- 1 Limited impact of lifting universal masks on SARS-COV-2 transmission in schools: The
- 2 crucial role of outcome measurements
- 3

4 Authors

5 Mingwei Li^{1,2}, Bingyi Yang¹, Benjamin Cowling^{1,2}

6 Affiliations:

- ⁷ ¹WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of
- 8 Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- 9 Special Administrative Region, China
- ¹⁰ ² Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology
- 11 Park, Hong Kong Special Administrative Region, China

12 **Corresponding author**:

- 13 Bingyi Yang
- 14 School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7
- 15 Sassoon Road, Pokfulam, Hong Kong
- 16 Email: <u>yangby@hku.hk</u>

17 Tel: +852 39716911

- 18 Word count: (Abstract: 122)
- 19 (Main text: 1148)

20 ABSTRACT

21	As the pandemic's dynamics changed, many municipalities lifted face wearing
22	requirement in school which was initially implemented to mitigate the transmission of
23	COVID-19. This study examines the effects of lifting mask mandates on COVID-19
24	transmission within Massachusetts school districts. We first replicated previous
25	research by Cowger et al. (2022) utilizing a Difference-in-Difference (DID) model. Then,
26	we back project the case infection and calculate the Rt value to redo the DID analysis.
27	However, when shifting the outcome measurement to the reproductive number (Rt),
28	our findings suggest that lifting mask mandates can only significantly influence the Rt
29	first two weeks post-intervention. This implies that while mask mandate plays a role in
30	mitigation, its lifting does not drastically influence COVID-19 transmissibility in the long
31	term.

32 INTRODUCTION

33 Non-pharmaceutical interventions (NPIs) have played a critical role in reducing 34 transmission during the COVID-19 pandemic and "flattening the curve", spreading out 35 infections over a longer period of time to reduce pressure on healthcare systems. One 36 such NPI, recommending or even requiring people to wear face masks in certain 37 settings or locations, was commonly used during the COVID-19 pandemic. Although 38 challenges exist in examining the effectiveness of face masks in preventing disease 39 transmissions that caused by the heterogeneity in mask materials, inconsistency in user 40 compliance and the coincidental implementation of other NPIs, it was later suggested to be effective in mitigating COVID-19 transmissions and adopted by schools (Boutzoukas 41 42 et al., 2022; Kim et al., 2020; Sharma et al., 2020). As the pandemic progresses, many 43 local authorities relaxed mask mandates during periods when the pandemic appears to 44 be receding, while the impact of lifting these mandates on transmission remains under-45 investigated. It's critical to understand both the potential reduction in transmission when a mask mandate is introduced, as well as the possible increase in transmission 46 47 when such interventions are relaxed or removed.

48

49 Cowger *et al.* found significantly lower incidence in schools which maintained universal 50 masking compared to those without in the subsequent surge after mask mandates were 51 lifted in Massachusetts school in February 2021 (Cowger et al., 2022), However, the 52 outcome measurement (i.e., incidence) alone cannot fully reflect the transmission 53 process since it does not account for the exponential changes in case numbers during 54 the transmission. For instance, initial incidence discrepancies between two locations 55 can magnify over time, even if the reproductive number remains constant. Similar 56 oversights of transmission outcomes have been identified in studies about effectiveness

of other COVID-19 control measures (Auger et al., 2020), which may have impacted the
accuracy of the findings and their implications.

59

60	In this study, we used the same data source as Cowger <i>et al.</i> to examine the impact of
61	outcome measure (i.e., transmission and/or incidence) on the estimated effectiveness of
62	lifting masks mandates on COVID-19 transmission. After replicating the original
63	analyses using a difference-in-difference model on incidence rate, we replaced the
64	outcome measurement with the effective reproductive number (Rt). Rt is estimated as
65	the average number of secondary infections resulting from one infected individual,
66	measuring the transmissibility in a population (Nash et al., 2022). The Rt reductions are
67	often used to evaluate the effectiveness of mitigation measures in limiting the virus
68	transmission, with Rt below one indicating non-sustainable transmission under existing
69	measures.

70

71 **RESULTS**

We replicated Cowger et al. (2022) analysis using population-weighted COVID-19
incidence as the outcome measurement in a difference-in-difference model. We
analysed data from 70 school districts in Massachusetts, with 46 lifting the mask
mandates in the first reporting week (type 1), and 15 and 9 districts lifting in the second
(type 2) and third (type 3) reporting week, respectively. Chelsea and Boston retained
their mandates (type 4). We only replicated results for students, as data on school staff
were not available.

79

80 Our replication results were consistent with those reported by Cowger et al.'s. We found 81 that lifting the masking mandates in schools was associated with a notable increase in

82	COVID-19 incidence across all district types (Figure 2A), with the lowest incidence in
83	type 4 district that did not lifted the mask mandate. We observed an average treatment
84	effect (ATT) of 39.1 (95% CI: 20.4-57.4) COVID-19 cases per 1,000 students associated
85	with lifting masking mandates, compared to 39.9 (95% CI: $24.3-55.4$) in the original
86	analysis (Cowger et al., 2022). Analyses using incidence as outcomes suggested that
87	lifting the masking mandates in schools was associated with 39.1 additional cases per
88	1,000 students within a 15-week period (Figure 2C).
89	
90	We further analysed the impact of lifting masks mandates on changes in Rt, which
91	measures COVID-19 transmission intensity. Rt was estimated using method by Cori et
92	al.'s method with a mean serial interval of 4.4 days (standard deviation 3.0 days) (Alene
93	et al., 2021). Contrary to the original results using incidence rates, we found no
94	significant difference in Rt across district types, except for type 4 district, which showed
95	a slightly higher Rt in the first two weeks after lifting the mask mandates (Figure 2B).
96	There was no association between lifting mask mandates and reductions in Rt (ATT
97	0.04,95% CI, -0.11 to 0.20) throughout the entire post-lifting period (Figure 2D).
98	Moreover, Rt remained below 1 from February to May, indicating a general decline in
99	the epidemic during that time until a new wave of the pandemic in late April. (Figure
100	2B).
101	

Sensitivity analysis yielded consistent results when using longer serial intervals (Bi et
al., 2020; Xu et al., 2020) (Table S1) and weighting difference-in-difference model with
populations (Brantly Callaway, 2022; Callaway & Sant'Anna, 2021) (Table S2). Our
difference-in-difference analysis satisfied the parallel trend assumption and, according

106	to Cowger <i>et al.</i> (2022), other time-varying variables including vaccination rate and
107	community transmission remained stable during the study period.

108

109 **DISCUSSION**

110 We found no evidence that lifting mask mandates in Massachusetts schools significantly

affected COVID-19 transmission rates, which is contrary to the findings reported by

112 Cowger et al. Our findings demonstrate that substantial changes in incidence or case

113 numbers do not necessarily reflect substantial changes in underlying transmission.

Additionally, we found non-sustainable transmission (i.e., Rt < 1) across all school

districts before masks mandates were lifted, suggesting that factors other than lifting

116 mask mandates impacted COVID-19 transmission in these schools, such as community

117 transmission and the implementation of other measures (e.g., extensive testing) (Braga

118 et al., 2022; Falk et al., 2021; Head et al., 2022; Juutinen et al., 2023).

119

120 Our findings highlight the importance of considering transmissibility outcomes when 121 assessing the effectiveness of interventions against disease transmission(Cowger et al., 122 2022). While as counts-based outcomes (e.g., incidence) can serve as proxies for the 123 difficult-to-measure transmission process, it is crucial to note that nonpharmaceutical 124 interventions work by reducing person-to-person transmission, reducing subsequent 125 incidence from what it would have been without the interventions. Due to exponential 126 case growth and delays in disease development (e.g., incubation periods), changes in 127 case counts may exaggerate and lag changes in transmission. Therefore, caution is 128 necessary when interpreting the effects of interventions based on solely on analyses of 129 incidence rates.

130

131	Our study has some limitations. Firstly, we were unable to account for unobserved
132	heterogeneities, such as mask types and compliance with mask mandates. Therefore,
133	our findings reflect the impact of the lifting of masks mandate policies rather than the
134	direct effects of mask-wearing (Gettings et al., 2022; Tupper & Colijn, 2021). Secondly,
135	we only estimated Rt using student cases, and we were unable to account for factors
136	such as transmission between student and staff and external community due to data
137	availability. Consequently, our results may partially capture the within-school
138	transmission dynamics.
139	
140	In summary, we found limited impact of lifting mask mandates on reducing COVID-19
141	transmission in Massachusetts schools in February 2021. Future assessments of the

142 effects of interventions against transmission should consider including transmissibility

143 outcomes.

144 **REFERENCES**

145	1.	Alene, M., Yismaw, L., Assemie, M. A., Ketema, D. B., Gietaneh, W., & Birhan, T. Y.	
146		(2021). Serial interval and incubation period of COVID-19: a systematic review	
147		and meta-analysis. <i>BMC Infect Dis, 21</i> (1), 257. <u>https://doi.org/10.1186/s12879-</u>	
148		<u>021-05950-x</u>	
149	2.	Auger, K. A., Shah, S. S., Richardson, T., Hartley, D., Hall, M., Warniment, A.,	
150		Timmons, K., Bosse, D., Ferris, S. A., Brady, P. W., Schondelmeyer, A. C., &	
151		Thomson, J. E. (2020). Association Between Statewide School Closure and	
152		COVID-19 Incidence and Mortality in the US. Jama, 324(9), 859-870.	
153		https://doi.org/10.1001/jama.2020.14348	
154	3.	Bi, Q., Wu, Y., Mei, S., Ye, C., Zou, X., Zhang, Z., Liu, X., Wei, L., Truelove, S. A., Zhang,	
155		T., Gao, W., Cheng, C., Tang, X., Wu, X., Wu, Y., Sun, B., Huang, S., Sun, Y., Zhang,	
156		J., Feng, T. (2020). Epidemiology and transmission of COVID-19 in 391 cases	
157		and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study.	
158		Lancet Infect Dis, 20(8), 911-919. <u>https://doi.org/10.1016/S1473-</u>	
159		<u>3099(20)30287-5</u>	
160	4.	Boutzoukas, A. E., Zimmerman, K. O., Inkelas, M., Brookhart, M. A., Benjamin, D. K.,	
161		Sr., Butteris, S., Koval, S., DeMuri, G. P., Manuel, V. G., Smith, M. J., McGann, K. A.,	
162		Kalu, I. C., Weber, D. J., Falk, A., Shane, A. L., Schuster, J. E., Goldman, J. L.,	
163		Hickerson, J., Benjamin, V., Benjamin, D. K., Jr. (2022). School Masking Policies	
164		and Secondary SARS-CoV-2 Transmission. <i>Pediatrics</i> , 149(6).	
165		https://doi.org/10.1542/peds.2022-056687	
166	5.	Braga, P. P., Souza, M. S., Oliveira, P. P., Romano, M. C. C., Rocha, G. M., & Gesteira,	
167		E. C. R. (2022). Children wearing face masks to prevent communicable diseases:	

168		scoping review. <i>Rev Paul Pediatr, 41</i> , e2021164. <u>https://doi.org/10.1590/1984-</u>
169		0462/2023/41/2021164
170	6.	Brantly Callaway, P. H. C. S. A. (2022). did: Treatment Effects with Multiple
171		Periods and Groups. In (Version R package version 2.1.2 <u>https://cran.r-</u>
172		project.org/web/packages/did/index.html ed.).
173	7.	Callaway, B., & Sant'Anna, P. H. C. (2021). Difference-in-Differences with multiple
174		time periods. Journal of Econometrics, 225(2), 200-230.
175		https://doi.org/10.1016/j.jeconom.2020.12.001
176	8.	Cowger, T. L., Murray, E. J., Clarke, J., Bassett, M. T., Ojikutu, B. O., Sanchez, S. M.,
177		Linos, N., & Hall, K. T. (2022). Lifting Universal Masking in Schools - Covid-19
178		Incidence among Students and Staff. <i>N Engl J Med</i> , 387(21), 1935-1946.
179		https://doi.org/10.1056/NEJMoa2211029
180	9 <u>.</u>	Falk, A., Benda, A., Falk, P., Steffen, S., Wallace, Z., & Høeg, T. B. (2021). COVID-19
181		Cases and Transmission in 17 K-12 Schools - Wood County, Wisconsin, August
182		31-November 29, 2020. MMWR Morb Mortal Wkly Rep, 70(4), 136-140.
183		https://doi.org/10.15585/mmwr.mm7004e3
184	10	Gettings, J. R., Gold, J. A. W., Kimball, A., Forsberg, K., Scott, C., Uehara, A., Tong, S.,
185		Hast, M., Swanson, M. R., Morris, E., Oraka, E., Almendares, O., Thomas, E. S.,
186		Mehari, L., McCloud, J., Roberts, G., Crosby, D., Balajee, A., Burnett, E.,
187		Vallabhaneni, S. (2022). Severe Acute Respiratory Syndrome Coronavirus 2
188		Transmission in a Georgia School District-United States, December 2020-January
189		2021. Clin Infect Dis, 74(2), 319-326. https://doi.org/10.1093/cid/ciab332
190	11	Head, J. R., Andrejko, K. L., & Remais, J. V. (2022). Model-based assessment of
191		SARS-CoV-2 Delta variant transmission dynamics within partially vaccinated K-

192 12 so	chool populations	Lancet Reg Health Am, 5, 100133.
-----------	-------------------	----------------------------------

- 193 <u>https://doi.org/10.1016/j.lana.2021.100133</u>
- 194 12. Juutinen, A., Sarvikivi, E., Laukkanen-Nevala, P., & Helve, O. (2023). Face mask
- recommendations in schools did not impact COVID-19 incidence among 10-12-
- 196 year-olds in Finland joinpoint regression analysis. *BMC Public Health*, 23(1),
- 197 730. https://doi.org/10.1186/s12889-023-15624-9
- 198 13. Kim, M. C., Bae, S., Kim, J. Y., Park, S. Y., Lim, J. S., Sung, M., & Kim, S. H. (2020).
- 199 Effectiveness of surgical, KF94, and N95 respirator masks in blocking SARS-CoV-
- 200 2: a controlled comparison in 7 patients. *Infect Dis (Lond)*, *52*(12), 908-912.
- 201 https://doi.org/10.1080/23744235.2020.1810858
- 202 14. Nash, R. K., Cori, A., & Nouvellet, P. (2022).
- 203 https://doi.org/10.1101/2022.12.08.22283241
- 204 15. Sharma, S. K., Mishra, M., & Mudgal, S. K. (2020). Efficacy of cloth face mask in
- 205 prevention of novel coronavirus infection transmission: A systematic review and
- 206 meta-analysis. *J Educ Health Promot*, 9, 192.
- 207 https://doi.org/10.4103/jehp.jehp_533_20
- 208 16. Tupper, P., & Colijn, C. (2021). COVID-19 in schools: Mitigating classroom
- clusters in the context of variable transmission. *PLoS Comput Biol*, 17(7),

210 e1009120. <u>https://doi.org/10.1371/journal.pcbi.1009120</u>

- 211 17. Xu, X. K., Liu, X. F., Wu, Y., Ali, S. T., Du, Z., Bosetti, P., Lau, E. H. Y., Cowling, B. J., &
- 212 Wang, L. (2020). Reconstruction of Transmission Pairs for Novel Coronavirus
- 213 Disease 2019 (COVID-19) in Mainland China: Estimation of Superspreading
- Events, Serial Interval, and Hazard of Infection. *Clin Infect Dis*, *71*(12), 3163-3167.
- 215 <u>https://doi.org/10.1093/cid/ciaa790</u>
- 216

217 ACKNOWLEDGMENTS

- 218 This work was financially supported by a grant from the Research Grants Council of the
- Hong Kong Special Administrative Region, China (Project No. T11-705/21-N).

220

221 AUTHOR CONTRIBUTIONS

- All authors meet the ICMJE criteria for authorship. The study was conceived by ML, BY
- and BJC. Data analyses were done by ML. ML and BY wrote the first draft of the
- 224 manuscript, and all authors provided critical review and revision of the text and
- approved the final version.

226

227 COMPETING INTERESTS STATEMENT

- 228 B.J.C consults for AstraZeneca, Fosun Pharma, GlaxoSmithKline, Haleon, Moderna,
- 229 Novavax, Pfizer, Roche, and Sanofi Pasteur. All other authors report no potential
- 230 conflicts of interest.

231 FIGURE LEGENDS

- 232 Figure 1. Hypothetical Demonstration of epidemic dynamic of 2 locations with
- 233 identical Rt.
- 234
- Figure 2. Difference-in-difference (DID) model analyses of COVID-19 incidence
- and effective reproductive number (Rt). (A) Weekly COVID-19 case trend by types of
- 237 school district. (B) Daily COVID-19 Rt estimated from back projected incidence of
- 238 students, stratified by types of school districts. (C) Average treatment effects (ATT) of
- the lifting masks mandates on cumulative incidence in students. (D) Average treatment
- 240 effects (ATT) of the lifting mask mandates on Rt.

