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Abstract

Deep learning models have proven the potential to aid professionals with
medical image analysis, including many image classification tasks. However, the
scarcity of data in medical imaging poses a significant challenge, as the limited
availability of diverse and comprehensive datasets hinders the development and
evaluation of accurate and robust imaging algorithms and models. Few-shot
learning approaches have emerged as a potential solution to address this issue. In
this research, we propose to deploy the Generalized Metric Learning Model for
Few-Shot X-ray Image Classification. The model comprises a feature extractor
to embed images into a lower-dimensional space and a distance-based classifier
for label assignment based on the relative distance of these embeddings. We
extensively evaluate the model using various pre-trained convolutional neural
networks (CNNs) and vision transformers (ViTs) as feature extractors. We also
assess the performance of the commonly used distance-based classifiers in several
few-shot settings. Finally, we analyze the potential to adapt the feature encoders
to the medical domain with both supervised and self-supervised frameworks.
Our model achieves 0.689 AUROC in 2-way 5-shot COVID-19 recognition task
when combined with REMEDIS (Robust and Efficient Medical Imaging with
Self-supervision) domain-adapted model as feature extractor, and 0.802 AUROC
in 2-way 5-shot tuberculosis recognition task with domain-adapted DenseNet-121
model. Moreover, the simplicity and flexibility of our approach allows for easy
improvement in the feature, either by incorporating other few-shot methods or
new, powerful architectures into the pipeline.

Keywords— few-shot learning, metric learning, domain adaptation, feature
extraction, radiology, medical image classification

1 Introduction

Deep Learning (DL) has shown immense potential in revolutionizing medical
image analysis. With access to sufficient data, DL models can achieve human-level
performance in a wide range of tasks – from accurate diagnostics comparable to
physicians to medical scene perception [1]. However, the main drawback of traditional
DL models lies in their heavy reliance on extensive labeled data for effective training
on specific tasks. Acquiring and annotating such large datasets can be expensive,
especially in the medical domain.

In recent years, few-shot learning (FSL) has emerged as a promising solution
to address the limitations of traditional DL models.FSL represents a diverse set of
technologies aimed at enabling models to learn and generalize from a limited amount
of labeled data, even with novel and unseen tasks. Implementing these technologies
holds promising prospects for substantially decreasing the investment necessary
for developing novel DL applications through the mitigation of data collection and
annotation requirements and the reduction of computational resource demands.
Furthermore, FSL techniques can facilitate DL in domains where substantial data
availability is lacking, broadening the applicability of DL to various fields.
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Radiology is one area with vast potential to benefit from FSL techniques. A
frequent use of DL applications in radiology is image classification, closely related
to the common radiological interpretative task of providing a diagnosis. Examples
include tuberculosis recognition [2], mammographic tumor classification [3], and bone
age assessment [4], among many others [5]. These applications can assist radiologists
by providing a ”second opinion,” speeding up triage, reducing miss rates, or allowing
them to divert attention to more complex cases or tasks. When confronted with the
classification of rare or emerging diseases, such as COVID-19 diagnosis [6, 7, 8] and
diverse lung pathologies recognition [9, 10], the utilization of the FSL techniques
proves invaluable.

Among the FSL approaches, metric learning has emerged as a simple yet highly
effective method. Although the idea is long-established, recent results suggest
that the metric-based approach remains one of the most powerful FSL methods,
outperforming other more sophisticated state-of-the-art algorithms [11]. Metric
learning (embedding learning) measures samples’ similarity with defined metrics. It
embeds the data samples into a lower-dimensional latent space to reduce the spacing
between similar samples and increase the distance between dissimilar ones. Various
metric learning approaches have been proposed in the scientific literature to address
the problem at hand. Examples of such approaches include Matching Nets [12] and
its modifications [13, 14, 15, 16], which aim to learn embedding functions for data
samples. Additionally, Prototypical Networks [17, 18, 19, 20] have been introduced,
leveraging the concept of developing class prototypes to enhance metric learning
capabilities. Metric learning methods were successfully applied in radiology in
tasks such as brain tumor classification [21] and recognition of various chest X-ray
pathologies [22].

The recent advance of self-supervised learning [23] further boost the potential
of metric learning in medical imaging. Self-supervision can be viewed form of
unsupervised learning solving typically supervised tasks. A self-supervised model
is either learning to recover missing data parts, e.g. by predicting the masked
fragments of an image (generative approach), or learning to predict the similarity of
two fragments of the same data sample, e.g. two augmented versions of one image
(contrastive approach) [24]. As the self-supervision does not require labelled data, it
correlates particularly well with the few-shot paradigm, and perfectly fits the realities
of low availability of labelled medical data. Meanwhile, self-supervised models
has already proved to be highly effective in many medical tasks [25, 26]. With the
flexibility of metric learning approach in terms of model architecture, highly efficient
self-supervised models can be easily incorporated into few-shot metric-based pipeline.

A systematic evaluation of different few-shot metric learning models, both
supervised and self-supervised, still needs improvement. Metric-based approaches,
such as Prototypical Networks, allow many variations of model architecture, training
strategy and classifier. Yet, to the best of our knowledge, there is no such comparison
available for medical imaging. Therefore, we evaluated the method described in [17]
on various X-ray classification tasks, implementing several base model variants using
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more modern architectures and pre-training frameworks.

The main contributions of this paper are as follows:

• We analysed the effectiveness of the few-shot metric learning approach inspired
by ProtoNet [17] in radiology, namely in COVID-19 and tuberculosis X-ray
classification tasks.

• We benchmarked three convolutional neural network (CNN) and three vision
transformer (ViT) architectures as medical feature extractors, as well as three
commonly used distance-based classifiers in several few-shot settings, under
different data imbalance conditions.

• We compared 6 architectures trained on natural images with 5 domain-adapted
ones, including CNN models from TorchXrayVision [27] and RadImageNet
[28], as well as with the self-supervised in-domain REMEDIS [29] model based
on ResNet-50.

• We fine-tuned DINO-ViT, DINO-ResNet-50 [30] and ViT-MAE models [31]
within their respective self-supervised frameworks, using CheXpert [32] X-ray
image dataset. We evaluated the effectiveness of this domain adaptation on 11
in-distribution (ID) and 9 out-of-distribution (OOD) disease classification tasks.

• In COVID-19 and tuberculosis classification tasks our model achieved 0.689 and
0.802 AUROC in 2-way 5-shot setting, as well as 0.782 and 0.903 AUROC in
2-way 50-shot scenario.

2 Methods

A generalized metric learning model consists of a feature extractor, to embed an image
into a lower-dimensional space, and a distance-based classifier, to assign labels to the
test samples basing on the relative distance of these embeddings. We followed this
schema, and implemented our model as shown in Fig 1. We incorporated several neural
network architectures as task-agnostic feature extractors, and described them in detail
in Section 2.3. Our selection of classifiers is described in Section 2.4. To evaluate
our model in varied few-shot settings, we generated a number of episodes, in which
a small, task-specific support set was sampled to fit the classifier (see Section 2.2 for
details). Then, the evaluation was performed on the test sets referring to different target
tasks, which are given a comprehensive overview in Section 2.6 and Section 2.5.

2.1 Metric learning

The goal of metric learning is to embed each sample xi ∈ X ∈ Rn to a
lower-dimensional zi ∈ Z ∈ Rm, m < n, such that similar samples are close
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Figure 1: An overview of the metric learning model used in this work. In few-shot
learning, the term support set denotes a small set of labeled examples used as reference,
while the test set contains the examples of interest. We used a shared, pretrained feature
extractor to capture important information from both sets and obtain encoded feature
vectors. These vectors were then passed to a classifier, which predicts the labels of the
unlabelled query set. Note that only the classifier is trained with the support set and the
feature extractor remains frozen.

together and can be easily grouped by a distance-based classifier. In the simplest case,
given image-label pairs (x1, y1), (x2, y2), unlabelled image x̂ and distance function
d, the metric learning model would compute z1, z2, ẑ, and assign the label y1 to x̂ if
d(z1, ẑ) < d(z2, ẑ), and y2 to x̂ otherwise.

For the purpose of encoding xi into zi we utilized a neural network feature extractor,
which is trained using task-agnostic supervised or self-supervised learning. To find a
correct label yi, instead of directly measuring the distance d to closest labelled sample
as described above, we used a distance-based classifier c such as k-NN (see Section
2.4). To fit the classifier, we followed [12] and defined a small, task-specific support
set S = {(xi, yi)}Mi=1, where M refers to its size. Then, given a task-specific classifier cS

and a sample from a test set x̂, we embedded every xi and x̂ into zi, ẑ and predicted
ŷ = cS ( ẑ, d). In our work the distance function d is defined as the Euclidean distance,
as done in [17].

2.2 Few-shot scenarios

The few-shot classification problem is usually referred to as k-shot N-way classification
task [12], where k denotes the number of labeled samples for each category in the
training set, and N refers to the overall number of classes. We implemented four
different few-shot settings with k ∈ {5, 10, 25, 50}.

Our model was assessed using various unseen target tasks, which are described in
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Section 2.6. Several variations of the model were built with a selection of feature
extractors and classification heads. Therefore, we made an evaluation with every
combination of k-shot setting, target task, feature extractor, and classifier. For each of
these combinations, 200 few-shot scenarios (episodes) (s1, s2, ..., s200) were randomly
generated to reduce random effects and assess the statistical significance of obtained
results. For every scenario si, a vector ki = (ki,1, ki,2, ..., ki,N) ∈ NN was randomly
selected, with the value ki, j denoting number of examples for class N j in the support
set S i, under the following constraints:

1. The number of examples for any class in the support set was at least 20% of k:

ki, j ∈ [0.2k; 1.8k] (1)

2. The total size of the support set was equal to k times N:

N∑
j=1

ki, j = M = kN (2)

For example, for a 50-shot 2-way task, there were at least 10 examples for every
class and 100 examples in total. This sampling strategy allowed us to study classifier
performance under different imbalance ratios. In our experiments we considered only
binary classification tasks, giving N = 2 and ki = (ki,1, ki,2).

2.3 Feature extractors

2.3.1 Off-the-shelf models

Our study evaluated the performance of widely used and publicly available neural
networks employed as feature extractors. Since these networks were initially
pre-trained on natural images, we designated them as ”general-purpose” feature
extractors. The analysis included the following models:

• ResNet-50. ResNet [33] is a deep CNN that uses residual connections to alleviate
the vanishing gradient problem. Its 50-layer variant is the most used by far and
was also used in this work to facilitate comparison with related literature.

• DenseNet-121. DenseNet [34] is a CNN that incorporates feed-forward
connections from each layer to every other layer, improving feature propagation
and parameter efficiency. Its 121-layer variant was used in this work as it has
become particularly popular within the research community.

• ConvNeXT-XL. ConvNeXT [35] is a more modern convolutional architecture,
in which the authors systematically studied many design decisions, inspired by
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recent advances in vision transformers. The extra-large (XL) variant was used in
this work because it offers the best performance on ImageNet.

• DINO-ViT-B/8. DINO-ViT [30] is a ViT trained with a self-supervised method
called DINO (self-distillation with no labels). Apart of excellent classification
performance, the model performs particularly well when combined with a basic
nearest neighbors classifier (k-NN), which resonates with our own selection of
classifier heads. The B/8 variant (patch size 8) was used due to its classification
accuracy on ImageNet.

• DINOv2-ViT-B/14. DINOv2 [36] is the second release of the DINO framework,
which produced models with even higher ability to extract high-performance
visual features. The B/14 distilled variant was used.

• ViT-MAE-B. ViT-MAE [31] is a ViT trained using masked autoencoding
(MAE), a simple self-supervision method that involves masking and
reconstructing a large proportion of the image. The base variant with
patch size 16 was used in this work.

For CNNs, the feature vector passed as input to the classification head was the output
of the global average pooling layer. For ViTs, the class token was passed.

Besides the general feature extractors, we added five ”domain-specific” models
to the pool. ResNet-50 and DenseNet-121 have publicly available weights derived
from medical datasets published by RadImageNet (RIN) [28] and TorchXRayVision
(XRV) [27]. RIN weights are derived from several medical imaging modalities but do
not include X-rays. XRV weights are derived primarily from X-ray images. In total,
four models were included: ResNet-50-RIN, ResNet-50-XRV, DenseNet-121-RIN and
DenseNet-121-XRV.

Lastly, we incorporate REMEDIS-CXR-50-M model. The ”CXR-50” variant of
REMEDIS (”Robust and Efficient Medical Imaging with Self-supervision”) [29] is
a ResNet-50 architecture initialized with BiT-M [37] weights from natural domain.
It was trained within SimCLR [38] contrastive self-supervised framework using
CheXpert [32] and MIMIC-IV-CXR [39] large-scale chest X-ray datasets.

2.3.2 Self-supervised domain adaptation

Several sources ([40, 41, 42, 29, 43]) suggest that self-supervised medical
domain-adaptation may result in better performance than the supervised approach.
Zhou et al.[42] verifies this hypothesis for the ViT-MAE model, while Matsoukas
et al. [41] do the same for DINO. In both cases, the obtained improvements seem
promising, though in some cases, marginal. Finally, Azizi et al. [29] report outstanding
performance of self-supervised domain-adapted models across many different medical
image classification tasks, which further boosts our motivation.
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We fine-tuned DINO-ViT-B/8 and ViT-MAE-B within their respective
self-supervised frameworks to evaluate this approach. We did the same with
ResNet-50 using DINO, as this architecture is often used as a backbone for
self-supervised models [44, 30, 38, 29]. The pre-trained models and training code
are publicly available for both frameworks12. For training, we utilized the CheXpert
dataset [32], containing 224,316 chest radiographs of 65,240 patients, from which
223,648 images were used as our training set (we followed the default split). In both
cases (DINO and MAE), we trained the model for 50 epochs, with five warm-up
epochs, on 8 A100 40GB GPU units. The batch size was set to 8 per processing unit,
and the rest of the hyperparameters were left at their default values.

2.4 Classifiers

The following classification algorithms were included in the analysis:

• k-nearest neighbors (k-NN) assigns each observation to the class most common
among its k nearest neighbors. k-NN is the most widespread non-parametric
classifier. The number of neighbors participating in the vote was set to the
expected number of examples per class [45]. Votes were weighted by the inverse
of the distance to the observation, as done in [30].

• Nearest centroid (NC) assigns each observation to the class of the training
samples whose mean (centroid) is closest to the observation. NC is a simple
classifier that has been successful in few-shot settings [17].

• Neighborhood Components Analysis (NCA) learns an optimal distance metric
for the nearest neighbors (k-NN) classifier.

All distances were measured using the Euclidean distance, as done in [17] and [45].
The performance of each classifier was evaluated according to the area under
the receiver-operating characteristic curve (AUROC) and balanced accuracy – the
arithmetic mean of sensitivity and specificity.

2.5 Datasets

We used four chest X-ray datasets in our work. We show samples with exemplary
metadata from these datasets on Fig 2. The COVID-19 image data collection
project [46] collects images from several sources. The dataset has independent labels
for several conditions and is suitable for multi-label classification. To prepare the
dataset for binary classification, the label vectors containing the COVID-19 label were

1https://github.com/facebookresearch/dino
2https://github.com/facebookresearch/mae
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COVID-19 Image Data Collection
Findings: Pneumonia/Viral/Influenza

Report: A 52-year-old man, active smoker with 

chronic obstructive lung disease, was admitted 

with pneumonia and influenza. Treated in 

intensive care unit with mechanical ventilation for 

nine days. Routine chest radiograph taken 7 days 

after extubation.
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Figure 2: Samples and metadata from datasets used in this work. Data includes
COVID-19 Image Data Collection [46], Montgomery and Shenzhen datasets [47],
CheXpert dataset [32] and NIH Chest X-ray dataset [48].

set to positive, and those without it were set to negative, resulting in 584 positive and
1841 negative cases. The dataset was split in proportions 80%/20% for train and test
subsets.

Montgomery and Shenzhen datasets were obtained from medical centers in
Montgomery County, MD, USA, and Shenzhen, China, and released by the US
National Library of Medicine [47]. We combine them and obtain a dataset suitable for
binary classification, with images labeled normal (healthy) or abnormal (tuberculosis).
There are 406 cases with ”healthy” labels and 394 cases with ”tuberculosis detected”
labels. Again, we randomly split the set to obtain the train/test set in proportions
80%/20%

The CheXpert dataset [32] is a large-scale chest X-ray dataset containing 224,316
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Table 1: Number of examples available for selected pathologies in the test split of
CheXpert dataset.

Pathology # positive cases # negative cases
Enlarged Cardiomediastinum 298 370

Cardiomegaly 175 493
Lung Opacity 310 358
Lung Lesion 14 654

Edema 85 583
Consolidation 35 633

Pneumonia 14 654
Atelectasis 178 490

Pneumothorax 10 658
Pleural Effusion 120 548

Fracture 6 662

images from 65,240 patients. We selected 11 pathologies with the largest number of
positive cases available, resulting in 223,413 images in the training set. To every one of
these cases, we assigned a positive label if the pathology was detected and a negative
label otherwise. The corresponding test set is much smaller, with the exact numbers
shown in Table 1.

This NIH Chest X-ray dataset [48] contains 112,120 chest X-ray images from
30,805 patients. We sampled nine pathologies with the largest number of positive cases
available, resulting in 86,524 training images. Every case with confirmed pathology
was assigned a positive label, and a negative label was set for all negative or uncertain
cases. We sampled the same pathologies from the test set, resulting in numbers in
Table 2.

2.6 Classification tasks for the generalized metric learning model

We chose two binary classification target tasks to evaluate our baseline selection of
off-the-shelf feature encoders and adapted classifiers: COVID-19 and tuberculosis
diagnosis. COVID-19 recognition task was composed from COVID-19 image data
collection. Data for the tuberculosis recognition task was provided by Montgomery
and Shenzhen datasets. In both cases the support set was randomly sampled from the
train split, while the whole test set was used for evaluation.

For the evaluation of the model with domain-adapted feature extractors, we used
a much larger set of target tasks to improve our ability to detect small effects of
self-supervised fine-tuning. At first, we utilized binary classification tasks drawn
from the CheXpert train dataset to see if the fine-tuning resulted in any few-shot
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Table 2: Number of examples available for selected pathologies in the test split of
NIH Chest X-ray dataset.

Pathology # positive cases # negative cases
Atelectasis 3219 33788

Cardiomegaly 1069 35998
Consolidation 1825 35252

Effusion 4658 32409
Infiltration 6112 30955

Mass 1748 35319
Nodule 1623 35444

Pleural Thickening 1143 35924
Pneumothorax 2665 34402

classification improvement within the source dataset. We follow [29] and call this
setting in-distribution (ID) evaluation. Next, we composed the out-of-distribution
(OOD) set of binary classification tasks from NIH Chest X-ray dataset. This allowed
us to assess the model generalization ability and transferability of knowledge learned
on ID dataset.

In both cases (ID and OOD evaluations) we measured a relative mean change of
AUROC achieved with feature extractors before and after domain adaptation. The
statistical significance of the results was assessed using a paired two-tailed t-test with
the null hypothesis that domain adaptation has no impact on performance. p-values
less than 0.05 were considered statistically significant.

3 Results

The results of our experiments include the performance assessment of several variants
of the model, in different few-shot settings. We present the comparison of model
efficacy with the incorporation of general and domain-specific feature extractors,
including our adapted versions of DINO-ViT-B/8, ViT-MAE-B and ResNet-50. We
examine the performance of three described classifiers with the respect to the support
data imbalance ratio. Lastly, we give a detailed analysis of the effectiveness of our
attempt of self-supervised domain adaptation of DINO-ViT-B/8, ViT-MAE-B and
ResNet-50 models.
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Table 3: Evaluation of general feature extractors for COVID-19 recognition task.
Top 3 results measured by mean AUROC for each number of examples per class are
marked in bold.

Encoder Classifier
Examples per class

5 10 25 50

ResNet-50
k-NN 0.578 0.615 0.654 0.681
NC 0.586 0.607 0.652 0.681

NCA+k-NN 0.565 0.606 0.652 0.686

DenseNet-121
k-NN 0.519 0.528 0.545 0.561
NC 0.525 0.533 0.556 0.568

NCA+k-NN 0.511 0.527 0.540 0.555

ConvNeXT-XL
k-NN 0.566 0.587 0.612 0.627
NC 0.579 0.609 0.645 0.667

NCA+k-NN 0.565 0.588 0.631 0.656

DINO-ViT-B/8
k-NN 0.591 0.617 0.667 0.706
NC 0.614 0.658 0.715 0.758

NCA+k-NN 0.592 0.618 0.669 0.706

DINOv2-ViT-B/14
k-NN 0.581 0.610 0.665 0.693
NC 0.594 0.613 0.684 0.709

NCA+k-NN 0.585 0.602 0.663 0.695

ViT-MAE-B
k-NN 0.591 0.623 0.670 0.712
NC 0.599 0.656 0.700 0.737

NCA+k-NN 0.581 0.603 0.671 0.711

3.1 General feature extractors

The results of the evaluation of general feature extractors for COVID-19 recognition
are described in Table 3. ViTs outperformed CNNs in almost every scenario, with
DINO-ViT-B/8 being the most effective. DINOv2 fell behind DINO-ViT and did not
outperform ViT-MAE in most cases. Of the CNNs, ResNet-50 proved to be the most
reliable, with ConvNeXt falling behind slightly and DenseNet-121 trailing them both
significantly. Table 4 shows a similar comparison for the tuberculosis classification,
but this time the results are very similar to the ones observed for COVID-19 task.

3.2 Domain-specific feature extractors

The Table 5 shows the comparison of performance achieved with domain-specific
feature extractors. The REMEDIS model stands out in this task, outperforming our
adapted DINO-ViT-Xray model by a large margin, with every combination of classifier
and few-shot setting. ViT-MAE-Xray model performed similarly to DINO-ViT-Xray.
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Table 4: Evaluation of general feature extractors for tuberculosis recognition task.
Top 3 results measured by mean AUROC for each number of examples per class are
marked in bold.

Encoder Classifier
Examples per class

5 10 25 50

ResNet-50
k-NN 0.630 0.672 0.719 0.752
NC 0.638 0.685 0.734 0.767

NCA+k-NN 0.626 0.685 0.748 0.786

DenseNet-121
k-NN 0.575 0.600 0.639 0.657
NC 0.584 0.612 0.650 0.669

NCA+k-NN 0.544 0.579 0.623 0.659

ConvNeXT-XL
k-NN 0.639 0.674 0.709 0.730
NC 0.650 0.695 0.738 0.758

NCA+k-NN 0.629 0.684 0.734 0.766

DINO-ViT-B/8
k-NN 0.739 0.776 0.807 0.834
NC 0.757 0.789 0.825 0.841

NCA+k-NN 0.739 0.782 0.817 0.831

DINOv2-ViT-B/14
k-NN 0.729 0.778 0.808 0.819
NC 0.752 0.791 0.815 0.822

NCA+k-NN 0.733 0.771 0.805 0.823

ViT-MAE-B
k-NN 0.719 0.762 0.797 0.815
NC 0.718 0.768 0.812 0.827

NCA+k-NN 0.679 0.751 0.810 0.842
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Figure 3: The comparison of general vs domain-specific feature extractors
performance. The evaluation was done on COVID-19 and tuberculosis recognition
tasks, with different combinations of classifier head and few-show setting.

Domain-specific CNNs performed relatively poorly compared to ViTs. Among these
architectures, ResNet-50-RIN performed marginally better than others.

Different observations were made in the tuberculosis recognition task (Table 6),
with supervised CNNs, ResNet-50-XRV and DenseNet-121-XRV, noting the highest
AUROC across all domain-specific feature extractors. CNNs with RIN weights,
however, performed worse with NC classifier, and the only improvement over their
general versions is noted with k-NN and NCA+k-NN classifiaction heads. Our adapted
DINO-ResNet-Xray performs very similar to the ResNet-50-RIN model, however the
efficacy rises slightly with the NC classifier. The model also outperforms the adapted
ViT-MAE-Xray. REMEDIS extractor performs much better than the RIN version of
ResNet, however still stays far behind ResNet-50-XRV. DINO-ViT notes similar, yet
slightly better efficacy.

An additional comparison of general and domain-specific versions of DenseNet-121
and ResNet-50 is shown on Fig 3. The observations further emphasise relatively low
performance of the base DenseNet-121, and superiority of REMEDIS in COVID-19
task. It is also clearly seen that XRV models are notably more effective than both RIN
and REMEDIS models in tuberculosis classification task.

We measured the relative change of mean AUROC after the domain adaptation of
feature extractors. Results of ID evaluation are presented in Table 7. For ViT-MAE-B
and DINO-ViT-B/8 we compared our self-supervised domain-adapted models with
their base versions. DINO-ResNet-50 was juxtaposed with ResNet-50-XRV instead,
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Table 5: Evaluation of domain-specific feature extractors for COVID-19
recognition task. Models adapted by ourselves are underlined. Top 3 results measured
by mean AUROC for each number of examples per class are marked in bold.

Encoder Classifier
Examples per class

5 10 25 50

ResNet-50-RIN
k-NN 0.577 0.611 0.653 0.687
NC 0.595 0.633 0.658 0.678

NCA+k-NN 0.570 0.610 0.651 0.689

ResNet-50-XRV
k-NN 0.566 0.571 0.605 0.650
NC 0.574 0.588 0.622 0.672

NCA+k-NN 0.552 0.596 0.650 0.708

DenseNet-121-RIN
k-NN 0.560 0.591 0.628 0.652
NC 0.564 0.577 0.600 0.620

NCA+k-NN 0.570 0.598 0.640 0.666

DenseNet-121-XRV
k-NN 0.559 0.589 0.625 0.658
NC 0.561 0.581 0.608 0.640

NCA+k-NN 0.550 0.585 0.622 0.669

REMEDIS-CXR-50-M
k-NN 0.680 0.714 0.760 0.780
NC 0.689 0.721 0.760 0.770

NCA+k-NN 0.679 0.709 0.757 0.782

DINO-ViT-xray
k-NN 0.602 0.641 0.694 0.728
NC 0.625 0.659 0.708 0.724

NCA+k-NN 0.613 0.646 0.699 0.735

ViT-MAE-xray
k-NN 0.582 0.626 0.663 0.704
NC 0.601 0.628 0.680 0.700

NCA+k-NN 0.577 0.613 0.659 0.701

DINO-ResNet-xray
k-NN 0.559 0.587 0.608 0.634
NC 0.570 0.593 0.613 0.622

NCA+k-NN 0.555 0.577 0.610 0.651
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Table 6: Evaluation of domain-specific feature extractors for tuberculosis
recognition task. Models adapted by ourselves are underlined. Top 3 results measured
by mean AUROC for each number of examples per class are marked in bold.

Encoder Classifier
Examples per class

5 10 25 50

ResNet-50-RIN
k-NN 0.682 0.711 0.751 0.776
NC 0.659 0.681 0.715 0.740

NCA+k-NN 0.668 0.720 0.767 0.788

ResNet-50-XRV
k-NN 0.778 0.814 0.847 0.861
NC 0.785 0.831 0.870 0.880

NCA+k-NN 0.768 0.830 0.886 0.903

DenseNet-121-RIN
k-NN 0.590 0.631 0.682 0.717
NC 0.575 0.597 0.634 0.653

NCA+k-NN 0.612 0.647 0.705 0.742

DenseNet-121-XRV
k-NN 0.784 0.832 0.872 0.883
NC 0.802 0.851 0.880 0.888

NCA+k-NN 0.750 0.813 0.866 0.885

REMEDIS-CXR-50-M
k-NN 0.705 0.752 0.810 0.837
NC 0.687 0.739 0.791 0.815

NCA+k-NN 0.698 0.753 0.811 0.837

DINO-ViT-xray
k-NN 0.719 0.777 0.816 0.831
NC 0.711 0.751 0.804 0.834

NCA+k-NN 0.724 0.770 0.821 0.837

ViT-MAE-xray
k-NN 0.652 0.656 0.721 0.736
NC 0.650 0.698 0.736 0.747

NCA+k-NN 0.647 0.687 0.721 0.740

DINO-ResNet-xray
k-NN 0.680 0.724 0.766 0.781
NC 0.684 0.726 0.758 0.763

NCA+k-NN 0.681 0.733 0.780 0.802
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to compare the efficacy of supervised and self-supervised domain-adaptation methods.

Fine-tuning ViT-MAE-B improved the model performance (by mean AUROC) in
36% of tasks. Fine-tuning DINO-ViT-B/8 resulted in improvement in 75% of tasks,
and fine-tuned DINO-ResNet-50 notes performance better than ResNet-50-XRV in
45% of cases. Averaging AUROC change across all tasks, DiNO-ViT performance
increased by 0.0115, ViT-MAE performance decreased by 0.0146 and ResNet
performance decreased by 0.0059.

Results of OOD evaluation are presented in Table 8. To sum it up, fine-tuning
ViT-MAE-B improved the model performance in 22% of tasks, fine-tuning
DINO-ViT-B/8 resulted in improvement in 6% of tasks, and fine-tuned DINO-ResNet-50
notes no performance improvement in any case. On average, DiNO-ViT performance
decresed by 0.0195, ViT-MAE performance decreased by 0.0097 and ResNet
performance decreased by 0.1195.

3.3 Classifiers overview

The examination of model performance with respect to different support set imbalance
ratios in COVID-19 and tuberculosis recognition tasks are shown on Figs 4 and 5. The
results indicate that NC classifier is not only highly robust to the imbalance ratio, but in
many cases achieves the best overall performance even when data is balanced, in every
k-shot setting.

4 Conclusion and discussions

Our work provides a systematic evaluation of the metric learning approach in several
few-shot medical image classification tasks. Our experiments have shown that the
nearest centroid algorithm is a much more reliable choice as a classification head than
k-NN, outperforming the latter in almost every few-shot scenario. We further conclude
that both DINO and MAE vision transformers may be a good selection as feature
extractors in metric learning models, outperforming general-purpose CNNs by a large
margin. The recently updated second version of DINO did not perform better than its
baseline in our setting.

The performance of medical-trained CNNs varies, although the best results are
seen when the model training domain is closer to the target tasks (XRV models
generally outperform RIN). Domain-specific REMEDIS model achieves remarkable
results in COVID-19 detection task and is comparable to the XRV and RIN
models in tuberculosis recognition. Other self-supervised models, however, noted
varying changes in performance after fine-tuning them on the source dataset. This
relative performance became straightly negative when the model was applied to
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Table 7: Relative mean AUROC change in ID tasks after domain adaptation of
the encoder. In case of ResNet-50, the comparison was made with the relation to XRV
model instead. Evaluation was performed on ID tasks sampled from CheXpert dataset.
Positive changes are marked green. Significant differences were marked with stars.

Encoder Recognition task
Examples per class

5 10 25 50

ViT-MAE-B

Atelectasis 0.005 0.014* 0.005 0.010
Cardiomegaly -0.012 -0.025* -0.032* -0.042*
Consolidation -0.033* -0.023* -0.049* -0.066*

Edema -0.027* -0.031* -0.029* -0.038*
ECMa 0.004 0.014 0.015 0.010

Fracture -0.015 -0.031* -0.064* -0.064*
Lung Lesion 0.015 0.011 0.013* 0.010
Lung Opacity -0.004 -0.017* -0.008 -0.001

Pleural Effusion -0.026* -0.028* -0.031* -0.041*
Pneumonia 0.001 0.009 0.003 -0.009

Pneumothorax -0.009 -0.009 0.003 -0.024*
ALL TASKS -0.009* -0.011* -0.002* -0.023*

DINO-ViT-B/8

Atelectasis -0.017 -0.012 -0.048* -0.048*
Cardiomegaly 0.027* 0.012 0.005 0.007
Consolidation 0.017 0.030* 0.035* 0.025*

Edema -0.003 0.023* 0.027* 0.032*
ECMa 0.008 0.015 0.008 0.010

Fracture 0.008 0.010 0.007 0.013
Lung Lesion 0.014 0.028* 0.031* 0.045*
Lung Opacity 0.020 0.011 0.026* 0.035*

Pleural Effusion -0.006 -0.011 -0.006 -0.026*
Pneumonia 0.023* 0.019* 0.040* 0.040*

Pneumothorax -0.002 0.017* 0.015 -0.002
ALL TASKS 0.008* 0.013* 0.013* 0.012*

DINO-ResNet-50

Atelectasis 0.044* 0.058* 0.103* 0.120*
Cardiomegaly 0.017 0.009 0.028* 0.032*
Consolidation -0.037* -0.056* -0.071* -0.081*

Edema 0.114* 0.108* 0.105* 0.081*
ECMa -0.019 -0.023 -0.055* -0.053*

Fracture -0.042* -0.067* -0.101* -0.127*
Lung Lesion 0.071* 0.090* 0.096* 0.124*
Lung Opacity 0.063* 0.049* 0.073* 0.096*

Pleural Effusion -0.013 -0.017* -0.035* -0.041*
Pneumonia -0.054* -0.087* -0.129* -0.168*

Pneumothorax -0.073* -0.103* -0.132* -0.156*
ALL TASKS 0.006* -0.004 -0.011 -0.016*

* p < 0.05
a Enlarged Cardiomediastinum
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Table 8: Relative mean AUROC change in OOD tasks after domain adaptation of
the encoder. In case of ResNet-50, the comparison was made with the relation to XRV
model instead. Evaluation was performed on OOD tasks sampled from NIH Chext
xray dataset. Positive changes are marked green. Significant differences were marked
with stars.

Encoder Recognition task
Examples per class

5 10 25 50

ViT-MAE-B

Atelectasis -0.014* -0.018* -0.017* -0.017*
Cardiomegaly 0.008 0.011* 0.001 0.010*
Consolidation -0.026* -0.030* -0.027* -0.022*

Effusion -0.011* -0.006 -0.012* -0.014*
Infiltration 0.008 -0.001 0.005 -0.004

Mass 0.004 -0.010 -0.009 -0.013*
Nodule -0.009 0.006 -0.004 -0.009

Pleural Thickening -0.003 -0.003 -0.005 -0.005
Pneumothorax -0.013* -0.026* -0.031* -0.046*
ALL TASKS -0.006* -0.086* -0.011* -0.013*

DINO-ViT-B/8

Atelectasis -0.018* -0.031* -0.027* -0.029*
Cardiomegaly -0.019* -0.008 -0.033* -0.012*
Consolidation -0.013 -0.003 -0.001 -0.001

Effusion -0.045* -0.048* -0.051* -0.046*
Infiltration -0.007 -0.004 -0.007 -0.025*

Mass 0.001 -0.004 -0.014* -0.013*
Nodule -0.005 -0.033* -0.030* -0.039*

Pleural Thickening -0.006 0.003 -0.001 -0.003
Pneumothorax -0.021* -0.030* -0.048* -0.033*
ALL TASKS -0.015* -0.018* -0.024* -0.022*

DINO-ResNet-50

Atelectasis -0.047* -0.062* -0.075* -0.080*
Cardiomegaly -0.136* -0.162* -0.191* -0.206*
Consolidation -0.055* -0.071* -0.068* -0.063*

Effusion -0.133* -0.134* -0.137* -0.135*
Infiltration -0.045* -0.047* -0.081* -0.092*

Mass -0.144* -0.172* -0.200* -0.221*
Nodule -0.059* -0.083* -0.114* -0.123*

Pleural Thickening -0.076* -0.085* -0.105* -0.098*
Pneumothorax -0.162* -0.206* -0.216* -0.217*
ALL TASKS -0.095* -0.114* -0.132* -0.137*

* p < 0.05
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Figure 4: Balanced accuracy score in COVID-19 recognition task in different data
imbalance conditions. Performance with respect to encoder, classifier, support data
imbalance and number of examples per class.
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Figure 5: Balanced accuracy score in tuberculosis recognition task in different
data imbalance conditions. Performance with respect to encoder, classifier, support
data imbalance and number of examples per class.
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out-of-distribution tasks. This leads us to a counter-intuitive conclusion that some
self-supervised models may have a greater ability to extract important features from
medical data if trained in a natural domain, as we observed with DINO and MAE.

While in our experiments we did not come close to the state-of-the-art classification
performance noted by non-few-shot learning models, the simplicity of the presented
approach easily allows for further improvement of the pipeline through mixing in other
few-shot techniques, such as meta-learning or ensemble methods.

4.1 Different model variants comparison

The superiority of REMEDIS model in COVID-19 classification task (Table 5) is not
surprising, as this framework is a recent state-of-the-art solution carved purposely to
solve medical classification problems, and the CXR-50 version of this model was
trained on chest X-rays. Its high performance suggests that relatively simple and
long-established CNN architectures can achieve outstanding performance in medical
imaging and the training strategy is the key factor in that matter.

Aside REMEDIS, ViT models proved to be the best choice for feature extractors
in this task, outperforming even domain-specific RIN and XRV models in every case.
Surprisingly, the DINOv2-ViT model did not outperform the base DINO-ViT as might
have been expected [36]. ViT-MAE model noted slightly lower performance than
DINO, which goes on par with conclusions from [29, 24] stating that contrastive
self-supervised approaches work better than image-reconstruction-based ones. The
CNNs’ performance was observed to be comparable, except the base DenseNet-121
which fell behind noticeably (this is also seen clearly on Figs ?? and ?? ).

In the case of tuberculosis classification, the best performance was obtained
through the incorporation of XRV models, with ViTs being close behind and
outperforming RIN models. Again, DINOv2 performed slightly worse than the base
DINO. This time REMEDIS model achieved performance similar to ViT models. What
is also interesting is that in the tuberculosis task the application of DenseNet-121-RIN
results in worse performance than the base DenseNet-121. This suggests that in some
cases models trained on natural images may have a greater ability to extract important
features from X-ray data than the ones trained on medical, but not X-ray images.

Figure ??, shows that in a difficult task, such as COVID-19 recognition, the
performance of CNN model can be improved by training it on medical data in a
supervised way, no matter if it is in-domain (XRV models) or out-of-domain (RIN
models). For the easier task, however, the advantages of in-domain training start to
become clear, with XRV models greatly outperforming RIN ones.

To compare our results to the state-of-the-art, we note that Zhang et al. [49] reports
the performance of the proposed COVID-19 screening method as 0.952 AUROC. Next,
Tartaglione et al. [50] report the COVID-19 recognition performance as high as 1.0
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AUROC, however, the specificity of the proposed solution is only 0.20. Interestingly,
in a work of Shorfuzzaman and Hossain [51] the authors report 0.975 AUROC for
3-way 10-shot classification of COVID-19 and pneumonia with the use of contrastive
learning and Siamese network. This highlights the potential of self-supervised learning
in medical few-shot imaging. It also indicates that our approach still needs refinement
to compete with the most effective methods established for this task. Our model with
REMEDIS-CXR-50-M feature extractor achieved 0.721 AUROC in the 2-way 10-shot
COVID-19 classification scenario and 0.782 AUROC in 2-way 50-shot setting.

In the work of Saif et al. [52] the AUROC in tuberculosis classification is set
at 0.997 for the Montgomery dataset and 0.981 for the Shenzhen dataset. This was
achieved through ensemble voting of different handcrafted and deep-learned features
with data augmentation. Cahndra et al.[53] achieved 0.95 AUROC on Montgomery
and 0.99 AUROC for Shenzhen set with the application of hierarchical feature
extraction. Lastly, Rajamaran et al. [54] reports 0.954 AUROC on Shenzhen and 0.964
AUROC on Montgomery datasets. These results were achieved through the bone
suppression technique, and the baseline performance without it is stated to be 0.899
and 0.857 AUROC respectively. This goes on par with our results, as we achieved
0.903 AUROC on these datasets combined in the more difficult 50-shot setting. Some
of the works mentioned above mark the possible directions to improve our work in the
future, either through introducing ensemble voting or incorporating bone suppression.
As our approach is simple in conception, both of these methods would be relatively
straightforward to implement within our framework.

4.2 Self-supervised domain adaptation

The results of self-supervised domain adaptation experiments suggest that
domain-specific feature extractors are sometimes less effective than general-purpose
ones. While the REMEDIS model shows great performance in COVID-19 and
tuberculosis recognition tasks, our own attempts to adapt DINO and MAE frameworks
similarly were not that successful. It can be said that while their average performance
on ID tasks improved (Table 7), this is not the whole picture. In cases such
as pneumothorax or edema recognition, there were many scenarios where the
performance did not change significantly or even straightly decreased. In the worst
case, in the pleural effusion detection task, the measured AUROC dropped in every
scenario across all adapted feature extractors. On the other hand, there is an example
of a lung lesion recognition task where the performance improved across all scenarios.
This inconsistency of results is most notably seen after ResNet fine-tuning when the
difference in the performance of the adapted model varied from almost -0.17 to 0.12
AUROC. It shows that it is difficult to indicate which feature extractor is the best for
domain adaptation based only on mean performance change, and that the stability of
results across many tasks must also be included in the analysis.

The results of the out-of-distribution evaluation (Table 8) are even more
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discouraging, as there is only one case (ViT-MAE cardiomegaly recognition) where
the performance consistently improved. It suggests that the knowledge learned during
the self-supervised training sometimes helps with classification on the source dataset,
but is not always transferable to OOD tasks. While the reports from [40], [41] and
[29] confirm the effectiveness of self-supervised domain adaptation, which we confirm
for REMEDIS model [29], our own experiments indicate that this rule should not
be uniformly applied to every self-supervised framework. Next, [41] reports minor
improvement in the performance after the adaptation of DINO ResNet-50 and DINO
DeiT-S transformer [55], yet the gains were mostly within the range of measured
standard deviation. While this still marks the domain adaptation as a valid direction for
improving a model’s efficacy, our experiments show that the gains from self-supervised
pre-training should not be taken for granted.
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[8] Cores D, Vila-Blanco N, Pérez-Alarcón M, Martı́nez-de Alegrı́a A, Mucientes
M, Carreira MJ. A few-shot approach for COVID-19 screening in standard and
portable chest X-ray images. Scientific Reports. 2022;12(1):21511.

[9] Reddy Bhimireddy A, Burns JL, Purkayastha S, Wawira Gichoya J. Few-Shot
Transfer Learning to improve Chest X-Ray pathology detection using limited
triplets. arXiv e-prints. 2022:arXiv-2204.

23

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.27.23294690doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.27.23294690
http://creativecommons.org/licenses/by/4.0/


[10] Paul A, Tang YX, Shen TC, Summers RM. Discriminative ensemble learning for
few-shot chest x-ray diagnosis. Medical image analysis. 2021;68:101911.

[11] Hu SX, Li D, Stühmer J, Kim M, Hospedales TM. Pushing the limits of simple
pipelines for few-shot learning: External data and fine-tuning make a difference.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition; 2022. p. 9068-77.

[12] Vinyals O, Blundell C, Lillicrap T, Wierstra D, et al. Matching networks for one
shot learning. Advances in neural information processing systems. 2016;29.

[13] Cai Q, Pan Y, Yao T, Yan C, Mei T. Memory matching networks for one-shot
image recognition. In: Proceedings of the IEEE conference on computer vision
and pattern recognition; 2018. p. 4080-8.

[14] Li Y, Gu C, Dullien T, Vinyals O, Kohli P. Graph matching networks for learning
the similarity of graph structured objects. In: International conference on machine
learning. PMLR; 2019. p. 3835-45.

[15] Altae-Tran H, Ramsundar B, Pappu AS, Pande V. Low data drug discovery with
one-shot learning. ACS central science. 2017;3(4):283-93.

[16] Bachman P, Sordoni A, Trischler A. Learning algorithms for active learning. In:
international conference on machine learning. PMLR; 2017. p. 301-10.

[17] Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning.
Advances in neural information processing systems. 2017;30.

[18] Oreshkin B, Rodriguez Lopez P, Lacoste A. Tadam: Task dependent adaptive
metric for improved few-shot learning. Advances in neural information
processing systems. 2018;31.

[19] Ren M, Triantafillou E, Ravi S, Snell J, Swersky K, Tenenbaum JB, et al.
Meta-learning for semi-supervised few-shot classification. arXiv preprint
arXiv:180300676. 2018.

[20] Wang YX, Girshick R, Hebert M, Hariharan B. Low-shot learning from
imaginary data. In: Proceedings of the IEEE conference on computer vision
and pattern recognition; 2018. p. 7278-86.

[21] Cai A, Hu W, Zheng J. Few-shot learning for medical image classification.
In: Artificial Neural Networks and Machine Learning–ICANN 2020: 29th
International Conference on Artificial Neural Networks, Bratislava, Slovakia,
September 15–18, 2020, Proceedings, Part I 29. Springer; 2020. p. 441-52.

[22] Jin Y, Lu H, Zhu W, Yan K, Gao Z, Li Z. CTFC: A Convolution and Visual
Transformer Based Classifier for Few-Shot Chest X-ray Images. In: 2021 2nd
International Conference on Artificial Intelligence and Computer Engineering
(ICAICE). IEEE; 2021. p. 616-22.

24

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.27.23294690doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.27.23294690
http://creativecommons.org/licenses/by/4.0/


[23] Ohri K, Kumar M. Review on self-supervised image recognition using deep
neural networks. Knowledge-Based Systems. 2021;224:107090.

[24] Liu X, Zhang F, Hou Z, Mian L, Wang Z, Zhang J, et al. Self-supervised learning:
Generative or contrastive. IEEE transactions on knowledge and data engineering.
2021;35(1):857-76.

[25] Krishnan R, Rajpurkar P, Topol EJ. Self-supervised learning in medicine and
healthcare. Nature Biomedical Engineering. 2022;6(12):1346-52.

[26] Shurrab S, Duwairi R. Self-supervised learning methods and applications in
medical imaging analysis: A survey. PeerJ Computer Science. 2022;8:e1045.

[27] Cohen JP, Viviano JD, Bertin P, Morrison P, Torabian P, Guarrera M, et al.
TorchXRayVision: A library of chest X-ray datasets and models. In: Medical
Imaging with Deep Learning; 2022. Available from: https://github.com/
mlmed/torchxrayvision.

[28] Mei X, Liu Z, Robson PM, Marinelli B, Huang M, Doshi A, et al. RadImageNet:
An Open Radiologic Deep Learning Research Dataset for Effective Transfer
Learning. Radiology: Artificial Intelligence. 0;0(ja):e210315. Available from:
https://doi.org/10.1148/ryai.210315.

[29] Azizi S, Culp L, Freyberg J, Mustafa B, Baur S, Kornblith S, et al. Robust and
data-efficient generalization of self-supervised machine learning for diagnostic
imaging. Nature Biomedical Engineering. 2023:1-24.

[30] Caron M, Touvron H, Misra I, Jégou H, Mairal J, Bojanowski P, et al. Emerging
properties in self-supervised vision transformers. In: Proceedings of the
IEEE/CVF international conference on computer vision; 2021. p. 9650-60.

[31] He K, Chen X, Xie S, Li Y, Dollár P, Girshick R. Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition; 2022. p. 16000-9.

[32] Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, et al. Chexpert: A
large chest radiograph dataset with uncertainty labels and expert comparison. In:
Proceedings of the AAAI conference on artificial intelligence. vol. 33; 2019. p.
590-7.

[33] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition;
2016. p. 770-8.

[34] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition; 2017. p. 4700-8.

[35] Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S. A convnet for the
2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition; 2022. p. 11976-86.

25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.27.23294690doi: medRxiv preprint 

https://github.com/mlmed/torchxrayvision
https://github.com/mlmed/torchxrayvision
https://doi.org/10.1148/ryai.210315
https://doi.org/10.1101/2023.08.27.23294690
http://creativecommons.org/licenses/by/4.0/


[36] Oquab M, Darcet T, Moutakanni T, Vo H, Szafraniec M, Khalidov V, et al.
Dinov2: Learning robust visual features without supervision. arXiv preprint
arXiv:230407193. 2023.

[37] Kolesnikov A, Beyer L, Zhai X, Puigcerver J, Yung J, Gelly S, et al. Big transfer
(bit): General visual representation learning. In: Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
V 16. Springer; 2020. p. 491-507.

[38] Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive
learning of visual representations. In: International conference on machine
learning. PMLR; 2020. p. 1597-607.

[39] Johnson AE, Pollard TJ, Berkowitz SJ, Greenbaum NR, Lungren MP, Deng
Cy, et al. MIMIC-CXR, a de-identified publicly available database of chest
radiographs with free-text reports. Scientific data. 2019;6(1):317.

[40] Hosseinzadeh Taher MR, Haghighi F, Feng R, Gotway MB, Liang J. A systematic
benchmarking analysis of transfer learning for medical image analysis. In:
Domain Adaptation and Representation Transfer, and Affordable Healthcare and
AI for Resource Diverse Global Health: Third MICCAI Workshop, DART 2021,
and First MICCAI Workshop, FAIR 2021, Held in Conjunction with MICCAI
2021, Strasbourg, France, September 27 and October 1, 2021, Proceedings 3.
Springer; 2021. p. 3-13.
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