
Data-driven decision support for individualised cardiovascular
resuscitation in sepsis: a scoping review and primer for clinicians

Authors
Finneas JR Catling*1 (ORCID 0000-0003-2815-4362)

Myura Nagendran1,2 (ORCID 0000-0002-4656-5096)

Paul Festor2,3 (ORCID: 0000-0002-4856-1822)

Zuzanna Bien4 (ORCID: 0000-0002-8579-4166)

Steve Harris5,6 (ORCID: 0000-0002-4982-1374)

A Aldo Faisal2,3,7,8 (ORCID: 0000-0003-0813-7207)

Anthony C Gordon1 (ORCID: 0000-0002-0419-547X)

Matthieu Komorowski1 (ORCID: 0000-0003-0559-5747)

1. Division of Anaesthetics, Pain Medicine, and Intensive Care, Imperial College London, London, UK

2. UKRI Centre for Doctoral Training in AI for Healthcare, Imperial College London, London, UK

3. Department of Computing, Imperial College London, London, UK

4. School of Life Course & Population Sciences, King’s College London, UK

5. Department of Critical Care, University College London Hospital, London, UK

6. Institute of Health Informatics, University College London, London, UK

7. Institute of Artificial and Human Intelligence, Universität Bayreuth, Bayreuth, Germany

8. Department of Bioengineering, Imperial College London, London, UK

* Corresponding author.

1

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.26.23294666doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.08.26.23294666
http://creativecommons.org/licenses/by/4.0/


Abstract
Background: We conducted a scoping review of machine learning systems that inform individualised
cardiovascular resuscitation of adults in hospital with sepsis. Our study reviews the resuscitation tasks that
the systems aim to assist with, system robustness and potential to improve patient care, and progress
towards deployment in clinical practice. We assume no expertise in machine learning from the reader and
introduce technical concepts where relevant.

Methods: This study followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for
Scoping Reviews guidance. MEDLINE, EMBASE, Scopus, ClinicalTrials.gov, arXiv, bioRxiv and medRxiv
were systematically searched up to September 2021. We present a narrative synthesis of the included
studies, which also aims to equip clinicians with an understanding of the foundational machine learning
concepts necessary to interpret them.

Results: 73 studies were included with 80% published after 2018. Supervised learning systems were often
used to predict septic shock onset. Reinforcement learning systems were increasingly popular in the last
five years, and were used to guide specific dosing of fluids and vasopressors. A minority of studies
proposed systems containing biological models augmented with machine learning. Sepsis and septic shock
were heterogeneously defined and 63% of studies derived their systems using a single dataset. Most
studies performed only retrospective internal validation, with no further steps taken towards translating
their proposed systems into clinical practice.

Conclusions: Machine learning systems can theoretically match, or even exceed, human performance
when predicting patient outcomes and choosing the most suitable cardiovascular treatment strategy in
sepsis. However, with some notable exceptions, the vast majority of systems to date exist only as proof of
concept, with significant barriers to translation.
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Introduction
This study reviews data-driven systems used to inform individualised cardiovascular resuscitation of adult
patients in hospital with sepsis [1]. The available systems performed varied tasks and were evaluated in
differing patient cohorts and at different levels of fidelity. They were therefore not suitable for direct
comparison. We thus performed a scoping review, seeking to address the following questions:

1. Which tasks within sepsis resuscitation did the systems aim to assist with, and what approaches
(algorithms, patient cohorts and methods of validation) were used to produce them?

2. What were the advantages and disadvantages of the different systems in terms of their robustness
(i.e. their integrity under different operating conditions [2]) and potential to improve patient care?

3. How far had the systems progressed towards deployment in clinical practice? Where systems had
been deployed, what was their impact?

Machine learning systems are often highly technical, making their inner workings opaque to many
healthcare professionals who are increasingly expected to use them. We aim to provide an accessible
introduction to machine learning concepts necessary to interpret the output of these systems and avoid
their pitfalls.

Methods
This study was conducted in accordance with the Preferred Reporting Items for Systematic reviews and
Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) [3]. Our study protocol was prospectively
registered with the Open Science Framework (see https://osf.io/c6ynq/) on 14 October 2021.

Eligibility criteria
Studies were included that evaluated a data-driven system for individualised cardiovascular resuscitation in
adult (18 years of age, or older) inpatients with sepsis. Eligible systems had to satisfy all three of the
following criteria:

1. They recommended cardiovascular treatment (defined as intravenous fluids, vasopressors or
inotropes), or predicted response to cardiovascular treatment with the intent of informing future
cardiovascular treatment.

2. They contained components learnt directly from data, excluding clinical guidelines and ‘expert
systems’ which contain only human-authored rules based on clinical experience or a review of
relevant literature.

3. They made recommendations or predictions that changed depending on the values of one or
more routinely-measured clinical variables.

Additional inclusion criteria included:

● Primary interventional or observational research, or service evaluation. Quantitative and
qualitative approaches were both eligible.

● Manuscripts written in English or French.

● Data-driven systems for realtime early diagnosis of septic shock (defined as predicting
development of septic shock within, at most, the next 48 hours). This was because many
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investigators treat a prescription of vasopressor treatment in sepsis as synonymous with a
diagnosis of septic shock, resulting in systems which essentially predict vasopressor prescriptions
in sepsis.

● Systems could be included where they used a simple human-authored rule to link a data-driven
prediction of an outcome to a treatment recommendation, as long as knowledge of the predicted
outcome mandated or strongly encouraged the recommended cardiovascular treatment.

Definitions of sepsis and septic shock have evolved over time, and have been adapted for use in different
healthcare systems. We therefore included studies that use the Sepsis-1 [4], Sepsis-2 [5] or Sepsis-3 [1]
definitions, as well as reasonable precursors or adaptations of these. Exclusion criteria included:

● Review articles, commentaries, editorials, case reports, conference abstracts without an associated
conference paper, unmodified replications of previous studies and incomplete or unpublished
clinical trials.

● Evaluations exclusively in paediatric populations, animals or synthetic data.

● Evaluations in general populations of adult inpatients, except where a subgroup analysis of
exclusively the patients with sepsis was available.

● Studies that report associations between risk factors and outcomes without specifying how these
should be used to inform treatment.

● Systems that use non-routinely-collected data, including transcriptomics or cytokine profiles.

Literature search
MEDLINE, EMBASE, Scopus, ClinicalTrials.gov, arXiv, bioRxiv and medRxiv were searched from
database inception to September 20th, 2021. The search strategies were drafted and refined in
consultation with the Imperial College London library team, and in accordance with the Peer Review of
Electronic Search Strategies (PRESS) Guideline [6]. Studies only in animals were excluded using the
technique recommended in [7], with an adaptation to also exclude non-adults [8]. Our final search strategy
is shown in Appendix A (Additional File 1). The retrieved studies were supplemented by scanning the
reference lists of relevant review articles.

Article screening, decisions on inclusion and data extraction were performed collaboratively by five
reviewers (FJRC, MN, ZB, PF and MK) using the Covidence systematic review software (Veritas Health
Innovation, Melbourne, Australia), versions 2673 and above. Duplicate articles were removed using
Covidence’s automated duplicate detection function. Each record was reviewed by at least two reviewers
with consensus opinion from all co-authors sought on any inter-reviewer discrepancies. Single reviewers
extracted data items from each article, flagging contentious areas for further scrutiny by two reviewers
and consensus decision. The full screening and extraction process was preceded by a joint calibration
exercise using 69 articles.

A data collection form (see Appendix B, Additional File 1) was produced prior to search execution. This
included items on article characteristics (title, year, funding source), algorithms used, datasets (numbers of
patients and hospitals, data resolution) and progress towards translation.
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Data synthesis
We grouped the included studies according to the main algorithmic approach used (supervised learning,
unsupervised learning, reinforcement learning or biological modelling, as defined in the Results). We then
conducted a narrative synthesis within each category, describing the general features of each approach,
summarising common methodologies, and highlighting notable contributions from individual studies.

Results
This section begins by summarising our main findings, then presents an introduction to the four major
approaches used to build data-driven sepsis-resuscitation systems. This later material is intended to be
accessible to a non-technical audience, and highlights the clinical relevance of individual studies.

We included 73 studies which evaluate systems for individualised resuscitation in sepsis. Study
identification and screening is summarised in Figure 1, and characteristics of the included studies are
presented in Table 1. All extracted study data are available in Additional File 2.

Figure 1. PRISMA flow diagram showing identification and screening of studies.

55 studies (75%) used supervised learning, typically for realtime septic shock prediction or in combination
with reinforcement learning. 26 studies (36%) used reinforcement learning, all of which recommended
treatment strategies using IV fluids and vasopressors. 8 studies (11%) used unsupervised learning and 4
(6%) used biological models augmented with machine learning. Most of the studies (58, 80%) were
published in or after 2018, with only 3 (4%) studies published before 2010. The temporal trends in
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machine learning approach used are shown in Figure 2, which highlights the increasing popularity of
reinforcement learning in recent years.

Algorithm
type

Studies: n (%) Used MIMIC
dataset:
n (%)

Cohort size:
median
(IQR)

Internal
validation: n
(%)

External
retrospective
validation: n
(%)

Any
prospective
validation: n
(%)

Supervised
Learning

55 (75.3%) 31 (56.4 %) 10066
(1310-19954)

45 (81.8 %) 5 (9.1 %) 7 (12.8 %)

Unsupervised
Learning

8 (11.0 %) 5 (62.5 %) 13986
(18109-5661)

5 (62.5 %) 2 (25.0 %) 0 (0.0 %)

Reinforcement
Learning

26 (35.6 %) 22 (84.6 %) 17898
(7790-19710)

23 (88.5 %) 3 (11.5 %) 1 (3.84 %)

Biological
Modelling

4 (5.5 %) 2 (50 %) 33 (32-38) 2 (50 %) 0 (0.0 %) 2 (50.0 %)

All 73 (100 %) 46 (63.0 %) 14908
(1338-1968)

59 (80.8 %) 7 (9.5 %) 8 (11.0 %)

Table 1. Characteristics of the included studies, stratified by algorithm type. Individual columns may sum to greater than
the total in the final row as a single study may include more than one algorithm type.

Figure 2. Trends in machine learning approaches used, over time.

Most studies performed only retrospective internal validation. As summarised in Figure 3 (using the
format proposed in [9]), significant further steps would thus be required before most systems could be
deployed in clinical practice. Three of the four [10–13] systems that had progressed to interventional trials
either had a minimal learnt component [10] or were constrained by physiological principles [11,12]. The
majority of studies received academic funding, although private funding was increasingly common in
recent studies, indicating a commercial interest in data-driven sepsis resuscitation (see Supplementary
Figure 1, Additional File 1).
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Figure 3. Trends in technology readiness, over time. Where a system was evaluated using multiple methods, the evaluation
corresponding to the highest level of technological readiness was counted for each study. The figure format replicates that

presented in [9].

Sepsis was heterogeneously defined across the studies (see Supplementary Figure 2, Additional file 1): 34
(47%) adopted a definition based on the ‘sepsis 3’ criteria [1], whilst 14 (19%) used clinical codes and 13
(18%) used evidence of infection plus a systemic inflammatory response [5]. Of the studies that defined
septic shock, just 17 (52%) used a definition requiring initial fluid resuscitation, and only 12 (36%) used a
definition requiring elevated lactate.

A large proportion of the studies (63%) relied on the same database (MIMIC [14]; see Supplementary
Figure 3, Additional File 1). The majority of systems used patient demographic data (59, 81%) and
measurements collected intermittently over time (68, 93%), with only 7 (10%) systems exploiting
physiological waveforms. The number of patient episodes varied greatly between studies using the same
datasets (see Supplementary Figure 4, Additional File 1), reflecting their varied inclusion criteria.

Supervised learning for prediction
Supervised learning is a branch of machine learning which uses labelled datasets consisting of inputs
(so-called features, such as patient characteristics) and corresponding labels (e.g. whether that patient
develops septic shock in the following 12 hours). Using many pairs of features and labels in a process
known as ‘training’, the parameters of a mathematical function are learnt so that the function predicts
appropriate outputs given novel inputs (e.g. predicts septic shock risk in a new patient). Common types of
function (‘algorithms’) used for this purpose are summarised in Box 1. After training, the learnt function
is commonly referred to as a ‘model’.

To evaluate a model’s performance, we ask it to make predictions from unseen (“test”) data, and assess
the differences between the predicted and true outcomes. An important goal of the testing phase is to
check whether the model has ‘underfitted’ or ‘overfitted’ to the training data: in the former case, the
model is too simplistic to capture the true relationship between the features and outcomes. In the latter,
the model is too complex relative to the size of the training data, meaning that it simply memorises these
data rather than learning patterns that generalise to new patients.

Supervised learning was used in 55 (75%) studies, commonly for the purpose of early identification of
septic shock with the aim of enabling timely intervention and reducing disease progression. In particular,
8 studies [15–22] evaluated septic shock prediction systems using the MIMIC dataset, version III. Despite
this apparent similarity, however, direct comparison of these systems’ predictive performance is not
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meaningful due to other sources of heterogeneity: their time between prediction and septic shock onset
ranged from 15 minutes to 48 hours, between 25 and 4786 episodes of septic shock were identified during
dataset processing, reflecting large differences in inclusion criteria and hence the meaning of the ‘septic
shock’ labels, and the studies used different measures of model performance.

Box 1. Common supervised learning algorithms.

● Linear regression - a simple approach used to predict a continuous outcome by adding
together one or more weighted features. Used in many ‘clinical calculators’ but prone to
underfitting, as most relationships in nature are not on a straight line.

● Logistic regression - a non-linear modification of linear regression, often used to predict the
probability of a binary outcome.

● K nearest neighbours - prediction of outcome labels based on the most common label of the
nearest data points, where K is the number of nearest data points.

● Support vector machines - an approach which uses complicated combinations of features to
find a boundary between different outcomes. The learning process is focussed on identifying
‘support vectors’, i.e. data points that are most characteristic of this boundary.

● Decision trees - a rule-based algorithm that separates features into outcomes over successive
steps, where each step uses a decision rule learned from the features.

● Random forests - an extension of decision trees in which several trees are built from different
samples of the data, and predictions are made using the majority or average vote.

● Artificial neural networks - interconnected layers of artificial ‘neurons’, each of which
integrates information using a weighted combination of the activity of earlier neurons in the
network. Stacking the layers results in a ‘deep’ neural network that can learn to represent
complex information (e.g. images) very efficiently. Training (‘deep learning’) is done by feeding
back the error the output neurons made in the outcome prediction and asking successive sets
of neurons to adjust their weighted combinations, a process called ‘backpropagation’.

Supervised algorithms were also applied to guide interventions; either indirectly, by predicting urine
output response to fluid [23] and mean arterial pressure response to noradrenaline [24], or directly, by
guiding weaning [10] or dose regulation of vasopressors [25].

Clinical machine learning systems are often limited by the breadth of data they have access to in
comparison to healthcare professionals [26]. Mitra and colleagues [16] found superior prediction of septic
shock when using clinical features as compared to features available only from administrative data. Other
included studies used supervised algorithms specifically suited to analysing time-series data (recurrent
neural networks and hidden Markov models) [17,27–30] and text notes [19], reflecting the way human
physicians retain awareness of patient trajectory and clinical context. Four studies sought to use
information from physiological waveforms: an earlier study [31] predicted response to fluids based on
manually-defined waveform features (pulse pressure variation), whilst later studies [32–34] relied on the
algorithm’s ability to identify novel informative features of the waveforms which humans are typically not
able to comprehend in real time.

A minority of studies considered integration of supervised learning models into existing clinical
workstreams. These included an ‘open-loop’ model in which clinicians’ decisions were fed back into the
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system to allow them to influence the model predictions [35], software to allow clinicians with no coding
experience to create their own predictive tools [36], and a system that calculated the trade-off between
cost-effectiveness and prediction accuracy [37].

Several studies compared the performance of multiple algorithms on a single task [38,39], or combined
them in “ensemble” models as a means of increasing overall performance and generalisability [15,22,40].
Two studies [41,42] deployed existing models in new hospitals, but first ‘fine tuned’ the models with local
data from those hospitals — a technique known as transfer learning. In both cases, transfer learning
improved prediction of septic shock, indicating that it can be used to improve model generalisation to
new settings.

Unsupervised learning for phenotype discovery

In contrast to supervised learning, unsupervised algorithms are not provided with labels. Instead, they are
designed to discover structure in data. Clustering is a popular unsupervised technique which splits data into
groups based on common characteristics, such as a shared phenotype of a disease or syndrome [43].
Researchers usually attempt to demonstrate that clusters add new information to a dataset (for example,
facilitating imputation of missing clinical data [44,45]), are reproducible in other datasets, or argue for the
biological plausibility or prognostic utility of the data clusters.

Several studies used clustering in combination with other machine learning techniques: three [25,46,47]
used clustering with supervised learning, aiming to capture phenotypes associated with different
responses to cardiovascular treatment. One study [46] aimed to link unsupervised techniques with
treatment recommendations more directly: having identified multiple underlying phenotypes in a
population of patients with sepsis, the investigators showed that responses to fluid resuscitation differed
between phenotypes. It should be emphasised, however, that a causal relationship was not demonstrated
here.

Reinforcement learning for treatment recommendation

Reinforcement learning (RL) is a family of algorithms in which an ‘agent’ (a computer program) learns a
strategy for making decisions (a ‘policy’) which achieves a desired outcome. Box 2 describes a hypothetical
clinical RL system. RL is able to optimise complex, sequential decision-making, and therefore has the
potential to enhance resuscitation [48].

All of the included RL studies focus on a scenario wherein the agent administers intravenous fluids and
vasopressors to virtual patients with sepsis, learning the policy (dosing strategy) associated with desirable
outcomes. The behaviour of this agent depends on three key elements: the representation of the patient’s
clinical status (the “states”), the treatment options available to the agent (the “actions”) and the definition
of successful resuscitation (the “reward”).

Representing patient state
Early studies [49,50] defined patient state using their demographic information, plus their clinical
observations and laboratory values from the current time, and input it directly into the RL algorithm.
Alternatively, clustering techniques were applied to these data to define discrete patient states [51].
However, these approaches did not take into account trajectories over time and could lead to inconsistent
recommendations. Therefore, later studies typically condensed patients’ historical data into a single state
which preserved information about their clinical trajectory [52–54].
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Box 2. Case study: a hypothetical clinical reinforcement learning system

An RL system is used to select antimicrobial agents for patients with new-onset sepsis, as well as
recommending when a trial of cessation would be appropriate. The system is trained on historical
patient data (including microbiological samples and sensitivities) with the goal of reducing the
requirement for sepsis-related organ support. This system could improve antimicrobial stewardship by
optimising for a patient-centred and clinically-important outcome, as opposed to adopting the
shorter-term triggers (e.g. recent high temperature) that clinicians frequently use . It also has the
potential to identify, and act on, longer-term trends in sensitivities and clinical responses to antibiotics
that are only apparent from large volumes of health data.

Defining treatment goals
Many of the studies defined successful resuscitation using patient-centred outcomes such as survival at 30
or 90 days [47,51,54–57]. However, these outcomes only occur once per patient episode, resulting in a
sparse reward signal that makes training difficult and raises concerns over the weak causal link between
treatment decisions and an outcome months into the future [58,59]. To overcome this, some studies
defined shorter-term rewards such as changes in SOFA score or clinical parameters [53,60,61], but these
may not translate into outcomes that are important to patients. More recent studies refined their reward
signals further, using them to nudge the agent’s treatment strategy away from rare [62] or unsafe [60,63]
decisions.

Deployment and other challenges
Clinical RL agents are usually trained “offline” (that is, they learn by observing retrospective data rather
than experimenting in the real clinical environment). In this setting, it is impossible to know how patients’
outcomes might have changed if they had been treated differently, and model performance must be
estimated through statistical methods [64]. Due to the extreme heterogeneity in model architectures,
algorithms used, definitions (of states, actions and rewards), and performance measures, it was not
possible to directly compare the performance of RL models.

Learning with biological models
Four studies [11,12,61,65] proposed systems containing biological models augmented with machine
learning. These attempted to constrain the way the systems learn from data using explicit mathematical
descriptions of physiology or pathophysiology, so that the system recommendations were compatible with
our biological knowledge.

Two studies [11,12] linked fluid resuscitation recommendations in sepsis to the output of the FloTracTM

cardiac output monitor. FloTracTM uses the physiological principle that pulse pressure is proportional to
stroke volume via the combined effects of vascular resistance and compliance. It then uses a regression
model learnt from multiple patients’ data to predict this relationship for a given patient. Unlike more
invasive cardiac output monitors, studies using FloTracTM were eligible for inclusion in this review as it
uses only routinely-collected ICU data (invasive arterial blood pressure and patient demographics).
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Two studies [61,65] modelled the cardiovascular system in sepsis as an electrical circuit analogue, wherein
charge corresponds to blood volume, current to blood flow, and voltage to blood pressure. Systemic
vascular resistance and arterial compliance are represented as a parallel resistor and capacitor, respectively,
in a model known as a two-element Windkessel [66]. One of these studies [65] presented a system for
titration of noradrenaline infusions in septic patients, which coupled a supervised learning model to a
2-element Windkessel for blood pressure forecasting. The other [61] presented a complex reinforcement
learning approach to sepsis cardiovascular resuscitation with IV fluids and vasopressors, combining three
neural networks and a two-element Windkessel. In this latter study, however, it is plausible that the neural
networks learnt to simply invert the Windkessel model and thereafter learnt in a way that was
unconstrained by biological knowledge.

Conclusions
We performed a scoping review of data-driven systems for personalised cardiovascular resuscitation in
sepsis. The systems performed varied tasks, but most commonly used supervised learning to predict
septic shock or reinforcement learning to recommend doses of IV fluids and vasopressors. Whilst
supervised learning systems can (under favourable conditions) predict events during normal patient care,
they rely on humans to operationalise the predictions into treatment decisions that could improve
outcomes. The relationship between usual-care events and optimal treatments may be complex: for
example, where a future prescription of vasopressors is predicted in a patient with sepsis, the optimal
treatment strategy may be earlier control of infection source, which may in turn make future vasopressors
unnecessary. Reinforcement learning systems avoid these issues by recommending treatments directly, but
offline training using electronic health record data makes them vulnerable to confounding.

The paucity of studies making treatment recommendations solely based on unsupervised clustering may
reflect concerns over clinical interpretation of the clusters, which necessarily occurs post hoc and is often
speculative. However, clusters derived from routinely-collected patient data may be more transparent to
most clinicians than those derived from ‘omics’ or cytokine data, as they can inspect familiar variables
which most differentiate the clusters.

Traditional biological models are based on strict assumptions and population average parameters. They
can therefore show poor predictive performance when applied to individual patients. Augmenting
biological models with machine learning may enable more personalised predictions. However, care must
be taken to ensure that these augmented systems are still constrained by physiological principles.

There is substantial recent interest in applying data-driven approaches to cardiovascular treatment in
sepsis. However, with some notable exceptions, the vast majority of systems to date exist only as proof of
concept, with little prospective validation and significant barriers to translation.
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