article figures and tables are only used for patient reference 134

in the results and they cannot be used to identify the study subjects. 135

Inferring personalized recommendations for nutrient intake 136

In this section, we present a method used for determining personalized recommendations for 137

nutrient intake. We especially focused on a case where some of the nutrients in a patient’s diet 138

were modified while the remaining nutrients maintained their current intake. These 139

recommendations were designed to ensure that the patient’s plasma concentrations fall within 140
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predefined normal ranges with a desired level of confidence. Achieving this desired confidence 141

level relies on accurate estimates of the patient’s current nutrient intake and the effects of 142

nutrients. It is crucial to have a high level of confidence in these estimates before relying on the 143

recommendations. To infer personalized nutrient intake recommendations, we began by 144

constructing personal graphical models that replicated the observed concentrations based on the 145

patient’s current dietary intake. These personal models were then utilized in simulating the 146

optimal intake adjustments predicted to maintain normal concentration ranges. A summary of 147

variables, indices, and other notations of the method description is given in Supplementary S4 148

Table. 149

Personalized graphical models for plasma concentrations 150

In our analysis, we constructed a directed graphical model [10] 𝐺𝑘 for each patient 𝑘 . These 151

graphical models represented joint conditional distributions over random variables for 152

concentration levels 𝑌𝑘𝑚, levels of nutrients in diet 𝑋𝑘 𝑗 , and effects of those nutrients in multiple 153

levels of detail. The graph is illustrated in Fig. 2A, including the effects of nutrients in the 154

general (𝛽𝑘 𝑗𝑚), dialysis treatment (𝑔𝑙 𝑗𝑚), and personal levels (𝑏𝑘 𝑗𝑚). Every concentration 155

𝑚 = 1, . . . , 𝑀 was conditioned with the same 𝑗 = 1, . . . , 𝑝 nutrients and personal treatment type 156

𝑙 = 1, . . . , 𝐿; hence the edges of the graph are directed towards the concentration levels 𝑌𝑘𝑚. 157

The concentration random variables 𝑌𝑘𝑚𝑖 were assumed to follow gamma distribution that 158

allows only positive values and skews to the right, thus allowing occasional values that were 159

considerably above average [15] as follows 160

𝑌𝑘𝑚𝑖 |𝛼𝑚, 𝜇𝑘𝑚𝑖 ∼ Gamma
(
𝛼𝑚,

𝛼𝑚

𝜇𝑘𝑚𝑖

)
, 𝑘 = 1, . . . , 𝐾, 𝑚 = 1, . . . , 𝑀, 𝑖 = 1, . . . , 𝑛 (1)

where 𝛼𝑚 was a shape parameter of gamma distribution for concentration 𝑚. We used an inverse 161

scale parameterization of gamma distribution where its rate parameter was obtained by dividing 162

this shape parameter with an expected value 𝜇𝑘𝑚𝑖 for the 𝑖th observation of patient 𝑘 . By this 163

formulation, the expected concentration was clearly defined as a linear combination of the 164

amounts of nutrients and other predictors and their effects with 165

𝜇𝑘𝑚𝑖 = 𝑋𝑘 𝑗𝑖𝛽 𝑗𝑚 + 𝑍𝑘 𝑗𝑖𝑔𝑙 𝑗𝑚 + 𝑍𝑘 𝑗𝑖𝑏𝑘 𝑗𝑚 (2)

that summed the general effect of a nutrient 𝑗 with the effect variation caused by the dialysis 166

treatment 𝑙, and finally, the personal variation within the treatment for patient 𝑘 . This formed a 167

nested two-level hierarchical model for repeated personal observations and the effect of 168

treatment that every patient undergoes; either hospital, home, or peritoneal dialysis. Random 169

variable 𝑋𝑘 𝑗𝑖 denotes 𝑖th observation of predictor 𝑗 for patient 𝑘 , and random variables 𝑍𝑘 𝑗𝑖 170

denote predictors whose effects were assumed to vary between treatments or patients. In this 171

analysis, all predictors were assumed to vary, and thus 𝑋𝑘 𝑗𝑖 and 𝑍𝑘 𝑗𝑖 referred to the same 172

variables, but different sets of predictors could be selected here. 173

Both parameters of gamma distribution are required to be positive, but we needed to keep the 174

estimated effects of nutrients in an additive scale for direct interpretation. The additive scale can 175

cause problems as it allows also negative values. This was solved by transforming the expected 176

value 𝜇𝑘𝑚𝑖 linearly by adding both sides a constant 𝑐 which was sufficiently large to move the 177

estimation to strictly non-negative values while not affecting the scale of the estimated effects. 178

For parameter 𝛼𝑚, we could apply an exponent link function that enforced non-negative values. 179

It transformed the values to a logarithmic scale, but their direct interpretation was not important 180

for this analysis. The result was a linearly shifted distribution of form 181

𝑌𝑘𝑚𝑖 + 𝑐 | exp𝛼𝑚, 𝜇𝑘𝑚𝑖 + 𝑐 ∼ Gamma
(
exp𝛼𝑚,

exp𝛼𝑚
𝜇𝑘𝑚𝑖 + 𝑐

)
(3)

where the original distribution 𝑌𝑘𝑚𝑖 in Eq. (1) was obtained with reverse transformations. 182
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Fig 2. Structure of the graphical model with general, treatment, and personal level nutrient
effects. A) The hierarchical graphical model for effects of nutrients in general, treatment, and
personal levels. B) Information flow of the queried nutrients when conditioned with the current
diet, personal effects, and concentration limits. The figure is drawn with diagrams.net (v 22.0.6,
https://app.diagrams.net).

Estimating nutritional effects with hierarchical seemingly unrelated 183

regressions 184

The effects of nutrients were estimated by considering the 𝑀 different concentration 185

distributions in Eq. (1) as seemingly unrelated regressions (SUR) [9]. In SURs, there are no 186

direct relationships between the regression models, but their hierarchical effects can be 187

dependent on each other. This allowed us to consider all the concentrations simultaneously even 188

though they are not directly related. The estimation was conducted by formulating all expected 189
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value regressions from Eq. (2) as one univariate matrix: 190

µ = Xβ + Z(𝑔)g + Z(𝑏)b,
X = I𝑀×𝑀 ⊗ X𝑝×𝑛,

Z(𝑔) = I𝑀×𝑀 ⊗ diag(Z(𝑔)1 , . . . ,Z(𝑔)
𝐿
),

Z(𝑏) = I𝑀×𝑀 ⊗ diag(Z(𝑏)1 , . . . ,Z(𝑏)
𝐾
)

(4)

where the model matrix X comprises all the predictor variables and was created using a 191

Kronecker product, which is a matrix outer product resulting in a block matrix structure. This 192

pattern follows a block-diagonal arrangement, where the same set of predictors is replicated 193

across all 𝑀 concentration models. Similarly, block matrices Z(𝑔) and Z(𝑏) were formed with 194

Kronecker products to repeat, in a block-diagonal pattern, the predictors for treatment and 195

personal effects for each 1, . . . , 𝐿 treatment and 1, . . . , 𝐾 person. These matrices contain the 196

same data but were organized differently for selecting the relevant input for each patient and their 197

respective treatment when multiplied by the effect vectors β, g, and b. 198

The treatment and personal effect vectors were drawn from multivariate Gaussian 199

distributions, g ∼ N(0,𝚺𝑔) and b ∼ N(0,𝚺𝑏), that were centered to general effects β and had 200

variance-covariance matrices 𝚺𝑔 and 𝚺𝑏. The variance-covariance matrices were defined with 201

diagonal matrices T𝑔 = diag(𝜎𝑔1 , . . . , 𝜎𝑔𝑙 ) and T𝑏 = diag(𝜎𝑏1 , . . . , 𝜎𝑏𝑘 ) containing standard 202

deviations for the effects as well as correlation matrices C𝑔 and C𝑏 that decompose into 203

triangular Cholesky decomposition matrices L𝑔 and L𝑏 as follows 204

𝚺𝑔 = T𝑔C𝑔T
′
𝑔 = T𝑔L𝑔L

′
𝑔T

′
𝑔,

𝚺𝑏 = T𝑏C𝑏T
′

𝑏 = T𝑏L𝑏L
′

𝑏T
′

𝑏 .
(5)

This model formulation produces the correlation matrices C𝑔 and C𝑏 whose structures 205

contain similar the within-model correlations at diagonal blocks and cross-model correlations at 206

off-diagonal blocks: 207

C =


D(1) C(12) . . . C(1𝑀 )

C(12) ′ D(2) . . . C(2𝑀 )
...

...
. . .

...

C(1𝑀 ) ′ C(2𝑀 ) ′ . . . D(𝑀 )


(6)

where matrix blocks D(𝑚) , 𝑚 = 1, . . . , 𝑀, denote correlations of effects within a concentration 208

𝑚 and blocks C(𝑛𝑚) denote effect correlations between concentrations 𝑚 and 𝑛 = 1, . . . , 𝑀 . The 209

correlation matrix blocks are transposed across the diagonal. This system is illustrated as a 210

personal graphical model in Fig. 2A, which depicts these within-model and cross-model 211

correlations with random variables 𝜌𝑖 𝑗𝑚𝑛 of the graphical model. 212

The estimated variance-covariance matrices provided all the necessary information for 213

predicting the personal effects also for new patients with previously unseen observations. This 214

approach was employed in the cross-validation predictions of this study. However, in general, it’s 215

important to exercise caution with out-of-sample predictions. The predictions were generated 216

using Eq. (4) by placing the new observations in data matrices. Personal effect predictions b̂ 217

follow distribution T̂𝑏L̂𝑏z where z is a standard normal distribution N(0, I) that is scaled with 218

estimated Cholesky decomposition L̂𝑏 and the standard deviation of the effects T̂𝑏. In the 219

cross-validation, we utilized the expected values of this predictive distribution as they are the 220

most probable effects to produce the observed concentrations with the given predictors. 221

Finally, we acknowledged that some nutrients were likely to have collinearly similar effects 222

on concentrations, which could result in inaccurate parameter estimations [16]. To decorrelate 223

the independent variables, a QR decomposition [17] was used to deconstruct the model matrix of 224

common effects X into an orthogonal matrix Q and an upper-triangular matrix R. This 225

deconstruction was further developed into a thin QR decomposition, X = Q∗R∗, which is 226
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equivalent but more computationally efficient, as Q∗ = Q
√
𝑛 − 1 and R∗ = 1√

𝑛−1
R were scaled 227

down by the number of observations 𝑛. By estimating parameters β∗(𝑚) = R∗β (𝑚) , significantly 228

less correlated common effect coefficients β (𝑚) = R∗−1β∗(𝑚) needed to be calculated as the 229

matrix Q is orthogonal with independent columns. 230

Probabilistic inference with personal generative models 231

Personalized models were made generative by defining proper prior distributions for all 232

parameters, including the nutrient intakes in each patient’s diet. Scholars recognize [18] that 233

intake levels follow positive and right-skewed distributions, such as log − normal or gamma 234

distributions. However, intake distribution is different than estimating the current level of intake 235

as required in this task. Normal distribution is a better option here, as it captures the variance of 236

the dietary intake observations but reduces the unseen intake levels. We assumed that the mean 237

of observations was the expected value of the intake, and the standard deviation of observations 238

provides uncertainty: 239

𝑋𝑘 𝑗 ∼ N
(
𝜇̂𝑘 𝑗𝑖 , 𝜎

2
𝑘 𝑗𝑖

)
= N

(
𝑋 𝑘 𝑗𝑖 , 𝑆

2
𝑘 𝑗𝑖

)
, 𝑘 = 1, . . . , 𝐾, 𝑗 = 1, . . . , 𝐽, 𝑖 = 1, . . . , 𝑛 (7)

We denote the resulting, fully estimated personalized graph with 𝐺̂𝑘 . Personal estimations of 240

the nutritional effects were obtained at the personal, most detailed, level of the hierarchical 241

model, allowing for fine-grained adjustments that mitigate possible bias inherent in upper levels 242

of the model. In this graph, the concentration estimates 𝑌𝑘𝑚 were assumed to settle near their 243

observed values when using the current nutrient intakes and the estimated effects of nutrients. 244

This allowed analysis of the personal compositions of the concentrations, and in addition, we 245

could also condition the graph for any of its variables. This probabilistic inference [19] for 246

intake recommendations is illustrated in Fig. 2B where the edges connecting to the queried 247

nutrients were now reversed toward them. We denote this subset of 𝑟 = 1, . . . , 𝑅 nutrients that 248

were queried for recommendations with 𝑄𝑘𝑟 and the rest of 𝑗 = 1, . . . , 𝐽 − 𝑅 nutrients continue 249

to be denoted with 𝑋𝑘 𝑗 . They maintained their current personalized estimations while the 250

conditioned nutrient variables were defined with new proposal distributions that allowed all 251

possible healthy levels for these nutrients. In this work, we used uniform distributions with 252

nutrient-specific limits, but a more informative distribution could also be used. By denoting this 253

personalized graph with modified variables as 𝐺̂∗
𝑘
, the conditional probability for the intake 254

recommendation can be formulated as 255

𝑝(𝑄𝑘𝑟 |𝐺̂∗𝑘 , 𝑃(𝑌
𝑙
𝑚 < 𝑌𝑚 < 𝑌

𝑢
𝑚) > 𝑐 ), 𝑟 = 1, . . . , 𝑅, 𝑚 = 1, . . . , 𝑀 (8)

where the queried nutrients 𝑄𝑘𝑟 are conditioned with values that cause all plasma concentrations 256

𝑌𝑚 to reside within their predefined lower and upper bounds 𝑌 𝑙𝑚 and 𝑌𝑢𝑚 with probability 𝑐. 257

Algorithm for recommendation sampling 258

Algorithm (1) estimates the conditional recommendation distribution in Eq. (8) by acceptance 259

sampling. In summary, the algorithm samples diet proposals from the previously defined 260

variables 𝑄𝑘𝑟 and 𝑋𝑘 𝑗 , and evaluates the probability of how confidently this diet proposal 261

produces plasma concentrations that reside within the requested limits. The distribution of these 262

levels of confidence forms the personal recommendation for the queried nutrients 𝑄𝑘𝑟 . For clear 263

reporting and systematic comparison between patients, the algorithm returns 2.5%- and 264

97.5%-quantile values for every recommended nutrient; the example of the full distribution of 265

Eq. (8) can be seen in Fig. 3. 266

The steps of the Algorithm (1) are explained in detail. To provide transparent reasoning, the 267

algorithm tracks the overall and concentration-specific probabilities of reaching the targets, and 268

these are initialized to 0 in Steps (1) and (2). The algorithm iterates extensively on the nutrient 269
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Algorithm 1: Multivariate Acceptance Sampling for Intake Recommendation
Input:
𝐺̂∗, ⊲ Conditioned graphical model including variables 𝑄𝑟 with priors
𝑌 𝑙𝑚, 𝑌

𝑢
𝑚, ⊲ Targeted lower and upper limits for concentrations 𝑌𝑚

𝑙𝑥 , ⊲ Quantile of intake random variables (𝑋̂ 𝑗 in 𝐺̂∗) used in estimation
𝑙𝛽 , ⊲ Quantile of nutrient effects (𝛽 𝑗𝑚 in 𝐺̂∗) used in estimation
𝑆, ⊲ Number of drawn samples from the queried nutrients
𝑐 ⊲ Targeted confidence level

Output:
𝑃(𝑞𝑟𝑠) ⊲ Probabilities for queried nutrients reaching the concentration targets
𝑄𝑚𝑖𝑛𝑟 , 𝑄𝑚𝑎𝑥𝑟 , ⊲ 95%-quantile of R-dimensional recommendation distribution
𝜇̂
𝑞0
𝑚 ⊲ Expected concentration 𝑚 without the intake of queried nutrients
𝑃𝑚𝑎𝑥𝑚 ⊲ Maximum probability for reaching target for concentration 𝑚
𝑃𝑚𝑎𝑥 ⊲ Maximum probability for reaching all the concentration targets

Algorithm RecommendationSampling(𝐺̂∗, 𝑌 𝑙𝑚, 𝑌𝑢𝑚, 𝑙𝑥 , 𝑙𝛽 , 𝑆, 𝑐):
𝑄𝑚𝑖𝑛𝑟 , 𝑄𝑚𝑎𝑥𝑟 , 𝜇̂

𝑞0
𝑚 , 𝑃

𝑚𝑎𝑥
𝑚 , 𝑃𝑚𝑎𝑥

1 𝑃𝑚𝑎𝑥 ← 0;
2 𝑃𝑚𝑎𝑥𝑚 ← 0, 𝑚 = 1, . . . , 𝑀;
3 𝑝 ← number of nutrient random variables 𝑋̂ 𝑗 in 𝐺̂∗

4 𝑥 𝑗 ← 𝑙𝑥-quantile value of 𝑋̂ 𝑗 in 𝐺̂∗ for all 𝑗 = 1, . . . , 𝑝 − 𝑅;
5 𝛽 𝑗𝑚 ← 𝑙𝛽-quantile value of 𝛽 𝑗𝑚 in 𝐺̂∗ for all 𝑗 = 1, . . . , 𝑝, 𝑚 = 1, . . . , 𝑀;
6 𝛼̂𝑚 ← 𝛼-parameter of concentration distribution 𝑚 in 𝐺̂∗;
7 foreach concentration 𝑚 in 𝐺̂∗ do
8 𝜇̂

𝑞0
𝑚 ← 𝑥 𝑗 𝛽 𝑗𝑚, 𝑗 = 1, . . . , 𝑝 − 𝑅;

9 𝑙𝑚 ← min( 𝜇̂𝑞0
𝑚 , 𝑌

𝑙
𝑚);

10 𝑢𝑚 ← min( 𝜇̂𝑞0
𝑚 , 𝑌

𝑢
𝑚);

11 end
12 for samples 𝑠 = 1, . . . , 𝑆 do
13 𝑞𝑟𝑠 ← 𝐷𝑟𝑎𝑤𝑆𝑎𝑚𝑝𝑙𝑒(𝑄𝑟 = 𝑞𝑟 , 𝑙𝑚 < 𝜇𝑞0

𝑚 + 𝑞𝑟𝑠 < 𝑢𝑚, 𝑚 = 1, . . . , 𝑀), 𝑟 =
1, . . . , 𝑅;

14 foreach concentration 𝑚 in 𝐺̂∗ do
15 𝜇̂𝑚𝑠 ← 𝜇̂

𝑞0
𝑚 + 𝑞𝑟𝑠𝛽𝑝𝑖𝑚, 𝑟 = 1, . . . , 𝑅, 𝑖 = 𝑝 − 𝑅, . . . , 𝑅;

16 𝑌𝑚𝑠 ← Gamma
(
𝛼̂𝑚,

𝛼̂𝑚
𝜇̂𝑚𝑠

)
;

17 𝑃𝑚𝑠 ← 𝑃(𝑌 𝑙𝑚 ≤ 𝑌𝑚𝑠 ≤ 𝑌𝑢𝑚);
18 𝑃𝑚𝑎𝑥𝑚 ← max (𝑃𝑚𝑎𝑥𝑚 , 𝑃𝑚𝑠);
19 end
20 𝑃(𝑞𝑟𝑠) ← min (𝑃𝑚𝑠 , 𝑚 = 1, . . . , 𝑀);
21 𝑃𝑚𝑎𝑥 ← max (𝑃𝑚𝑎𝑥 , 𝑃(𝑞𝑟𝑠));
22 end
23 for queried nutrients 𝑟 = 1, . . . , 𝑅 do
24 𝐶𝑟𝑠 ← 𝑞𝑟𝑠 , 𝑃(𝑞𝑟𝑠) > 𝑐, 𝑠 = 1, . . . , 𝑆;
25 𝑄𝑚𝑖𝑛𝑟 ← 𝑞, 𝑃(𝐶𝑟𝑠 = 𝑞) ≤ 2, 5%, 𝑠 = 1, . . . , 𝑆;
26 𝑄𝑚𝑎𝑥𝑟 ← 𝑞, 𝑃(𝐶𝑟𝑠 = 𝑞) ≥ 97, 5%, 𝑠 = 1, . . . , 𝑆;
27 end
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Fig 3. Detailed Intake Recommendation for Patient 36. The intake recommendation for
Patient 36 on the left shows the inferred diet configurations predicted to produce normal ranges
of potassium (P-K), phosphate (fP-Pi), and albumin (P-Alb) concentrations. These limits are
marked with white areas in the concentration panels on the right. The black point in the middle
of the intake plot represents the patient’s current potassium and phosphorous intake producing
the current concentrations shown with dashed vertical lines. The colored rectangle shows the
limits of intake constrained by the correspondingly-colored concentration predictions at the
boundaries of the normal ranges. The figure is plotted with ggplot2 package for R language (v
3.4.1, https://ggplot2.tidyverse.org).

random variables and their effects, and their number in the graph is counted in Step (3). To 270

manage the uncertainty in the potentially wide distributions of these variables, the algorithm 271

uses point estimates in their quantile values. By default, the expected values, in the mean of the 272

distributions, are used, but tail quantiles are also useful in sensitivity analysis. The used 273

quantiles are provided by parameters 𝑙𝑥 and 𝑙𝛽 and they are used to acquire point estimates of 274

these random variables in Steps (4) and (5). 275

To optimize the sampling, the loop in Step (6) calculates concentration-specific parameters 276

that remain fixed during the sampling. Step (7) calculates the expected values of concentrations 277

without the effect of the queried nutrients. This provides constant baselines of concentration 278

levels 𝜇̂𝑞0
𝑚 that do not change during the sampling. These constants are used in Steps (8) and (9) 279

to determine the well-defined minimum and maximum limits for the sampled system. The 280
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expected values 𝜇̂𝑞0
𝑚 are used instead of the required concentration limits if they are lower than 281

the concentration’s lower limit or higher than the concentration’s upper limit to prevent the 282

sampling from failing. 283

The main loop in Step (11) draws and evaluates the 𝑆 number of samples from the queried 284

nutrients. Vectors of 𝑅 coincidental samples are drawn from 𝑄𝑟 in Step (12); a sampling 285

function that is provided with the queried random variables as well as the lower and upper 286

sampling limits from Steps (8) and (9). The queried nutrients 𝑄𝑟 are assumed to follow suitable 287

proposal distributions for sampling. For actual sampling, we used No-U-Turn sampling 288

(NUTS) [21] algorithm to draw the samples from this constrained posterior. This algorithm is 289

efficient in sampling these multidimensional distributions. 290

After a diet proposal is sampled, the loop in Step (13) iterates all the concentrations and 291

calculates their expected values in Step (14) as well as the full posterior distribution in Step (15). 292

The posterior distribution is used in Step (16) to evaluate the confidence level for each diet 293

proposal by assessing the amount of cumulative density between the concentration limits. The 294

maximum of the reached confidence level is stored for each concentration in Step (17) for 295

diagnostic purposes. 296

The algorithm seeks intake proposals that are estimated to take all the concentrations within 297

the normal ranges, between 𝑌 𝑙𝑚 and 𝑌𝑢𝑚, with the minimum confidence level 𝑐; therefore, a 298

minimum of achieved concentrations’ confidence level is stored for the current proposal in Step 299

(19). Step (20) stores also the maximum overall confidence level for diagnostic purposes. 300

Finally, in Steps (22)-(25), minimum and maximum recommendations are picked for all the 301

queried nutrients. In this implementation, we report 2.5% and 97.5% quantile values of a subset 302

𝐶𝑟 for the queried distributions that have confidence levels in sampled proposals 𝑃(𝑞𝑟𝑠) > 𝑐 for 303

all the concentrations. These quantile values are returned as results in 𝑄𝑚𝑖𝑛𝑟 and 𝑄𝑚𝑎𝑥𝑟 . 304

Implementation 305

The probabilistic models for both hierarchical effects of nutrients and personalized 306

recommendations were implemented with the probabilistic programming language Stan [22] and 307

the estimation of the models was completed through Stan’s implementation of No-U-Turn 308

sampling [21]. Personalized graphical models that use the effect estimations from the 309

hierarchical model were constructed with a custom R-code and iGraph R-package [23]. These 310

graphs represent random variables as nodes and their connections as edges. The estimated 311

distributions of random variables are stored in the properties of the nodes, which allowed us to 312

fully execute Bayesian inference over the graph. The inference for personalized 313

recommendations through Algorithm (1) was implemented in a custom R-code that filtered the 314

samples that were drawn from the recommendation model. 315

Data application 316

We applied Algorithm (1) to infer personalized recommendations of phosphorous and potassium 317

intakes for end-stage renal disease patients based on the collected data. Our main results in Fig. 318

4 demonstrate considerable differences between patients in the recommended intakes of 319

phosphorous and potassium. Some patients could exceed the general recommendations while 320

others should limit intakes of either or both nutrients to levels below the general 321

recommendations. For many patients, though, the required confidence level of personalized 322

recommendations could not be achieved by modifying potassium or phosphorous alone. In 323

particular, the required lower limit of plasma albumin was unreachable for many patients. 324

Detailed results and simulations with personalized models are elaborated next. 325
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Fig 4. Personal algorithmic recommendations of potassium and phosphorous intake and
the corresponding concentration predictions. The figure illustrates, in the two leftmost panels,
personalized recommendations for potassium and phosphorous intake derived from Algorithm
(1), along with the matching concentration predictions in the rightmost panels. Each row
corresponds to a patient with a numeric label and the type of dialysis treatment they are
undergoing (HD = hospital hemodialysis, HHD = home hemodialysis, PD = peritoneal dialysis).
The colored bars within the intake recommendation utilize blue and red colors to denote whether
or not the recommendations surpass the general guidelines of 2500 mg/d for potassium and 1000
mg/d for phosphorous, thus allowing a personally richer intake. Above these bars, numeric
values represent the 95% credible interval for each recommendation. These intake
recommendations are predicted to produce the concentrations depicted in the right panels. Here,
the grey bars represent the estimated concentrations disregarding the impacts of potassium and
phosphorous intake (𝜇𝑞0). When Algorithm (1) provides a recommendation with over 90%
confidence (𝑃𝑚𝑎𝑥 > 90%), the predicted concentrations within personal limits are highlighted in
dark blue. In cases where the recommendation lacks sufficient confidence, the recommendation
is excluded, and the entire achievable concentration range is shown with red and blue bars. The
red color indicates the concentration whose limits cannot be attained, and for many patients, it is
the lower plasma albumin limit. This figure was generated using the ggplot2 package for the R
language (v 3.4.1, https://ggplot2.tidyverse.org).
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Creating personalized models for all patients 326

Our main interest was to personalize patients’ diets to reach the suggested normal ranges of 327

plasma potassium (P-K), fasting plasma phosphorous (fP-Pi), and plasma albumin (P-Alb) in 328

Table 3. However, seven of 37 patients had missing plasma albumin measurements. To overcome 329

the missing data, we created personalized models for these patients to predict the missing values 330

before the main analysis. The hierarchical model used in Eq. (1) learns typical reactions from 331

patients who have all three concentration measurements available and then generalizes the 332

reactions for patients who have missing measurement values. In the final data set, we imputed 333

the predicted albumin concentrations for these patients. We assumed that this data imputation 334

provided a minimal bias in data and allowed us to use all of the available measurements. 335

Table 4. Effects of potassium and phosphorous between different dialysis treatments and between patients
within the same treatment.

Home hemodialysis Hospital hemodialysis Peritoneal dialysis
Nutrient Conc. General effect avg min max avg min max avg min max

Phosphorous P-Alb -0.19
[−7.16; 6.56]

-2.10
[−10.73; 5.28]

-3.09
[−12.68; 4.94]

-1.87
[−12.44; 7.81]

0.27
[−5.57; 5.95]

-0.41
[−6.77; 6.08]

1.73
[−4.98; 8.63]

0.80
[−7.31; 8.48]

0.10
[−8.68; 8.11]

1.22
[−6.42; 8.81]

Phosphorous P-K 0.39
[−2.48; 2.31]

0.25
[−1.41; 2.02]

0.15
[−1.57; 1.79]

0.36
[−1.54; 2.84]

0.21
[−1.20; 1.69]

0.10
[−1.37; 1.54]

0.37
[−1.30; 2.61]

0.51
[−1.42; 2.55]

0.45
[−1.44; 2.39]

0.59
[−1.49; 2.61]

Phosphorous fP-Pi 0.08
[−0.90; 1.41]

0.15
[−1.00; 1.13]

0.10
[−1.19; 1.23]

0.21
[−1.14; 1.21]

-0.02
[−0.79; 0.79]

-0.09
[−0.95; 0.81]

0.08
[−0.63; 0.76]

0.16
[−0.91; 1.43]

0.05
[−1.22; 1.43]

0.20
[−0.90; 1.45]

Potassium P-Alb -3.14
[−15.40; 4.12]

-3.89
[−9.99; 1.30]

-5.04
[−12.20; 0.79]

-3.63
[−9.67; 2.06]

-1.06
[−4.53; 1.96]

-1.97
[−8.76; 2.01]

0.34
[−3.64; 3.96]

-0.24
[−5.53; 5.54]

-1.02
[−7.03; 5.17]

0.27
[−5.92; 8.05]

Potassium P-K -0.46
[−3.35; 2.02]

-0.06
[−1.48; 1.55]

-0.32
[−2.14; 1.32]

0.14
[−1.57; 1.76]

0.14
[−0.58; 1.02]

-0.11
[−1.40; 1.27]

0.50
[−0.52; 1.64]

-0.21
[−1.66; 0.98]

-0.51
[−2.22; 1.17]

0.16
[−1.50; 2.45]

Potassium fP-Pi 0.07
[−0.88; 0.88]

0.00
[−0.72; 0.76]

-0.05
[−0.82; 0.77]

0.04
[−0.72; 0.78]

0.06
[−0.34; 0.52]

0.03
[−0.51; 0.53]

0.09
[−0.35; 0.56]

0.17
[−0.56; 0.97]

0.15
[−0.68; 1.03]

0.21
[−0.48; 1.05]

The table shows the effects of potassium and phosphorous on concentrations (𝑚 = 1, . . . , 3) for analyzed patients (k =
1,. . . ,37) in all three additive levels of the model. General effects (𝛽 𝑗𝑚) show the sample mean of the effect that is
shown to vary between patients in home hemodialysis, hospital hemodialysis, and peritoneal dialysis. The first column
of each dialysis type (avg) shows the typical effect of the treatment (𝛽 𝑗𝑚 + 𝑔̂𝑙 𝑗𝑚, 𝑙 = 1, . . . , 3) that can further vary
personally. The minimum and maximum of these personal effects (𝛽 𝑗𝑚 + 𝑔̂𝑙 𝑗𝑚 + 𝑏̂𝑘 𝑗𝑚) are shown within each
treatment. For every effect, 90%-credible intervals are shown under the expected value at the posterior mean.

The main analysis was conducted by first estimating the system of hierarchical nutrient effect 336

models in Eq. (1) with the three concentration targets and then constructing the personalized 337

graphical models 𝐺̂𝑘 for 𝑘 = 1, . . . , 37 patients. In these personalized models, patients’ current 338

nutrient intake variables 𝑋𝑘 𝑗 were estimated by using Eq. (7). The collected intake data are 339

described in Table 1. The table shows also the differing intakes of these nutrients within the 340

study. The input data also included personal factors, such as medication, which are described in 341

Table 2. The estimated effects of phosphorous and potassium are provided in Table 4 at all 342

hierarchically modeled levels. The effects of all considered nutrients are presented in 343

Supplementary S3 Table, which is arranged in decreasing order of between-treatment variations; 344

with this arrangement, the effect of water on plasma albumin is noticeably different between 345

treatments. Table 5 highlights the strongest effects with high individual variation. The table 346

shows also the estimated variations of the effects between dialysis treatments (𝜎̂𝑔). It is notable 347

that most varying effects are related to plasma albumin concentration. Further reasoning for the 348

effect predictions is available in Supplementary S2 Fig and S3 Fig. The correlation plots of 349

dialysis treatments and personalized matrices in these figures form a network of associated 350

effects for the sample population. Supplementary S1 Table and S2 Table provide detailed figures 351

of effects that have the highest correlations in levels of treatment and individual patients. 352

Comparing simulated personalized recommendations 353

Personalized recommendations were acquired by executing Algorithm (1) for all patients 354

𝑘 = 1, . . . , 37, and providing a conditioned personalized graphical model 𝐺̂∗
𝑘

as an input. The 355

conditioning was done similarly to that of Fig. 1B in which phosphorous and potassium were 356

separated as the queried variables 𝑄1 and 𝑄2, which left the other nutrients, 𝑋 𝑗 , 𝑗 = 1, . . . , 20, 357
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Table 5. Strongest and personally most varying effects of nutrients and medication.
Expected effect strength

Effect General effect Min. personal Max. personal Treatment var.
Renavit→ P-Alb 10.04 [-12.1; 24.48] 7.28 [-12.78; 21.69] 12.77 [-7.93; 28.05] 4.66 [0.39; 12.44]
Potassium→ P-Alb -3.14 [-15.4; 4.12] -5.04 [-12.2; 0.79] 0.34 [-3.64; 3.96] 4.85 [0.32; 12.99]
Salt→ P-Alb 1.60 [-8.59; 10.81] -0.81 [-12.25; 8.04] 4.52 [-6.23; 12.73] 6.19 [1.1; 17.17]
Phosphate binder med. → P-Alb -2.78 [-9.87; 4.87] -4.26 [-18.77; 8.61] 0.84 [-10.26; 12.01] 5.74 [0.74; 16.86]
Fat, E%→ P-Alb 3.19 [-14.81; 19.59] 1.52 [-17.42; 20.12] 4.14 [-12.29; 19.78] 4.42 [0.77; 10.57]
Gender→ P-Alb 1.67 [-5.48; 10.14] -0.53 [-11.15; 7.42] 4.13 [-3.8; 11.67] 6.11 [0.57; 18.4]
SFA, E%→ P-Alb -2.58 [-9.85; 4.58] -4.07 [-11.26; 3.42] -1.17 [-7.44; 4.97] 5.14 [0.92; 12.4]
MUFA, E%→ P-Alb 1.81 [-6.77; 13.45] -0.65 [-9.54; 8.54] 3.92 [-3.14; 13.42] 5.24 [1.04; 12.71]
Carbohydrates, E%→ P-Alb 1.29 [-14.77; 15.35] 0.16 [-16.99; 15.88] 3.71 [-11.99; 18.43] 5.57 [0.76; 12.7]
Hydroxycholecalciferol→ P-Alb 1.71 [-6.25; 10.13] 0.54 [-6.56; 8.47] 3.47 [-6.7; 13.94] 5.13 [0.43; 14.33]
Sodium→ P-Alb 1.22 [-8.68; 15.01] -3.28 [-13.36; 7.35] 2.8 [-5.8; 15.93] 6.58 [1.71; 14.24]
Phosphorous→ P-Alb -0.19 [-7.16; 6.56] -3.09 [-12.68; 4.94] 1.73 [-4.98; 8.63] 4.25 [0.7; 13.41]
Energy, kcal/kg→ P-Alb 1.60 [-11.49; 15.39] -2.93 [-14.33; 8.17] 2.15 [-12.02; 18.26] 5.73 [0.38; 15.28]
Protein, g/kg→ P-Alb 0.33 [-12.64; 13.11] -2.72 [-17.16; 10.61] 1.62 [-12.93; 15.03] 4.21 [0.54; 10.13]
Protein, E%→ P-Alb 0.64 [-7.3; 7.41] 0.88 [-7.16; 8.59] 2.67 [-4.8; 10.24] 3.12 [0.09; 10.49]
Water→ P-Alb -2.04 [-6.16; 2.97] -2.6 [-8.07; 2.01] 0.11 [-3.6; 3.77] 8.12 [0.78; 18.33]
Calcium→ P-Alb -0.08 [-10.35; 6.03] -0.32 [-5.36; 4.17] 2.6 [-3.21; 11.67] 6.67 [0.5; 19.09]
PUFA, E%→ P-Alb -0.93 [-6.18; 5.86] -2.42 [-6.01; 1.27] -0.89 [-5.79; 4.35] 4.89 [0.65; 11.59]
Vitamin D→ P-Alb 1.60 [-1.28; 4.01] 0.11 [-3.45; 3.32] 2.39 [-0.82; 6.41] 4.12 [0.61; 10.44]
Fiber→ P-Alb 1.19 [-5.02; 7.55] 0.7 [-3.35; 4.61] 2.02 [-2.56; 7.51] 4.06 [0.64; 12.82]

The table presents the 20 effects of nutrients ( 𝑗) on the considered concentrations (𝑚 = 1,...,3) which are strongest
among the studied patients. Here, general effects (𝛽 𝑗𝑚) represent average responses across the patients studied (k =
1,...,37). Personal effects combine these general effects with variations from treatments (𝑔̂𝑙 𝑗𝑚, 𝑙 = 1, . . . , 3) and
individual variations within those treatments (𝛽 𝑗𝑚 + 𝑔̂𝑙 𝑗𝑚 + 𝑏̂𝑘 𝑗𝑚). Additionally, the table displays the estimated effect
variation between dialysis treatments (𝜎̂𝑔) and provides 90% credible intervals for all the parameters. All effects are
estimated on an additive scale.
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unmodified. These queried variables were defined with the following proposal distributions 358

𝑄1 ∼ Uniform(0, 5800),
𝑄2 ∼ Uniform(0, 2550)

(9)

where the upper limits of the proposed intakes reflect maximum intakes in the general 359

population. These limits were borrowed from the FinRavinto study [24] that studies the intake 360

and nutrition of the Finnish adult population, and in which these limits are the maximum intake 361

for 95% of studied subjects (𝑛 = 565). For the personalized concentration limits, given with the 362

algorithm parameters 𝑌 𝑙
𝑘𝑚

and 𝑌𝑢
𝑘𝑚

, we used the normal ranges reported by laboratory staff and 363

KDOQI guidelines [14]. The plasma albumin upper limit was personalized by the patient’s age, 364

as laboratory staff suggested. The exact ranges that were used are reported in Table 3. We 365

executed the recommendation sampling with long chains of 𝑆 = 10, 000 sample draws for each 366

patient. Besides the means of nutrient level and nutrient effect distributions, the 367

recommendation was executed also with their 5% and 95% quantile values for sensitivity 368

analysis [25] of recommendations. The confidence level was also varied with the parameter 369

options 𝑐 = 90% and 𝑐 = 80%. 370

The algorithm resulted in a recommendation with 𝑃𝑚𝑎𝑥𝑚 > 90% confidence for 22 of 37 371

patients, and 17 of those patients could exceed the general recommendations of potassium or 372

phosphorous intake. For the rest of the patients, sufficiently confident recommendations could 373

not be reached. When the 5% and 95% tail quantile values (𝑙𝑥 and 𝑙𝛽) were used as estimations 374

of current nutrient levels and the nutrient effect, only a few patients received confident 375

recommendations, indicating that distributions for these variables were overly wide and would 376

need further observations to achieve confidence for clinical use. Fig. 4 illustrates the estimated 377

recommendations for each patient; the first two columns display the recommended intake, and 378

the following three columns offer the predicted concentration levels based on these 379

recommendations. The reported intake recommendations were taken from the 5% and 95% 380

quantile values in the estimated two-dimensional recommendation distributions. This reporting 381

method allowed us to compare otherwise uneven recommendation distributions. It demonstrates 382

that the estimated recommendations range from 1 to 5531 mg/d for potassium and 4 to 2527 383

mg/d for phosphorous with varying personal configurations. These personalized 384

recommendations are considerably different than the general recommendations of 2500 mg/d for 385

potassium and 1000 mg/d for phosphorous [8]. 386

Detailed analysis of personalized recommendations 387

From all the personalized recommendations in Fig. 4, the estimated two-dimensional 388

distribution for Patient 36 is expanded in Fig. 3 for a closer analysis. The black dot on the intake 389

recommendation plot indicates that the patient’s current intake of potassium is approximately 390

2260 mg/d and phosphorous is approximately 860 mg/d. This intake configuration produced the 391

patient’s current plasma concentrations which are indicated by the dashed line at the 392

concentration plots: 3.8 mmol/l plasma potassium, 1.4 mmol/l plasma phosphate, and 40.5 393

plasma albumin. To determine the personal ranges of intake recommendation, the patient’s 394

two-dimensional intake recommendation distribution offered simulated intake proposals that 395

were predicted to take all three concentrations to normal ranges; the darkening colors indicate the 396

increasing confidence of the estimation. The rectangle over this distribution defines the area 397

where both intakes produce over 90% confidence in achieving the targeted concentrations. This 398

method for defining regions over uneven recommendation distributions was chosen for 399

systematic reporting and comparison between patients. The rectangle in Fig. 3 defines the same 400

recommendation of 759-2702 mg/d for potassium and 693-1473 mg/d for phosphorous that was 401

provided to Patient 36 in Fig. 4. The rectangle’s limits have matching colors with the predictive 402

distributions of the concentrations. These four distributions are at the limits of concentration 403

normal ranges and provide constraints for the recommendation. 404
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The gray bars in Fig. 4 indicate the counterfactual expected values of concentrations 𝜇̂𝑞0
𝑚 405

where the effects of potassium and phosphorous are totally omitted. This shows any available 406

room in the concentrations to absorb the effects of phosphorous and potassium. For 7 of 22 407

patients who received confident recommendations, the initial concentrations were already over 408

the upper limits, but the linear combinations of proposed intakes and their effects decreased the 409

final concentrations within the normal range. For the rest of the patients, this initial level 410

concentration was already within the normal range or lower than its lower limit. Especially for 411

plasma albumin, this lower limit was difficult to reach for one-third of the studied patients. 412

Evaluation of the personal models 413

Due to the limited number of personal observations, our primary purpose was to model the 414

reactions of the patients in the studied data, but not to make generalizations about the reactions 415

found. We developed several model candidates to explore the mechanisms in data. The models 416

were evaluated with both visual posterior predictive checks [26] [27] and normalized root mean 417

square errors (NRMSE) that were calculated over all concentration predictions 𝑌𝑘𝑚𝑖 for 𝐾 418

patients and 𝑀 concentrations with 419

NRMSE =

∑𝐾
𝑘=1 NRMSE𝑘

𝐾
,NRMSE𝑘 =

∑𝑀
𝑚=1 𝑁𝑅𝑀𝑆𝐸𝑘𝑚

𝑀
,NRMSEkm =

√︂
1
𝑛
Σ𝑛
𝑖=1

(
𝑌𝑘𝑚𝑖 − 𝑌𝑘𝑚𝑖

)2

𝑌𝑘𝑚
(10)

The posterior predictive check in Fig. 5 compares the distribution of the measured 420

concentrations with the samples drawn from the multivariate model. This check verified that the 421

model is unbiased as the draws from the concentration model are centered with the measured 422

concentrations. The predictions for phosphate and potassium concentrations have very little 423

variance, but for albumin concentration, the prediction variance is higher. Additionally, we ran 424

simulations with the personal graphical models by drawing samples from current diets and 425

predicting personal concentrations. As no conditioning is done on the diets, the concentrations 426

are expected to settle on their measured values. The differences between the simulated 427

concentrations and the measured concentrations are estimated with the normalized root mean 428

square errors (NRMSE) in Table 6. Here we considered an alternative effect model 429

(mv3 cross single level) that omits the dialysis treatment as a separate layer in the hierarchical 430

model but this increased the normalized error from 0.003 to 0.078. We also considered the 431

concentrations as separate univariate models (separate pk fppi), but it increased the overall 432

normalized error to 0.081 indicating the effect of multivariate modeling. All of these models 433

were estimated with a Bayesian modeling framework Stan [22] with four chains and 3000 sample 434

draws from each chain with a 1000 sample warm-up period. Model diagnostics confirmed that 435

there were no divergent transitions during the sampling. The sampling produced an average 436

effective sample size (ESS) of 580 over all model parameters. The chains are also considered 437

mixed as R-hat convergence diagnostic is 1.01 on average. It is recommended that the effective 438

sample size should be well over 100 and R-hat less than 1.05 [20] for parameters to be trusted. 439
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Table 6. Comparison of model structures for personal nutrient effects.
Reaction model P-K fP-Pi P-Alb average NRMSE
mv3 cross two levels 0.003 0.006 0.002 0.003
mv3 cross two levels cv 0.170 0.231 0.063 0.170
mv3 cross single level 0.078 0.233 0.103 0.078
separate pk fppi 0.081 0.175 - 0.081

The hierarchical model with two levels, personal and dialysis treatment levels, provided the best
fit against the studied data as measured with normalized root mean square error (NRMSE).
Together with the multivariate modeling of concentrations, it improved the fit in comparison to
separately modeled concentrations.

0 2 4 6

pk

0 1 2 3 4 5

fppi

20 30 40 50

palb

Fig 5. Posterior predictive check (PPC) of the final nutritional effect model. Posterior
Predictive Check (PPC) for the final model version: Black lines represent observed
concentration levels, while purple lines overlay the predicted concentration levels when all
predictor nutrients match observed values. For an unbiased model, the observed and predicted
concentrations are expected to be aligned. The figure is plotted with bayesplot package for R
language (v 1.10, http://mc-stan.org/bayesplot/).

For external validation, we executed 10-fold cross-validation for the final version 440

(mv3 cross two levels) of the model. In this process, we split the dialysis patient data into ten 441

folds with three or four of all 37 patients removed from each fold. Personal reactions were 442

predicted for these removed patients while the rest of the data were used for the model 443

estimation. The prediction was made with Eq. (1) by applying the unseen concentration 444

measurements 𝑌𝑘𝑚𝑖 and corresponding nutrition data 𝑋𝑘 𝑗𝑚 with the assumption that common 445

effects (𝛽 𝑗𝑚) and dialysis treatments effects (𝑔̂𝑙 𝑗𝑚) remained as previously modeled. Only the 446

personal variations from the dialysis treatment averages were predicted to random variables 447

b̂𝑘 = T̂𝑏L̂𝑏z where the standard normal distribution z ∼ Normal(0, I) is transformed with the 448

Cholesky decomposition L̂𝑏 from Eq. (5) holding the learned correlations between nutritional 449
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effects. The related correlation matrix C𝑏 = L𝑏L′
𝑏

is illustrated in Supplementary S3 Fig with 450

the highest correlations highlighted in Supplementary Table S2 Table. Multiplying the 451

distribution with T̂𝑏 adds the estimated standard deviations of personal effects to it. As a result, 452

the prediction seeks to find the most probable combination of effects b̂𝑘 from distribution 453

T̂𝑏L̂𝑏z given the observations from new patient 𝑘 . We evaluated also the predicted 454

concentrations with NRMSE and it increased to 0.170 from 0.003 in comparison with the 455

in-sample model. In addition to the smaller amount of data, the increased error can also be 456

explained with unseen patients that react differently than was estimated in the Choslesky matrix 457

L̂𝑏 of that fold. Supplementary S5 Fig illustrates the cross-validation folds of patients and 458

compares the modeled and the predicted NRMSE values. 459

Finally, we conducted a sensitivity analysis [25] of recommendations by creating personal 460

graphs and recommendations also from the cross-validation predictions. The predicted 461

recommendations are shown in Supplementary S4 Fig. In comparison to the in-sample 462

recommendations of Fig. 4, there are five patients whose predicted reactions did not produce 463

recommendations confident enough, and three patients who could have recommendations with 464

the predicted reactions but not with the in-sample model. All of these changes occurred in 465

recommendations that are very close to the target limits already. The aim of the recommendation 466

sensitivity analysis is to ensure that the recommendations are robust and react consistently. 467

Discussion 468

The objective of this study was to develop a statistical method for deriving personalized intake 469

recommendations that ensure plasma concentrations remain within or approach the normal 470

ranges. We applied this method to infer recommendations for patients with end-stage renal 471

disease (ESRD), a population at higher risk of malnutrition [1]. We chose to estimate the 472

personalized levels of phosphorous and potassium as their greater intake would allow for a richer 473

diet considering their strict general recommendations. Our decision aligns with the 2020 update 474

of the KDOQI nutritional guidelines, which advocate for personalized adjustments to maintain 475

normal ranges of plasma phosphate and potassium [7]. By applying our method, we provided a 476

statistically justified inference of personalized dietary intake likely to result in normal plasma 477

concentrations. Consequently, we observed considerable variations in the recommended dietary 478

intake of phosphate and potassium for each patient. 479

Limitations and reliability of the study 480

The data collected for this study had certain limitations, including a small sample size of patients 481

(𝑛 = 37) and a limited number of observations per patient. Each patient underwent only two 482

dietary interviews and corresponding laboratory analyses of concentrations. The scarcity of data 483

can be attributed to the fragility of renal patients undergoing dialysis, which poses challenges in 484

conducting extensive studies involving this population. The main motivation of this study was to 485

address the malnutrition-induced weakness experienced by these patients, but the subject is 486

complicated to investigate, and thus literature on the nutritional reactions of renal disease 487

patients is also limited. Given the small amount of data, it is not recommended to generalize the 488

findings of this study beyond the studied patients without further research. 489

However, we showed in Table 6 that including the patients’ grouping in different types of 490

dialysis treatments improved the personal models’ fit considerably, and as a result, the 491

multivariate model repeats the observed concentrations without bias in Fig. 5. This makes the 492

expected values of nutritional reactions solid to conclude that there exist personal differences 493

within this patient population, and there is a need for personal inference of nutrition intake. 494

Another source of uncertainty in the inference is the estimation of patients’ current intake levels. 495

In this partial recommendation, only levels of phosphate and potassium were conditioned, while 496

the rest of the diet remained unmodified. For accurate recommendations, the contribution of the 497
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unmodified diet should be accurately estimated, and Algorithm (1) brings these contributions out 498

with parameters 𝜇̂𝑞0
𝑚 to support the reasoning. 499

A major modeling decision was to choose whether the relations between the concentrations 500

should be estimated, or if they should be considered independently. The latter provides a sparse 501

and computationally efficient structure in a Bayesian network [28], but we have demonstrated 502

that with this small amount of data, also multivariate computation can be accomplished. We 503

conclude that if there exist cross-model correlations, then a multi-target recommendation 504

requires a multivariate model of the reactions. In this analysis, sparse cross-model correlations 505

are proven to exist, and including them enhanced the predictions as was seen in the decrease of 506

normalized root mean square error. 507

Application of the inference method 508

Our goal was to develop a recommendation method that enables practitioners to transparently 509

follow the inference process. By estimating the nutrient components contributing to plasma 510

concentrations, our method allows for inference regarding the hypothetical scenario where the 511

intake of phosphorus and potassium is completely omitted. These concentration baseline 512

parameters, denoted as 𝜇̂𝑞0
𝑚 , serve as fixed starting points in the recommendation algorithm. 513

Based on these baselines, the recommendation method offers three options for proceeding. In 514

the first two options, the estimated baselines are either above or below the normal ranges of 515

concentrations. If simulating intakes of phosphorus and potassium alone fails to reach the 516

normal ranges, the recommendation is deemed unsuccessful. In the third option, if the baselines 517

already fall within the normal range, it is still necessary to accumulate a sufficient probability 518

mass from the predictive distributions of concentrations within the normal ranges to provide a 519

confident recommendation. As the model gains more information about individual reactions, the 520

predictive distributions are expected to become more tightly concentrated, with their expected 521

values approaching the limits of the normal ranges. Consequently, the method can generate 522

confident recommendations for more permissive diets. This concept is illustrated in Fig. 3, 523

where the predictive distributions of plasma potassium push against the boundaries of the normal 524

ranges, thus constraining the corresponding intake recommendation. The breadth of these 525

distributions signifies the uncertainty stemming from personalized estimations of diet and its 526

effects. For reporting purposes, the recommendations presented in this study utilize the expected 527

values of the predicted concentration distributions. 528

In addition to facilitating comparisons between patients, our method also supports 529

personalized nutritional guidance, as exemplified in Fig. 3. This figure depicts the current 530

phosphorus and potassium intakes of Patient 36, along with the corresponding concentration 531

levels. Despite all considered plasma concentrations falling within the normal ranges with the 532

given intake levels, it is crucial to determine the boundaries of intake necessary to maintain 533

concentrations within those ranges. Based on the personal model developed for Patient 36, 534

Algorithm (1) generates a recommendation for potassium intake ranging between 759 and 2702 535

mg/d, and for phosphorus intake ranging between 693 and 1473 mg/d. Notably, the expected 536

concentration values for a simulated diet without potassium and phosphorus intake already fall 537

within the normal ranges, along with substantial portions of the concentration predictive 538

distributions. By comparing the corresponding colors of the intake recommendation limits and 539

the predictive distributions of concentrations in Fig. 3, we can deduce certain relationships. The 540

concentration of plasma potassium (P-K) increases as potassium intake increases, while it also 541

becomes evident that plasma potassium concentration increases with decreasing phosphorus 542

intake. On the other hand, phosphorus intake has minimal impact on plasma phosphate 543

concentration. However, a decrease in phosphorus intake results in an increase in plasma 544

albumin concentration (P-Alb). Together, these reactions define the lower limit of the 545

phosphorus intake recommendation and the upper limit of the potassium intake recommendation. 546

As phosphorus intake increases and potassium intake decreases, the lower limits of the normal 547

November 10, 2023 20/26

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.08.28.23294523doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.28.23294523
http://creativecommons.org/licenses/by/4.0/


ranges for potassium and albumin concentrations are first met. For many patients, the 548

recommendation is constrained by the upper limit of fasting plasma phosphate and the lower 549

limit of plasma albumin. In clinical practice, making choices among different diet options that 550

yield computationally identical concentrations requires nutritional expertise and may vary 551

between patients, depending on individual factors. 552

Considerations on the personal effects of nutrients 553

In the partial recommendation presented in this study, only the levels of phosphate and potassium 554

were specifically adjusted, while the remainder of the diet was left unmodified. The factors taken 555

into account for personalized recommendations were the estimated nutritional reactions and the 556

composition of the current diet. The literature on the nutritional reactions of renal disease 557

patients is scarce, but our hierarchical reaction model indicated that incorporating the type of 558

dialysis treatment as a nested level of grouping improved the accuracy of the model. While there 559

are differences in the average reactions among patients receiving different dialysis treatments, 560

individual variations in reactions were also substantial for many factors. Notably, the average 561

effect of water intake on plasma albumin showed the greatest variation among the different 562

dialysis treatments. Patients undergoing hospital hemodialysis exhibited weaker reactions 563

compared to those undergoing home or peritoneal dialysis. This difference is likely attributed to 564

the less frequent occurrence of hospital hemodialysis and the treatment guidance in hospital 565

settings that restricts fluid and sodium intake [7] [14]. Our results also revealed weaker sodium 566

reactions in hospital dialysis. 567

It is worth noting that the nutrient effects on plasma albumin concentration exhibited the 568

greatest variability among patients. However, it is important to interpret this result cautiously, as 569

the posterior predictive check in Fig. 5 indicated a high variance in the model predictions for 570

plasma albumin concentration, despite the predictions being unbiased. We attribute this high 571

variance to the fact that plasma albumin concentration cannot be fully predicted based on the 572

nutrient intake. In fact, it is reported that plasma albumin and prealbumin concentrations should 573

not be relied upon as exclusive nutritional markers [29]. These concentrations may decrease in 574

the presence of inflammation, regardless of the underlying nutritional status. Upon treating the 575

malnutrition, the inflammation may subside, leading to an increase in albumin concentration. 576

Polyunsaturated fatty acids (PUFA) are known to have inflammatory properties [30] and can aid 577

in the recovery process. However, the specific effect of PUFA on albumin concentration has 578

been shown to vary among patients. Thus, the composition of albumin concentration is more 579

intricate compared to the other considered concentrations. Lastly, the intakes of both phosphorus 580

and potassium also exhibit individually varying effects on all the concentrations, as presented in 581

Table 4. Addressing this variation is our primary contribution and is reflected in the resulting 582

personalized recommendations. 583

Future work 584

Currently, Algorithm (1) requires that all concentration targets must be fully reached before 585

providing a recommendation. However, it is possible to allow patients to partially reach the 586

targets, which would necessitate defining an order of importance among the concentrations. In 587

such a scenario, achieving the most important concentration would be required, while the less 588

important concentrations would need to be reached to the greatest extent possible. In our future 589

work, we intend to personalize the intake recommendations for all nutrients or as many as 590

practically feasible. We have observed that modifications in phosphorus and potassium levels 591

alone were not sufficient for all patients. However, this poses computationally a more 592

challenging problem, as there will be numerous dimensions to consider in the recommendation 593

distribution beyond these two nutrients. Currently, the recommendation algorithm provides 594

parameters that can be used to track the inference process. However, collecting and interpreting 595

the relevant parameters may be a tedious task. Therefore, in our future work, we aim to enhance 596
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the interpretability of the recommendations by incorporating an algorithmic explanation 597

alongside them. This will help users better understand the reasoning behind the personalized 598

recommendations and facilitate their implementation in clinical practice. 599

Conclusion 600

In conclusion, this work shows that end-stage renal disease (ESRD) patients are unique in many 601

ways. These patients exhibit varying responses to nutrients, follow diverse dietary patterns, and 602

even possess distinct targeted normal ranges for plasma concentrations. The task of providing 603

well-grounded intake recommendations becomes challenging without the aid of computational 604

tools. Fortunately, probabilistic graphical models have proven to be a viable approach for 605

personalized modeling. These models offer flexibility in diet inference, while the Bayesian 606

framework empowers practitioners to effectively manage uncertainty in estimations. Moreover, 607

the inclusion of a hierarchical model parameterization enables the graphical models to provide 608

recommendations that can be tailored to more granular levels, including population, treatment, 609

and individual preferences. Our contributions can be summarized in the following: 610

• This study provides evidence that there exist considerable and quantifiable differences in 611

how renal patients’ plasma concentrations react to the same nutrition. 612

• As also the patients’ diets differ, personally different phosphorous and potassium intakes 613

are needed for maintaining normal plasma phosphate and potassium concentrations. 614

• Bayesian inference provides a systematic method for personal phosphorous and potassium 615

recommendations and could support clinical nutritionists in providing personalized 616

guidance. 617

Data availability 618

All the code and data for fully reproducing this analysis are publicly available in Github 619

repository: https://github.com/turkiaj/inferring-personal-recommendations-for-renal-patients. 620

A minimal underlying data set is provided also in Supporting Information files. 621

Although the patients cannot be directly identified from the data, the examination dates were 622

removed from the shared data to ensure privacy. For the sake of this analysis, only the number of 623

days between the interview and laboratory test is relevant, and only this information is left in the 624

data. 625
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cross-model correlations of personal effects. The figure is plotted with ggcorrplot package for 651

R language (v 0.1.4, https://cran.r-project.org/web/packages/ggcorrplot). 652

S4 Fig. Personal recommendations of potassium and phosphorous intake (𝑄̂𝑚𝑖𝑛 − 𝑄̂𝑚𝑎𝑥) 653

based on cross-validation predictions of nutrition effects, 𝑏̂𝑘 . Other parameters of the 654

figure are similar to in-sample prediction in Fig. 3. The figure is plotted with ggplot2 655

package for R language (v 3.4.1, https://ggplot2.tidyverse.org). 656

S5 Fig. Figure shows normalized root mean square error (NRMSE) of the two-level 657

model for each patient. Blue points indicate the in-sample error and red points indicate the 658

error from cross-validation prediction. The lines between the points highlight the increased error 659

between in-sample modeling and prediction. Alternating colors of the lines denote the folds of 660

the cross-validation. The figure is plotted with ggplot2 package for R language (v 3.4.1, 661

https://ggplot2.tidyverse.org). 662

S1 Table. Table shows 40 highest positive or negative correlations between potassium and 663

phosphorous treatment effects with other treatment effects. This structure of correlations 664

is used in estimating the personal effects based on personal intake and matching 665

concentrations. 666

S2 Table. Table shows 40 highest positive or negative correlations between personal 667

effects of potassium and phosphorous with other personal effects. This structure of 668

correlations is used in estimating the personal effects based on personal intake and 669

matching concentrations. 670
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S3 Table. All the estimated nutrition effects in general, dialysis treatment and personal 671

levels. Nutrition effect magnitudes from nutrients and other modeled features ( 𝑗 = 1, . . . , 22) to 672

blood concentrations (𝑖 = 1, . . . , 3) for analyzed patients (𝑝 = 1, . . . , 37) in all three additive 673
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S4 Table. Summary of notation for Method section. 680
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