

Figure 1. New cancer (all invasive types combined, all sites)/10⁵ population is plotted against these country CMV seropositivity rates [28]. Inverse relationship over 73 countries [51] (Spearman's $\rho = -0.732$; *p*<0.001), signals a potential, globally pervasive, protection against tumorigenesis afforded by CMV.

Figure 2. Malignant melanoma/10⁵ persons *vs.* country specific CMV seropositivity [28] correlate strongly inversely (Spearman's $\rho = -0.763$; *p*<0.001) across 73 countries [51].

Figure 3. Kidney cancer incidence (10^{5} /year) correlated to the country specific CMV seroprevalence [28]. A strong and inverse correlation across 73 countries [51] (Spearman's $\rho = -0.754$; p < 0.001).

Figure 4. Breast cancer incidence/10⁵ population/year and country specific CMV seropositivity rate [28] spanning 73 countries [51]. A significant inverse (possibly protective) association is suggested by Spearman's $\rho = -0.719$; *p*<0.001.

Figure 5. Incidence of Kaposi's sarcoma (mostly, HIV+ individuals)/10⁵ population/year and the specific country-level rate of CMV seropositivity [28]. Seventy-three countries [51] lack an inverse correlation between variables (Spearman's $\rho = -0.007$; *p*=0.953). This suggests weak or absent protection afforded by a concomitant CMV infection.

1	Title: Cytomegalovirus seropositivity relates inversely to cancer incidences across races and
2	ethnicities: implications for oncoprevention
3	
4	Marko Janković, MD, PhD* ^a , Ognjen Milićević, MD ^b , Milena Todorović-Balint, MD, PhD ^c ,
5	Irena Đunić, MD, PhD ^c , Biljana Mihaljević, MD, PhD ^c , Tanja Jovanović, MD, PhD ^a , Aleksandra
6	Knežević, MD, PhD ^a
7	
8	^a Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine,
9	University of Belgrade, 1 Dr Subotića street, 11000 Belgrade, Republic of Serbia.
10	
11	^b Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 15
12	dr Subotića street, 11000 Belgrade, Republic of Serbia.
13	
14	^c Clinic of Hematology, Faculty of Medicine, University Clinical Centre of Serbia, University of
15	Belgrade, 2 dr Koste Todorovića street, 11000 Belgrade, Republic of Serbia
16	
17	*Corresponding author:
18	
19	Marko Janković, MD, PhD [e-mail: marko.jankovic@med.bg.ac.rs]
20	Institute of Microbiology and Immunology Department of Virology
21	Faculty of Medicine University of Belgrade,
22	1 dr Subotića Street, 11000 Belgrade,
23	Republic of Serbia

2

24 Abstract

25	Background. Race and ethnic disparities in cancer incidence rates and the prevalence of
26	cytomegalovirus (CMV) are known to exist in the United States (U.S.) but also across broad
27	geographic expanses. CMV prevalence seems to inversely contrast tumor incidence rates both in
28	ethnic groups and globally. Is there a biological link between cancer and CMV infection? Most
29	recent clinical results seem to certify it.
30	Methods. Global cancer data were retrieved from the World Health Organization (WHO)
31	database. Incidence of cancer and CMV seroprevalence (73 countries) were subjected to
32	Spearman's correlation test. The Bayesian framework was adopted for CMV seropositivity
33	variables. Relevant data for the U.S. were extracted from publications based on the Surveillance,
34	Epidemiology, and End Results (SEER) registries and the National Health and Nutrition
35	Examination Surveys (NHANES), 1988-2004.
36	Results. An inversely directed coupling between cancer and CMV seropositivity across diverse
37	ecologies and cultural domains suggest a global oncoprotective effect of the CMV (Spearman's ρ
38	= -0.732; p <0.001). Rates of all cancers combined and CMV seropositivity show an opposite
39	association ($p < 0.001$) among the races and foremost U.S. ethnic groups.
40	Conclusion. The racial/ethnic incidence of cancers and CMV seropositivity are inversely
41	proportional both in the U.S. and globally. This would support a view that CMV is a potential
42	driver against tumorigenesis. An absence of CMV infection abrogates protection against
43	malignant clones afforded to an infected host. Abating CMV seroprevalence may relate causally
44	to the buildup of malignancies in U.S. and the West world countries with thriving hygiene and
45	healthcare systems.

46 Keywords: Cancer, cytomegalovirus, oncoprotection, global, United States

47 Importance.

48	Increasing evidence substantiates the potential of cytomegalovirus (CMV) to counteract tumors,
49	particularly in the field of anti-cancer vaccinology, leading to extended periods of survival. This
50	research unveils a robust and inverse correlation between the prevalence of CMV and the
51	occurrence of cancer both within the United States and on a global scale (73 countries), hinting
52	at the ability of CMV to inhibit tumor development. Furthermore, this phenomenon remains
53	consistent across various racial and ethnic groups within the United States and applies to a
54	diverse range of cancer types. A notable pattern emerges: the higher the prevalence of the viral
55	infection, the lower the incidence of tumors within a given country. These findings support
56	existing insights from clinical and experimental investigations, underscoring the notion that this
57	effect becomes apparent at the level of entire nations and populations worldwide.
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	

4

70

71 Introduction

72

Human cytomegalovirus (CMV) is a ubiquitous β -herpesvirus typically causing an asymptomatic 73 to mild infection in healthy children and adults. In the immunocompromised patient and the 74 unprotected fetus CMV can present as a significant cause of morbidity and mortality. After 75 primary contact, the virus persists within the host as a lifelong infection awakening at times from 76 dormancy and leading to reactivation and virion shedding. Over millennia of evolutionary time, 77 78 CMV had interlocked in a complex interplay with the immune system of its human host, with growing evidence pointing to T lymphocytes as being galvanized by CMV and directed against 79 specific cancer cells. Recently, we drew attention to an inversely correlated incidence of human 80 B lymphocyte malignancies and CMV seroprevalence in a single-center clinical setting and in 81 humans across races/ethnicities the world over (Spearman's coefficient $\rho = -0.625$, p < 0.001) 82 [13]. This hinted at a possible oncopreventive faculty of the virus (Fig. 1). Similar findings were 83 described in animal *in vitro* tissue models [6-8] covering several oncological diseases [9-11,12]. 84 This indicates that CMV infection may bestow a capacity on its host to resist carcinogenesis 85 somewhat more effectively than does a normal immunity in an uninfected subject. In effect, 86 CMV and cancer may be profoundly connected. Virus/host interaction has not been investigated 87 in a racial/ethnic background or across the globe. Inquiring into this association we used the 88 89 wealth of data derived from authorized literature based on the U.S. registries and global publications (World Health Association [WHO]). 90

An intriguing disparity in overall health status between Whites, Blacks, and Hispanics
and the CMV seroprevalence patterns by race and ethnicity in the U.S. evades a full explanation

93	by factors of family size, household income level, education, marital status, census region, area				
94	of residence, country of birth or type of medical insurance. Differential exposure to CMV mig				
95	partially explain these incongruities in health status, though [5,14,15].				
96	The U.S. Hispano-Americans (Latinos) have significantly better health and mortality				
97	outcomes than the average population [16], contradicting their low socioeconomic status (SES).				
98	Medical experts have known for some time that Latinos living in the U.S. have on average a				
99	better life expectancy than non-Hispanic Whites. The so-called "Hispanic paradox" was recently				
100	supported by new data from the U.S. Centers for Disease Control and Prevention (CDC) [17-20].				
101	Of note, the "paradox" seems not to hold true for follicular lymphoma (FL) and chronic				
102	lymphocytic leukemia (CLL) [21].				
103	In this work we correlated age-adjusted incidence rates of all primary invasive cancers				
104	combined with the age-adjusted CMV seropositivity estimates among races and minorities in the				
105	U.S. The presentation of the reports used (Table 1) shows that, comparatively, CMV				
106	seropositivity is higher in the U.S. minorities than in non-Hispanic Whites. The significance of				
107	this observation is confirmed by statistical analysis. Moreover, we show that this effect is global,				
108	predominating across nations, societies, and histological types of malignant tumors (Figs. 1-4				
109	and Table 3).				
110					
111	Materials and Methods				
112					
113	Study hypothesis. Our primary outcome of interest is an inverse association between rates of				
114	new cancer and CMV seropositive status the world over and within race/ethnic groups in the				
115	U.S.				

1	1				
	۲		1	Ì	1
ļ	L		ł	ł	1

1	1	C
1	. 1	0

117	Study populations – worldwide data (73 countries). In order to evaluate whether the proposed
118	cancer incidence/CMV seroprevalence association holds true at a global scale, we accessed the
119	World Health Organization Global Cancer Observatory (International Agency for Research on
120	Cancer [IARC]), for data on worldwide cancer statistics. Worldwide annual incidence of new
121	cancers (age-adjusted, both genders, all ages) was used. Country specific seroprevalence of
122	CMV comes from work of Zuhair et al. [28].
123	
124	Study populations – the U.S. We examined a connection between an overall rate of new
125	cancers (combined at all anatomical sites, all ages) among races/ethnic groups in the U.S. and the
126	demographic pervasiveness of CMV seropositivity in these populations.
127	Patients with primary diagnosis of cancer (invasive) evidenced in the Surveillance,
128	Epidemiology, and End Results (SEER) Program database between January 2007 and December
129	2015 were included in the study. The population was categorized into non-Hispanic Whites, non-
130	Hispanic Black, Non-Hispanic Asian/Pacific Islanders (API), Non-Hispanic American
131	Indian/Alaskan Natives (AI/AN), and Hispanics.
132	We collated national information from the SEER registry, an authoritative high-quality
133	resource and error-proofed data source for the burden of cancer among the U.S. populaces. The
134	SEER database is updated yearly. It contains patient demography, the primary site of the tumors,
135	histology, and cancer stage at medical detection time [30,31]. The current study is based upon
136	the reports of meticulous work of researchers on sure and accessible data on cancer rates for the
137	U.S. race/ethnic groups (the Cancer Planet website and publications from the North American
138	Association of Central Cancer Registries or NAACCR and the ACS). Oncologic parameters of

7

139	race/ethnicity groups are defined by the American Joint Committee on Cancer (AJCC). Also,
140	SEER program is the only source for historic population-based incidence and survival data
141	(1975-2018). SEER 22 Incidence provided coarse rates (2000-2019) with the total registries data
142	for all cancers combined, including sex, race, and ethnicity [34-50]. Numerical derivatives based
143	on this data were made available by published reports herein referred to.
144	For data on CMV, we consulted a series of cross-sectional surveys drawn from NHANES
145	collected by the National Center for Health Statistics (NCHS). The reports utilized here are
146	based on the 2003-2004 wave which included CMV latency in the population and recognized
147	consequences of persistent CMV infection on human health [29-31]. We made use of CMV
148	prevalence data from the Third National Health and Nutrition Examination Survey (NHANES),
149	1988–1994. NHANES III was cross-sectional and stratified to allow for heterogeneity,
150	multistage probability sample of civilian non-institutionalized U.S. population aged 2 months to
151	90 years.
152	To obtain current nationally representative estimates of the prevalence of CMV in the
153	U.S., we used NHANES III study data (1988-1994) from Staras et al. [5]. NHANES is a series of
154	cross-sectional surveys supervised and managed by the National Center for Health Statistics
155	(NCHS) of the Centers for Disease Control and prevention CDC [38,39]. Also, we leaned on
156	information and arguments from Bate et al. (Tables 1, 2 and Results section [33]). The overall

age-adjusted prevalence of CMV seropositivity seems not to have changed significantly in the

158 U.S. for the intervals 1988-1994 and 1999-2004 (**Table 1** in [33]).

Also, we used query tools to collect literature related to CMV seroprevalence and cancer burden in the U.S. and elsewhere through MEDLINE, PubMed database search engine [terms 'cytomegalovirus', 'prevalence', 'IgG', 'race/ethnic', 'global burden of cancer', and their

162	synonymous expressions]. Initially, we focused on CMV prevalence data for information
163	regarding sex, race/ethnicity and SES, inversely concordant with a rate of cancer across
164	geographic domains [13].
165	We have drawn on data from the primary literature, recognized reports and authoritative
166	reviews on cancer incidence and CMV seroprevalence rates published heretofore (Table 1, [10]).
167	The collection periods vary, spanning multiple years (see Limitations). We entirely relied on
168	systematic reviews and meta-analyses of the epidemiological burden of CMV in the U.S.
169	extracted from Medline and LILACS (Latin American and Caribbean Health Sciences Literature
170	(10 October, 2020) [2,32,33].
171	
172	Statistical analysis. For the analysis of aggregated data points at the ethnicity level for CMV
173	seropositivity and cancer incidence, we utilized available descriptive statistics to empirically
174	determine the significance of correlation. For the CMV seropositivity variables (proportion p and
175	the number of subjects N), we adopted the Bayesian framework with the assumed uniform U(0,1)
176	prior and binomial Bi(p,N) data distribution yielding a beta Be($p*N+1$, $(1-p)N+1$) posterior
177	distribution. For the cancer incidence variables (estimated incidence and the 95% confidence
178	interval (Henley et al. 2020 [44]) we assumed the maximum likelihood normal distribution; the
179	Bayesian framework was omitted due to the variable methodology of incidence calculation and
180	the assumption of a large number of observed data points. All the variables for all the ethnicity
181	groups were independently simulated from their distributions 10 000 times under the null
182	hypothesis that the data points are uncorrelated, and the Pearson coefficient of correlation was
183	calculated each time. The empirical distribution of the correlation coefficient was estimated from
184	the data giving the mean and 95% confidence interval. The 2-sided significance is calculated

185	from the value of 0 and the significance level of 0.05. The analysis was done with custom scripts
186	and the SciPy package of the Python programming language. Descriptive statistics, including
187	frequencies and percentages were used for defining baseline characteristics of populations.
188	Results are presented as counts, percentages (in parentheses) or median (interquartile 312 range)
189	and frequency distributions depending on data type. Data was organized using Microsoft Excel
190	software 2010 (Microsoft Corporation, Redmond, WA, U.S.). Spearman's correlation coefficient
191	(ρ) served to capture significance of correlation between variables assessed across the globe.
192	Based on the method of covariance, it is a preferable method of measuring the agreement
193	between variables of interest. Also, it provides information on the direction of the relationship.
194	P < 0.05 tested against an artifact of chance.
195	
196	Results
197	
198	The prevalence of CMV seropositivity correlates inversely to cancer incidence rates across a
199	The prevalence of entry scropositivity concludes inversely to cancer incidence rates across a
	broad range of histology and worldwide (Table 3 ; the top 3 malignancies with strongest
200	broad range of histology and worldwide (Table 3 ; the top 3 malignancies with strongest correlations are represented in Figs. 2-4). Correlations are obtained in 30/34 (88.2%) tumors and
200 201	broad range of histology and worldwide (Table 3 ; the top 3 malignancies with strongest correlations are represented in Figs. 2-4). Correlations are obtained in 30/34 (88.2%) tumors and are highly significant over 25/34 (73.5%) histology types. Also, an inverse association attains a
200 201 202	broad range of histology and worldwide (Table 3 ; the top 3 malignancies with strongest correlations are represented in Figs. 2-4). Correlations are obtained in 30/34 (88.2%) tumors and are highly significant over 25/34 (73.5%) histology types. Also, an inverse association attains a significance if annual incidence of new cancers of all histologic types was combined
200 201 202 203	broad range of histology and worldwide (Table 3 ; the top 3 malignancies with strongest correlations are represented in Figs. 2-4). Correlations are obtained in 30/34 (88.2%) tumors and are highly significant over 25/34 (73.5%) histology types. Also, an inverse association attains a significance if annual incidence of new cancers of all histologic types was combined (Spearman's $\rho = -0.732$; $p < 0.001$, Fig. 1). These results favor a possible oncoprotection that
200 201 202 203 204	broad range of histology and worldwide (Table 3 ; the top 3 malignancies with strongest correlations are represented in Figs. 2-4). Correlations are obtained in 30/34 (88.2%) tumors and are highly significant over 25/34 (73.5%) histology types. Also, an inverse association attains a significance if annual incidence of new cancers of all histologic types was combined (Spearman's $\rho = -0.732$; $p < 0.001$, Fig. 1). These results favor a possible oncoprotection that CMV infection provides to its host.
200 201 202 203 204 205	broad range of histology and worldwide (Table 3 ; the top 3 malignancies with strongest correlations are represented in Figs. 2-4). Correlations are obtained in 30/34 (88.2%) tumors and are highly significant over 25/34 (73.5%) histology types. Also, an inverse association attains a significance if annual incidence of new cancers of all histologic types was combined (Spearman's $\rho = -0.732$; $p < 0.001$, Fig. 1). These results favor a possible oncoprotection that CMV infection provides to its host. Conversely, CMV seroprevalence has a significant and co-incremental relation with an
200 201 202 203 204 205 206	broad range of histology and worldwide (Table 3 ; the top 3 malignancies with strongest correlations are represented in Figs. 2-4). Correlations are obtained in 30/34 (88.2%) tumors and are highly significant over 25/34 (73.5%) histology types. Also, an inverse association attains a significance if annual incidence of new cancers of all histologic types was combined (Spearman's $\rho = -0.732$; $p < 0.001$, Fig. 1). These results favor a possible oncoprotection that CMV infection provides to its host. Conversely, CMV seroprevalence has a significant and co-incremental relation with an incidence of malignancies of nasopharynx and the gallbladder, suggesting a potential pro-

10

208	Notably, country-specific prevalence of CMV did not correlate inversely with an overall
209	incidence of Kaposi's sarcoma (Table 3 and Fig. 5 , Spearman's $\rho = -0.007$; $p=0.953$). This is in
210	line with a requirement of an operative T cell-mediated oncolytic response as being critical for
211	the expression a protective capacity of CMV, supporting a hypothesis of specific T cell viral
212	oncoprevention. We propose that a severely disrupted T cell immunity in HIV/AIDS patients,
213	who comprise a vast majority of population with Kaposi's sarcoma, effectively precludes a
214	CMV-associated anti-tumor response.

Table 1 exhibits comparative data on race/ethnic estimates of the incidence of all cancers combined (both genders, all anatomical sites, all ages) in the U.S, and the territorially matching prevalence of CMV seropositivity. The estimate of cancer incidence for Mexico is included as a contrasting population but was discarded from statistical calculations. The aggregated results of studies mentioned therein provide a clear representation of a higher CMV pervasiveness in the U.S. minorities than in non-Hispanic Whites.

Table 2 represents a statistical analysis of the SEER data on racial/ethnic rates of cancer 221 (Henley et al. [44]) and the corresponding prevalence of CMV. Also pointed in **Table 2** is a 222 highly significant and inverse correlation (*p*<0.001; mean: -0.674; SD=0.018; CI=-0.711) 223 224 between the standardized cancer incidence and the CMV seroprevalence in the U.S. An outlying group are the Eskimos (AI/AN), perhaps because of an impaired T cell function which 225 distinguishes this ethnicity from the others [66,67]. Consequently, CMV-specific cytotoxic T cell 226 227 oncolysis in Eskimos is not an efficient suppressor of clonogenic processes (see *Discussion*). The results also support broad evidence (Figs. 1-4) suggesting a tendency of CMV seropositivity to 228 monotonically decrease as SES improves across a range of developed and underdeveloped 229

11

countries. This may explain a higher incidence of malignancies in economically progressivecountries.

232

233 Discussion

234

Cytomegalovirus is wreathed in mystery, a Gordian knot of biological knowledge and 235 understanding [82]. Cytomegalovirus had evolved a peculiar virus-host symbiosis by a taciturn 236 tactic that co-opts or escapes immune pathways in order to arrange its persistence in the host. A 237 strong inverse statistical correlation between the incidence of cancer and CMV seroprevalence 238 covers quite a swath of cancer spectra and territorial ranges. Although correlation does not 239 categorically infer causation, this one may underscore a causal meaning. Besides the benefits of 240 vaccine against CMV [53], it may suggest an impeded carcinogenesis by generating the CMV-241 induced tumoricidal T cells. CMV-based vaccine antagonistic to tumorigenesis would possibly 242 result in a global regression of cancer. Comparing non-Whites to Whites, Cannon et al. [2] 243 evaluated that CMV seroprevalence is consistently 20-30 percent points higher in the former 244 than in the latter (summary PR=1.59, 95% CI=1.57-1.61). Some ethnic groups had CMV 245 seroprevalence ~ 100% (Fig. 4A in [2]). In agreement with the current work, Fowler *et al.* [32] 246 discounted the importance of ethnicity per se as a risk factor for the CMV infection. Similar 247 conclusions were reached by Lantos et al. [54], Rook [55], and Dowd et al. [56,57]. 248 249 Elimination of health disparities as a consequence of racial and ethnic differentials has been earlier recognized as important [47,48,83]. Socioeconomic disparities across race/ethnicity 250 categories impact the level of CMV seroprevalence [83]. These may have biased lower estimates 251 252 of cancer incidence at the time. Rather than the race/ethnic divides of themselves, we propose

12

253 CMV infection as an oncopreventer both of some hematologic malignancies at our clinic and of cancers worldwide [13]. Although CMV prevalence and education level, SES, and household 254 income are associated with race and ethnicity, we speculate here that latent CMV infection is a 255 fundamental cause underlying disparities in cancer incidence among race/ethnic groups in the 256 U.S. and worldwide. The NHANES III data (the U.S. 2011-2012) report CMV prevalence 257 (race/minority) in children 1-5 years of age as 37% among non-Hispanic other/multiracial, 31% 258 among Hispanic, 15.9% among non-Hispanic Black, and 10.6% among non-Hispanic White 259 ethnicities [33]. This data is inversely proportional to the incidence of all cancers (combined) in 260 261 populations of these youths, indicative of a higher risk of cancer in CMV seronegative populations in the U.S. Also, unlike Hispanos, cancer rates in Cubans were comparable to non-262 Hispanic Whites, and Puerto Ricans and Cubans in Florida had rates of some solid cancers 263 264 similar to non-Hispanic Whites despite the rates of these cancers being significantly lower in their countries of origin [22]. High incidence of cancer despite a high prevalence of CMV in the 265 Inuit (Eskimos) may be a consequence of deficient T cell immunity in this ethnic population 266 [23,24]. This is to be expected and, indeed, we found no global correlation between the incidence 267 of Kaposi's sarcoma (mostly diagnosed in HIV-positives with compromised T cell immunity) 268 and the prevalence of CMV (Fig. 5). CMV does not exert protection unless T cell immunity is 269 functional. 270

Immigrants to U.S. experience decreasing incidence rates of cancer of infectious origin (hepatitis B virus, *Helicobacter pylori*, human papillomavirus) which are prevalent in their countries of origin. On the contrary, incidence rates of lung, breast, colorectal and prostate cancer have been on the rise despite remaining relatively low in the host nations [57-59].

275	The statistical analysis indicates an inverse correlation between CMV pervasiveness and
276	the race-specific cancer incidence, a valuable hint at a possible oncoprotective effect of the
277	pathogen. Previously, we speculated that CMV may confer a protection against B cell dyscrasias
278	[13]. For example, there is a highly significant inverse link (Fig. 1 . Spearman's $\rho = -0.754$;
279	p < 0.001) between all invasive cancers combined (both genders, all ages) and the country specific
280	CMV prevalence profile across the mainland and sea-coastal regions of 73 countries (Table 3).
281	We draw attention to a possible protective effect of the CMV infection as an unappreciated
282	factor which may subvert oncogenesis.
283	We sought to grasp a better understanding of fluctuating incidence of new cancers among
284	immigrant and established indigenous populations by consulting relevant reports. We envision
285	that dilution of the prevalence of CMV, due to a progress in economic opportunity and an open
286	access to competent medical patronage, may have resulted in increased cancer rates, indeed the
287	epidemics of neoplasms [60]. Societal development aside, poverty remains a considerable
288	medical concern [30,33,62,72]. Higher prostate and lung cancer rates are reported in established
289	immigrant enclaves from Japan and China in the U.S. than are found in Japan and China,
290	probably because improved SES in the U.S. (i.e. a better hygiene and improved medical care)
291	with a consequent decline of CMV-mediated oncoprotection in the U.S. Also, individuals with
292	low SES have higher antibody titers to CMV [31] and presumably more protection against
293	cancer.
294	Crucially, CMV induces a specific, CMV-determined, T cell mediated antitumor effect in
295	immunocompetent persons but fails in patients with inoperative T cell immune surveillance, like
296	Kaposi sarcoma (Fig. 5). The role of CMV acquisition and the consequent T lymphocyte-
297	specified inhibition of tumorigenesis may prove of importance in pre-empting various

14

malignancies, particularly those that can be detected at an early stage, such as breast and coloncancers.

300	Disaggregation (decomposition) of ethnic data in racial/multiethnic studies of cancer vs.
301	rates of cancer cases combined and the CMV prevalence may, while quite information-rich, also
302	be a source of bias due to unmeasured confounders or mediators [79]. Disaggregation may mask
303	true biological linkages which would be more accented if global bulk of data were analyzed.
304	Hoshiba et al. [61] examined the long-term (1980-1998) dynamics of CMV seroprevalence in
305	pregnant women in Japan. Complement-fixing antibody and specific IgG antibody, as measured
306	in sera, decreased gradually from 93.2% to 66.7%. CMV-IgG seropositive rates were 87.4% in
307	1985, and 75.2% in 1996 to 1997. This provides a separate hint at a possible protective effect of
308	CMV in this population. Of note, the incidence of cancer increased in parallel to decrease of
309	CMV seropositivity in this Japanese population.
310	Most recent clinical research on colorectal [86] and bronchogenic cancer [87] confirm
311	our evidence for the protection against cancer (Table 3) conferred by the CMV infection.
312	
313	Limitations
314	
315	Notable limitations of this work are difficult to lift. A major limitation are the data used from
316	literature and reviews with varying collection periods which span numerous years (Table 1).
317	Disparate time scales occasionally underlie epidemiological studies of CMV in the low-income
318	greater neighborhoods. There, the prevailing cultural settings and areas of higher deprivation
319	(with highest prevalence of CMV infection) frequently overlap confounding the measured
320	estimates (Table 2). Small numbers yield unstable prevalence rates. The roundabouts of more

15

321 disadvantageous neighborhoods, culturally and genetically distinct yet sharing remotely entangled backgrounds, often overlay and may affect accuracy and consistency of the estimates. 322 Race and ethnicity were differently categorized by the investigators. Also, the options were 323 324 defined by study participants. Marked disparity between African Americans and White patients might have resulted from different indication settings for CMV testing and in unknown 325 proportions. Also, there still remains a possibility that, besides the CMV, there could have 326 existed yet another causative tumor-suppressive agent. Consequently, formal adjudication of 327 causality of statistical significance is not allowed by the cross-sectional nature of the data in 328 many studies we used. Still, prospective studies suggest that causality could be at work behind 329 significance of statistical tests; high degree of disparity between Blacks and Whites is unlikely to 330 result solely as an artifact of testing biases. Pronounced variance in cancer incidence in AI/AN 331 332 reported by Henley et al. [44] and Cronin et al. [45] are possibly due to improved financial attainment and hygiene, cleaning, and the privilege of preventive medical care although a drop of 333 CMV prevalence in this populace has not yet been accurately registered. The New Zealand 334 Islanders' CMV seropositivity estimates presented here (Table 1) may crudely parallel those in 335 APIs who live on the U.S. Pacific Island Territories rather than that of API migrants living on the 336 U.S. mainland. The estimates should be considered with circumspection and checked with regard 337 to future vaccination strategies to fight CMV infection [64]. We have to take the results 338 presented here within the context of these limitations. 339

340

341 Conclusion

343	Our work is the first to analyze demography of cancer incidence rates relative to the prevalence
344	of CMV seropositivity both in U.S. race/ethnic groups and worldwide. A biological connection
345	between the ubiquity of CMV and the incidence of neoplasms is predicated by a worldwide
346	correlation between the two. This result may further inspire an oncologic initiative for
347	development of the CMV-based antitumor vaccine constructs that could result in a significant
348	reduction of human cancers the world over. Here, we aimed at just this.
349	
350	
351	
352	
353	
354	
355	
356	
357	
358	
359	
360	
361	
362	
363	
364	
365	

17

366

367 Acknowledgements

- 368 We credit the staff of the SEER and NHANES III who disseminated publicly visible data,
- 369 essential for our analysis, and acknowledge the funding by the Ministry of Science,
- 370 Technological Development and Innovation (MSTDI) of the Republic of Serbia. The funder did
- not play a role in the design of the study; the collection, analysis, and interpretation of the data;
- the writing of the manuscript; and the decision to submit the manuscript for publication.
- 373

374 Authors' contributions

- 375 Conceptualization: MJ, AK, TJ, MT-B.
- 376 Funding acquisition: TJ, BM, MT-B.
- 377 Writing original draft preparation: MJ, AK, IĐ, OM.
- 378 Writing review and editing: MJ, TJ, IĐ, OM, BM.
- 379 Investigation and Methodology: MJ, OM, AK.
- 380 Project administration, Supervision, Resources: TJ, AK, BM, and MT-B.
- 381 All authors read, critically revised, and approved the submission of the final version of the
- 382 manuscript.
- 383

384 Funding

- 385 This work was supported by the Ministry of Science, Technological Development and
- Innovation (MSTDI) of the Republic of Serbia, grant number 200110. Any opinions, findings,
- 387 conclusions or recommendations expressed in this material are those of the authors and do not
- 388 necessarily reflect the views of MSTDI.

389	
390	Data availability statement
391	All Data are available from the corresponding author upon reasonable request.
392	
393	DECLARATIONS
394	
395	Ethics approval and consent to participate
396	Not applicable.
397	
398	Conflict of interest and disclosures
399	The authors declare that research was conducted in the absence of any commercial or financial
400	relationships that could be construed as a potential conflict of interest.
401	
402	
403	
404	
405	
406	
407	
408	
409	
410	
411	

1	n
	ч
-	-

412		
413	Re	ferences:
414	1.	Mocarski E, Shenk T, Griffiths P, Pass RF. Cytomegaloviruses. In: Knipe DM, Howley PM,
415		Eds. Field's Virology, 6th ed. Philadelphia, PA, USA. Wolters Kluwer Lippincott Williams &
416		Wilkins, 2013 :1960-2014.
417		
418	2.	Cannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus prevalence and demographic
419		characteristics associated with infection. Rev Med Virol. 2010; 20:202-213. doi:
420		10:1002/rmv.655. PMID: 20564615.
421		
422	3.	Pass RF, Zhang C, Evans A, et al. Vaccine prevention of maternal cytomegalovirus infection.
423		N Engl J Med. 2009; 360:1191-1199. doi: 10.1056/NEJMoa0804749. PMID: 19297572.
424		
425	4.	Lasry S, Dény P, Asselot C, et al. Interstrain variation in the cytomegalovirus (CMV)
426		glycoprotein B gene sequence among CMV- infected children attending six day care centers.
427		J Infect Dis. 1996; 174:606-609. doi: 10.1093/infdis/174.3.606. PMID: 8769620.
428		
429	5.	Staras SAS, Dollard SC, Radford KW, et al. Seroprevalence of cytomegalovirus infection in
430		the United States, 1988-1994. Clin Infect Dis. 2006; 43:1143-1151. doi:
431		10.1086/508173. PMID: 17029132.
432	6.	Kumar A, Coquard L, Pasquereau S, et al. Tumor control by human cytomegalovirus in a
433		murine model of hepatocellular carcinoma. Mol Ther Oncolytics. 2016; 3:16012. doi:
434		10.1038/mto.2016.12. PMID: 27626063.

43	5
----	---

436	7.	Herbein G, Nehme Zeina. Tumor control by cytomegalovirus: A door open for oncolytic
437		virotherapy? Mol Ther Oncolytics. 2020; 17:1-8. doi: org/10.1016/J.omto.2020.03.004.
438		PMID: 32300639.
439		
440	8.	Massara L, Khairallah C, Yared N, et al. Uncovering the anticancer potential of murine
441		cytomegalovirus and human colon cancer cells. Mol Ther Oncolytics. 2020; 16:250-261. doi:
442		org/10.1016/j.omto.2020.01.007. PMID:32140563.
443		
444	9.	Éboli LPdCB, Tannuri ACA, Tannuri U. Seropositivity for cytomegalovirus and PCR-EBV
445		monitoring: Protective factors for posttransplant lymphoproliferative disorder in pediatric
446		liver transplant. Pediatr Transplant. 2022; 26:e14226. doi: 10.1111/petr.14226. PMID:
447		35037358.
448		
449	10	. Litjens NHR, Wagen Lvd, Kuball J, et al. Potential beneficial effects of cytomegalovirus
450		infection after transplantation. Front Immunol. 2018; 1;9:389. doi:
451		10.3389/fimmu.2018.00389. PMID: 29545802.
452		
453	11	. Yu S-C, Ko K-Y, Teng S-C, et al. A clinicopathological study of cytomegalovirus
454		lymphadenitis and tonsillitis and their association with Epstein-Barr virus. Infect Dis Ther.
455		2021; 10:2661-2675. doi: org. 10.1007/s40121-021-00528-1. PMID: 34623624.
456		

457	12. Bigley AB, Baker FL, Simpson RJ. Cytomegalovirus: an unlikely ally in the fight against
458	blood cancers? Clin Exp Immunol. 2018; 193:265-274. doi: 10.1111/cei.13152. PMID:
459	29737525.
460	
461	13. Janković M, Knežević A, Todorović M, et al. Cytomegalovirus infection may be
462	oncoprotective against neoplasms of B-lymphocyte lineage: single-institution experience and
463	survey of global evidence. Virol J. 2022; 19:155. doi: 10.1186/s12985-022-01884-1. PMID:
464	36171605.
465	
466	14. Kann L, Kinchen SA, Williams BI, et al. Youth risk behavior surveillance – United States,
467	1977. MMWR CDC Surveill Summ. 1998; 47:1-89. PMID: 9719790.
468	
469	15. Halpern CT, Hallfors D, Bauer DJ, et al. Implications of racial and gender differences in
470	patterns of adolescent risk behavior for HIV and other sexually transmitted diseases.
471	Perspect Sex Reprod Health. 2004; 36:239-247. doi: 10.1363/psrh.36.239.04. PMID:
472	15687082.
473	
474	16. Markides K, Coreil J. The health of Hispanics in the southwestern United States: an
475	epidemiologic paradox. Public Health Rep. 1986; 101:253-265. PMID: 3086917.
476	
477	17. Chen H, Wu AH, Wang S, et al. Cancer Mortality Patterns by Birthplace and Generation
478	Status of Mexican Latinos: The Multiethnic Cohort. J Natl Cancer Inst. 2022; 114:959-968.
479	doi: 10.1093/jnci/djac078. PMID: 35404450.

า	h
Z	Z

4	8	0
---	---	---

481	18. Graham C, Metayer C, Morimoto LM, et al. Hispanic Ethnicity Differences in Birth
482	Characteristics, Maternal Birthplace, and Risk of Early-Onset Hodgkin Lymphoma: A
483	Population-Based Case-Control Study. Cancer Epidemiol Biomarkers Prev. 2022; 31:1788-
484	1795. doi: 10.1158-9965.EPI-22-0335. PMID: 35709749.
485	
486	19. Oluwasegun A, Abodurnin F, Nasef KE, et al. IBCL-462 Racial-Ethnicity Gap in Survival
487	among Non-Hodgkin Lymphoma Survivors. Clin Lymphoma Myeloma Leuk. 2022; Suppl. 2:
488	S393. doi: 10.1016/S2152-2650(22)01566-X. PMID: 36164118.
489	
490	20. Diaz Ayllon KE, Mowitz M. The Hispanic Paradox among Texas Newborns. Pediatrics.
491	2019 ; 144 (2_Meeting Abstract): 690. doi: 10.1542/peds.144.2MA7.690.
492	
493	21. Blansky D, Fazzari M, Mantzaris I, et al. Racial and ethnic differences in all-cause mortality
494	among Hispanics diagnosed with follicular lymphoma and chronic lymphocytic leukemia in
495	Bronx, NY. Cancer Causes Control. 2022; 33:137-147. doi: 10.1007/s10552-021-01507-0.
496	PMID: 34677741.
497	
498	22. Pinheiro PS, Sherman RL, Trapido EJ, et al. Cancer incidence in first generation U.S.
499	Hispanics: Cubans, Mexicans, Puerto Ricans, and new Latinos. Cancer Epidemiol
500	Biomarkers Prev. 2009; 18:2162-2169. doi: 10.1158/1055-9965.EPI-09-0329. PMID:
501	19661072.

503	23. Nicolle LE, Minuk GY, Postl B, et al. Cross-sectional seroepidemiologic study of the
504	prevalence of cytomegalovirus and herpes simplex virus infection in a Canadian Inuti
505	(Eskimo) community. Scand J Infect Dis. 1986; 18:19-23. doi:
506	10.3109/00365548609032301. PMID: 3008308.
507	
508	24. Preiksaitis JK, Larke RP, Froese GJ. Comparative seroepidemiology of cytomegalovirus
509	infection in the Canadian Arctic and an urban center. J Med Virol. 1988; 24:299-307. doi:
510	10.1002/jmv.1890240307. PMID: 2835426.
511	
512	25. Geris JM, Spector LG, Pfeiffer RM, et al. Cancer risk associated with cytomegalovirus
513	infection among solid organ transplant recipients in the United States. Cancer. 2022;
514	128:3985-3994. doi: 10.1002/cncr.34462. PMID: 36126024.
515	
516	26. SEER 12 (2000 Census Data). U.S. Bureau of Census 2020, DEC Registrating data (PL 94-
517	171), Tables P1, P2.
518	
519	27. Incidence - North American Association of Central Cancer Registries, ©2020 American
520	Cancer Society, Inc. Surveillance Research.
521	
522	28. Zuhair M, Smit GSA, Wallis G, et al. Estimation of the worldwide seroprevalence of
523	cytomegalovirus: a systematic review and meta-analysis. Rev Med Virol. 2019; 29(3):e2034.
524	doi: 10.1002/rmv.2034. PMID: 30706584.
525	

24

526	29. Simanek AM, Dowd JB, Pawelec G, et al. Seropositivity to cytomegalovirus, inflammation,
527	all-cause and cardiovascular disease-related mortality in the United States. PLoS One. 2011;
528	6(2):e16103. doi: <u>10.1371/journal.pone.0016103</u> . PMID: 21379581.
529	
530	30. Schwaltz HN, Fried PL, Xue, Q-L, et al. Chronic cytomegalovirus infection and
531	inflammation are associated with prevalent frailty in community-dwelling older women. J
532	Am Geriatr Soc. 2005; 53:747-754. doi: 10.111/j1532-5415.2005.53250.x. PMID: 15877548.
533	
534	31. Noppert GA, AielloAE, O'Rand AM, et al. Race/ethnic and educational disparities in the
535	association between pathogen and educational disparities in the association between
536	pathogen burden and laboratory-based cumulative deficit index. J Racial Ethn Health
537	Disparities. 2020; 7:99-108. doi: 10.1007/s40615-019-00638-0. PMID: 31642044.
538	
539	32. Fowler K, Mucha J, Neuman M, et al. A systematic literature review of the global
540	seroprevalence of cytomegalovirus: possible implications for treatment, screening, and
541	vaccine development. BMC Public Health. 2022; 22:1659 (15pp). doi: 10.1186/s12889-022-
542	13971-7. PMID: 36050659.
543	
544	33. Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: The
545	national Health and Nutritional Examination Surveys, 1988-2004. Clin Infect Dis. 2010; 50:
546	1439-1447. doi: 10.1086/652438. PMID: 20426575.

548	34. National Center for Health Statistic	s, Plan and Operation of the	e Third National Health and
-----	--	------------------------------	-----------------------------

- 549 Nutrition Examination Survey 1988-94. Series 1: programs and collection procedures. Vital
- 550 Health Stat I **1994**; 32:1-407. Available at:
- 551 <u>http://www.cdc.gov/nchs/data/series/sr_01/sr01_032.pdf.</u>
- 552
- 553 35. Centers for Disease Control and Prevention (CDC), National Center for Health Statistics
- (NCHS). National Health and Nutrition Examination Survey: Documentation 2009,
- 555 <u>http://www.cdc.gov/nchs/nhanes/vardemo_b.htm</u>. Accessed 12 April 2010 by Bate *et al.*
- **2010** [33].
- 557
- 558 36. U. S. Census Bureau. Census 2000 Summary File 2, Table PCT27, United States,
- 559 Washington, DC: U.S. Census Bureau, **2008**.
- 560
- 561 37. Centers for Disease Control and Prevention, Analytic and Reporting Guidelines. The Third
- 562 National Health and Nutrition Examination Survey. NHANES III (1988-1994). Hyattsville,
- 563 MD: National Center for Health Statistics, **1996**. Available at:
- 564 <u>https://www.cdc.gov/nchs/data/nhanes/nhanes3/nh3gui.pdf.</u>
- 565
- 566 38. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database:
- 567 Incidence-SEER 18 Registries Research Data + Hurricane Katrina Impacted Louisiana
- 568 *Cases, November 2020 Submission (2000-2018), Katrina/Rita Population Adjustment.*
- 569 Linked to County Attributes-Total U.S., 1969-2018 Counties. National Cancer Institute,

570	Division of Cancer Control and Population Sciences, Surveillance Research Program,
571	Surveillance System Branch; 2021.
572	
573	39. Surveillance Research Program. SEER*Explorer: an interactive website for SEER cancer
574	statistics. National Cancer Institute; 2021. Accessed April 15, 2021.
575	seer.cancer.gov/explorer/
576	
577	40. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database:
578	Incidence-SEER Research Limited-Field Data with Delay-Adjustment, 21 Registries,
579	Malignant Only, November 2020 Submission (2000-2018)-Linked to County Attributes-Time
580	Dependent (1990-2018) Income/Rurality; 1969-2019 Counties. National Cancer Institute,
581	Division of Cancer Control and population Sciences, Surveillance Research Program; 2021.
582	
583	
584	41. Surveillance, Epidemiology, and End results (SEER) Program. SEER*Stat Database: North
585	American Association of Central Cancer Registries (NAACCR) Incidence Data-Cancer in
586	North America Analytic File, 1995-2018, With Race/Ethnicity; Custom File With County;
587	American Cancer Society Facts and Figures Projection Project (which includes data from
588	the Center for Disease Control and Prevention's national Program of Cancer Registries, the
589	Canadian Council of Cancer Registries' Provincial and territorial Registries, and the
590	national Cancer Institute's SEER Registries, certified by the NAACCR as meeting high-
591	quality incidence data standards for the specified time periods). National Cancer Institute,
592	Division of Cancer Control and Population Sciences, Surveillance Research Program; 2021.

5	9	3
-	-	-

594	42. Sherman R, Firth R, Charlton M, et al. Eds. Cancer in North America: 2014-2018. Volume
595	Two: Registry-Specific Cancer Incidence in the United States and Canada. North American
596	Association of Central Cancer registries, Inc; 2021.
597	
598	43. Zhu J, Davidson M, Leinoven M, et al. Prevalence and persistence of antibodies to herpes
599	viruses, Chlamydia pneumonia, and Helicobacter pylori in Alaskan Eskimos: the
600	GOCADAN Study. Clin Microbiol Infect 2006; 12:118-122. doi: 10.1111/j.1469-
601	0691.2005.01319.x. PMID: 16441448.
602	
603	44. Henley SJ, Ward EM, Scott S, et al. Annual Report to the Nation on the status of Cancer,
604	Part I: national Cancer Statistics. Cancer 2020; 126:2225-2249. doi: 10.1002/cncr.32802.
605	PMID: 32162336.
606	
607	45. Cronin KA, Scott S, Firth AU, et al. Annual report to the nation on the status of cancer, part
608	1: National cancer statistics. Cancer 2022; 128:4251-4284. doi: 10.1002/cncr.34479. PMID:
609	36301149.
610	
611	46. Miller BA, Chu KC, Hankey BF, et al. Cancer incidence and mortality patterns among
612	specific Asian and pacific Islander populations in the U. S. [Appnxs. 1&2, Tabs. 2-4],
613	Cancer Causes Control 2008; 19:227-256. doi: 10.1007/s10662-007-9088-3. PMID:
614	18066673.
615	

616	47. U. S. Department of Health and Human Services (HHS) (2000). Healthy people 2010 , 2 nd ed.
617	With understanding and improving health and objectives for improving health, 2 vols. U. S.
618	Government Printing Office, Washington.
619	
620	48. Rubicz R, Zhu J, Laston S, et al. Statistical genetic analysis of serological measures of
621	common, chronic, infections in Alaska Native participants in the GOCADAN study. Genet
622	Epidemiol 2013; 37:751-757. doi: 10.1002/gepi.21745. PMID: 23798484.
623	
624	49. U. S. Department of Health and Human Services (HHS), National Institutes of Health 2007.
625	Strategic research plan to reduce and ultimately eliminate health disparities, vol. 1. Available
626	from http://ncmhd.nih.gov/our_programs/strategic/index.asp. Accessed Sept, 2007.
627	
628	50. National Cancer Institute SEER Limited-Use Data. Available from URL:
629	http://www.seer.cancer.gov/data/. Tables I-20 and I-21, Figures I-13 and I-14.
630	
631	51. Sung H, Ferley J, Siegel, RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of
632	Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer J Clin
633	2021 ; 71:209-249. doi: 10.3322/caac.21660. PMID: 33538338.
634	
635	52. Conde-Glez C, Lazcano-Ponce E, Rojas R, et al. Seroprevalences of varicella-zoster virus,
636	herpes simplex virus and cytomegalovirus in a cross-sectional study in Mexico. Vaccine
637	2013; 31:5067-5074. doi: 10.1016/j/vaccine.2013.08.077. PMID: 24021305.
638	

639	53. Furman D, Jojic V, Sharma S, et al. Cytomegalovirus infection enhances the immune
640	response to influenza. Sci. Transl. Md. 2015; 7:281ra43. doi: 10.1126/scitranslmed.aaa2293
641	PMID: 25834109.
642	
643	54. Lantos PM, Hoffman K, Permar SR, et al. Geographic Disparities in Cytomegalovirus
644	Infection During Pregnancy. Racial Ethn Health Disparities. 2018; 5:782-786. doi:
645	10.1007/s40616-017-0423-4. PMID: 28840519.
646	
647	55. Rook GAW. Evolution, the immune system, and the health consequences of socioeconomic
648	inequality. mSystems. 2022; 7: e0143821. doi: 10.1128/msystems.01438-21. PMID:
649	35285679.
650	
651	56. Dowd JB, Palermo TM, Aiello AE. Family poverty is associated with cytomegalovirus
652	antibody titers in U.S. children. Health Psychol. 2012; 31:5-10. doi: 10.1037/a0025337.
653	PMID: 21895.
654	
655	57. Dowd JB, Aiello AE, Alley DE. Socioeconomic disparities in the seroprevalence of
656	cytomegalovirus infection in the U.S. population: NHANES III. Epidemiol Infect. 2009;
657	137:58-65. doi: 10.1017/S0950268808000551. PMID: 18413004.
658	
659	58. Lin L, Noone A-M, Gomez SL, et al. Cancer incidence trends among native Hawaiians and
660	other pacific Islanders in the United States, 1990-2008. J Natl Cancer Inst. 2013; 105:1086
661	1095. doi:10.1093/jnci/djt156. PMID: 23878354.

ົ	٢	٦
-	ι	1
-		-

C	C	7
О	σ	Z

663	59. Gomez SL, Noone A-M, Lichtensztajn DY, et al. Cancer incidence trends among Asian-
664	American population in the United States, 1990-2008. J Natl Cancer Inst. 2013; 105:1096-
665	1110. doi: 10.1093/jnci/djt157. PMID: 23878350.
666	
667	60. Kolonel L, Wilkens LR, Migrant Studies. In: Eds. Schottenfeld D, Fraumeni JF Jr. Cancer
668	Epidemiology and Prevention, 3rd ed. New York: Oxford University Press. 2006; 189-201.
669	
670	61. Bosetti C, Levi F, Ferlay J, et al. Incidence and mortality from non-Hodgkin Lymphoma in
671	Europe: The end of epidemics? Int J Cancer. 2008; 123:1917-1923. doi:
672	doi.org/10.1002/ijc.23722. PMID: 18688859.
673	
674	62. Hoshiba T, Asamoto A, Yabuki Y. Decreasing seropositivity of cytomegalovirus of pregnant
675	women in Japan. [Article in Japanese] Nihon Rinsho. 1998; 56:193-196. PMID: 9465689.
676	
677	63. Plotkin SA. Preventing infection by human cytomegalovirus. J Infect Dis. (Suppl. 1 Article).
678	2020 ; 221:S 123-127. doi:10.1093/infdis/jiz448. PMID: 32134484.
679	
680	64. Griffiths P, Plotkin S, Mocarski E, et al. Desirability and feasibility of a vaccine against
681	cytomegalovirus. Vaccine. 2013; 31 (Suppl. 2): B197-B203. doi:
682	10.1016/j.vaccine.2012.10.074. PMID: 23598482.
683	

684	65. Espey DK, Wu X-C, Swan J, et al. Annual report to the nation on the status of Cancer, 1975-
685	2004, Featuring Cancer in American Indians and Alaska Natives. Cancer 2007; 110:2119-
686	2152. doi:10.1002/cncr.23044. PMID: 17939129.
687	
688	66. Nikitin Yu P, Boichenko NS, Astakhova TI, et al. Cancer in Russian Inuit. Acta Oncologica.
689	1996 ; 35:617-619. doi:10.3109/02841869609096995. PMID: 8813070.
690	
691	67. Jenkins AL, Gyorkos TW, Culman KN, et al. An overview of factors influencing the health
692	of Canadian Inuit infants, Int J Circumpolar Health. 2003; 62: 17-39,
693	doi:10.3402/ijch.v62i1.17526. PMID: 12725339.
694	
695	68. Goplani SV, Janiz AE, Martinez SA, et al. Trends in cancer incidence among American
696	Indians and Non-Hispanic Whites in the United States, 1999-2015. Epidemiology. 2020;
697	31:205-215. doi: 10.1097/EDE.000000000001140. PMID: 31764279.
698	
699	69. Langer-Gould A, Wu J, Lucas R, et al. Epstein-Barr virus, cytomegalovirus, and multiple
700	sclerosis susceptibility. A Multiethnic Study. Neurology. 2017; 89:1330-1337. doi:
701	10.1212/WNL.00000000004412. PMID: 28855411.
702	
703	70. Melkonian SC, Jim MA, Haverkamp D, et al. Disparities in cancer incidence and trends
704	among American Indians and Alaska Natives in the United States, 2010-2015. Cancer
705	Epidemiol Biomarkers Prev. 2019; 28:1604-1611. doi: 10.1058/1055-9965.EPI-19-0288.
706	PMID: 31575554.

h	2
3	Z

7	0	7
	v	

708	71. Leung J, Kennedy JL, Haberling DL, et al. Congenital CMV-Coded Diagnosis Among
709	American Indian and Alaska Native Infants in the United States, 2000-2017. J Immigr Minor
710	Health. 2020;22(5):1101-1104. doi:10.1007/s10903-020-01024-3
711	
712	72. Lanzieri TM, Kruszon-Moran D, Amin MM, et al. Seroprevalence of cytomegalovirus
713	among children 1 to 5 years of age in the United States from the National Health and
714	Nutrition Examination Survey of 2022 to 2012. Clin Vaccine Immunol. 2015; 22:245-247.
715	doi: 10.1128/CVI.00697-14. PMID: 25520150.
716	
717	73. Kelly JJ, Lanier AP, Alberts S, et al. Differences in cancer incidence among Indians in
718	Alaska and New Mexico and U.S. Whites, 1993-2002. Cancer Epidemiol Biomarkers Prev.
719	2006 ; 15:1515-1519. doi: 10.1058/1055-9965.EPI-05-0454. PMID: 16896042.
720	
721	74. US Census Bureau. The American community – Pacific Islanders 2004. American
722	community survey reports. http:// www. census.gov/prod/2007pubs/acs-06.pdf. Accessed
723	September 1, 2012 .
724	
725	75. National Cancer Institute, Surveillance Epidemiology and End Result.
726	http://seer.cancer.gov/about. Accessed September 1, 2012.
727	
728	76. Haverkamp D, Melkonian SC, Jim MA. Growing disparity in the incidence of colorectal
729	cancer among non-Hispanic American Indian and Alaska native populations – United States,

730	2013-2017. Cancer Epidemiol Biomarkers Prev. 2021; 30:1799-1806. doi: 10.1158/1055-
731	9965.EPI-21-0343. PMID:34341050.
732	
733	77. Wiggins CL, Espey DK, Wingo PA, et al. Cancer among American Indians and Alaska
734	Natives in the United States, 1999-2004. Cancer Supplement. 2008; 113:1142-1152. doi:
735	10.1002/cncr.23734. PMID: 18720375.
736	
737	78. Badami KG, McQuilkan Bickerwstaffe S, Wells JE, et al. Cytomegalovirus seroprevalence
738	and 'cytomegalovirus-safe' seropositive blood donors. Epidemiol Infect 2009; 137:1776-
739	1780. doi: 10.1017/90950268809990094. PMID: 19480727.
740	
741	79. Zamora SM, Pinheiro PS, Lin Gomez S, et al. Disaggregating Hispanic American cancer
742	mortality burden by detailed ethnicity. Cancer Epidemiol Biomarkers Prev. 2019; 28:1353-
743	1363. doi: 10.1158/1055-9965. PMID: 31147314.
744	
745	80. Swan J, Edwards BK. Cancer rates among American Indians and Alaska Natives. Cancer.
746	2003 ; 98:1262-1277. doi: 10.1002/cncr.11633. PMID: 12973851.
747	
748	81. Crocombe RG (2007). Asia in the Pacific Islands: Replacing the West. (p.13) Suva IPS
749	Publications, University of the South Pacific. Institute of Pacific Studies. ISBN 978 982 02
750	<u>0388 4</u> .
751	

752	82. Goodrum F. Human cytomegalovirus latency: approaching the Gordian Knot. Annu Rev
753	Virol. 2016; 3:333-337. doi:10.1146/annurev-virology-110615-042422. PMID: 27501258.
754	
755	83. Griffiths P, Babunian C, Ashby D. The demographic characteristics of pregnant women
756	infected with cytomegalovirus. Int J Epidemiol. 1985; 14:447-452. doi: 10.1093/ije/14.3.447.
757	PMID: 2997052.
758	
759	84. Becker TM, Magder L, Harrison HR, et al. The epidemiology of infection with the human
760	herpesviruses in Navajo children. Am J Epidemiol. 1988; 127:1071-1078. doi:
761	10.1093/oxfordjournals.aje.a114883. PMID: 2833854.
762	
763	85. Sorem KA. Cancer incidence in Zuni Indians of New Mexico. Yale J Biol Med. 1985; 58:
764	489-496. PMID: 4090535.
765	
766	86. Nagel B, Frankel L, Ardeljan A, Cardeiro M, Rashid S, Takabe K, Rashid OM. The
767	Association of Human Cytomegalovirus Infection and Colorectal Cancer: A Clinical
768	Analysis. World J Oncol. 2023;14(2):119-124. doi: 10.14740/wjon1565. Epub 2023 Mar 24.
769	PMID: 37188037.
770	
771	87. Rashid S, Ardeljan A, Frankel LR, Cardeiro M, Kim E, Nagel BM, Takabe K, Rashid O.
772	Human Cytomegalovirus (CMV) Infection Associated With Decreased Risk of Bronchogenic
773	Carcinoma: Understanding How a Previous CMV Infection Leads to an Enhanced Immune
774	Response Against Malignancy. Cureus. 2023;15(4):e37265. doi: 10.7759/cureus.37265. PMID:
775	37162767.

35

776	Legends to tables and figures:
777	
778	Table 1. Race/ethnicity-specific epidemiology of new cancer cases [SEER 12 (2015-2019) +
779	NPCR age-adjusted participants ^a] and cytomegalovirus seroprevalence [NHANES III]
780	(accessible data are selected for comparative purposes).
781	
782	Table 2. Age-standardized, delay-adjusted incidence rates ^a for the most common cancers ^b (all
783	anatomical sites combined, both genders, all ages) among the racial/ethnic groups ^c (2012-2016) ^d
784	in the United States compared to their CMV seropositivity (%).
785	
786	Table 3. Correlation between worldwide incidence rate (100,000 population/year) of individual
787	malignant tumors across 73 countries [WHO's GLOBOCAN database (51)] and the country
788	specific prevalence of CMV seropositivity rates (28).
789	
790	Figure 1. New cancer (all invasive types combined, all sites)/ 10^5 country specific population
791	plotted against CMV seropositivity rates [28]. Inverse relationship over 73 countries [51]
792	(Spearman's ρ = -0.732; p <0.001), signals a globally pervasive protection against tumorigenesis
793	driven by CMV.
794	
795	Figure 2. Malignant melanoma/ 10^5 population vs. country specific prevalence of CMV
796	seropositivity [28] correlate strongly inversely (Spearman's ρ = -0.763; p <0.001) across 73
797	countries [51].

799	Figure 3. Kidney cancer/ 10^5 population and the country specific CMV seroprevalence [28] are
800	strongly and inversely connected across 73 countries [51] (Spearman's $\rho = -0.754$; p<0.001).
801	
802	Figure 4. Incidence of breast cancer/ 10^5 population and the country specific CMV seropositivity
803	rate [28] spanning 73 continent-wide countries [51]. An inverse (protective) association is
804	suggested by Spearman's ρ = -0.719; p <0.001.
805	
806	Figure 5. Incidence of Kaposi's sarcoma (mostly in HIV+ people)/ 10^5 population and the
807	specific country-level rate of CMV seropositivity [28] covering 73 countries [51] are not
808	correlated (Spearman's ρ = -0.007; p =0.953).
809	
810	
811	
812	
813	
814	
815	
816	
817	
818	
819	
820	
821	

Table 1. Race/ethnicity-specific epidemiology of new cancer cases [SEER 12 (2015-2019) + NPCR age-adjusted participants ^a]								
and cytomegalovirus seroprevalence [NHANES III].								
	New Cancer Rates (all invasive types and stages of cancers)				Cytomegalovirus prevalence			
Characteristics	Cancers Combined (95% CI)	Study date (period)	N^{b}	Citations (registries and first authors)	% (95% CI)	Study date (period)	Ν	Citations (registries, first author)
Demographic division (by gender, race/ethnicity)								
				Men, all ages				
All races/ethnicities	476.5 (475.0-478.0)	2019	5 541	SEER+NPCR, ACS, Inc. SR	54 ^c (52-56)	1988- 1994	6 843	NHANES III, Bate (2010) [33]
(mei: mspune)	487.9 (487.4-488.4)	2020	99% popul.	Henley (2020) [44]				
Demographic stratification								
	469.3 (468.0-502.7)	2019	8 412	ACS, Inc. SR, SEER+ NPCR	51.2 (49.2-53.2)	1988- 1994	8 212	NHANES III, Staras (2006) [5]
White (Non-Hispanic) ^d	587	1998-		Miller (2008) [46]				

	(585.6-588.5)	2002						
	444.5 (502.4-503.6)	2012- 2016	99% popul.	Henley (2020) [44]				
Black (non-Hispanic)	412.7 (449.6-455.8)	2019	6 784	SEER+NPCR ACS, Inc. SR	75.8 (74.4-76.9)	1988- 1994	6 228	NHANES III Staras (2006) [5]
	547.6 (545.8-549.3)	2012- 2016	99% popul.	Henley (2020) [44]				
	285.4	2008- 2017	25 693	USCS	93.3 (90.1-95.7)	2003- 2006	342	Badami (2009) [78] ^e
Asian/Pacific Islander, API (Non-Hispanic)	303.7 (301.0-306.5)	1990- 2014	16 062	13 SEER, Miller (2008) [46]				
	296.5 (294.7-298.3)	2012- 2016	99% popul.	Henley (2020) [44]				
A ' T 1' /A1 1	412.3 (395.4-429.7)	2019	1 584	SEER+NPCRACS, Inc. SR	89 (85-93)	2005- 2006	274	Zhu (2006) [43]
American Indian/Alaska Native, AI/AN (Non- Hispanic)	259			Swan (2003) [80]	>80	~12-yr apart	338	Rubicz (2013) [48]
	420.0 412.6-427.5)	2012- 2016	99% popul.	Henley (2020) [44]				
Hispanic (any race) ^f	350.0 (347.9-355.2)	2019	6 296	SEER+NPCR ACS, Inc. SR	77.6 (75.8-79.4)	1988- 1994	4 921	NHANES III, Bate (2010) [33]
	377.8 (376.4-379.2)	2012- 2016	99% popul.	Henley (2020) [44]				

				GLOBOCAN	83 (mean	1980-	262 enid	Zuhair (2019) [28]		
United Mexican States ^g	139.7	2020	37 412	IARC database	%)	2016	studies	Zunun (2017) [20]		
(Mexico)				[WHO] (2021) [51]	,					
					91.3	2000-	29 epid.	Fowler (2022) [32]		
						2020	studies			
							• • • • • •	~ 1 ~ 1		
					90.7	2010	$20\ 000^{\circ}$	Conde-Glez		
					(88.4-93.0)			[(2013)[52]		
Women, all ages										
		• • • • •				1000				
A 11	416.4	2000-	7 237	SEER 2015-	64	1988-	7 695	NHANES III, Bate		
All races/ethnicities	(415.0-417.7)	2019		2019+NPCK,	(01-00)	1994		(2010) [33]		
(mei. mispanie)				ACS, IIC. SK						
	421.4	2012-	99%	Henley (2020) [44]						
	(421.1-421.8)	2016	popul.							
Demographic stratification	n									
							Ι			
	445.0	2000-	8 2 1 2	SEER 2015-	51	1988-	6 2 9 6	NHANES III.		
	(443.2-446.8)	2019	0 212	2019+NPCR,	(49-53)	1994	0 29 0	Staras (2006) [5]		
White (Non-Hispanic)				ACS, Inc. SR	, , , , , , , , , , , , , , , , , , ,					
	444.5	2012-	99%	Henley (2020) [44]						
	(444.0-445.0)	2016	popul.							
	405 9	2000-	2.9×10^5	SEER 2015-	70.6	1988-	6 2 2 8	NHANES III		
	(402.0-409.8)	2019	2.9810	2019+NPCR,	(68.5-72.8)	1994	0 220	Staras (2006) [5]		
Black (Non-Hispanic)		-		ACS, Inc. SR		-				
	412.8	2012-	99%	Henley (2020) [44]						

	(411.6-414.1)	2016	popul.					
API (Non-Hispanic)	312.6 (308.9-316.4)	2000- 2003	1.2x10 ⁵	SEER 2015- 2019+NPCR, ACS, Inc. SR, Miller (2008) [46]	NR	2003- 2006	NR	Badami (2009) [65]
	295.7 (294.1-297.3)	2012- 2016	99% popul.	Henley (2020) [44]				
AI/AN (Non-Hispanic)	414.9 (392.0-438.8)	2000- 2019	6 260	SEER 2000- 2003+NPCR, ACS, Inc. SR	93.5 (3.0±1.1)	2005- 2006	336	Zhu (2006) [43]
four leading AI/AN cancers	230	1999- 2015	61 461	CDC, Goplani (2020) [68]	>80	~12-yr apart	463	Rubicz (2013) [48]
AI/AN (non-Hispanic)	391.9 (385.8-398.2)	2012- 2016	99% popul.	Henley (2020) [44]				
Hispanic (any race)	346.3 (343.4-349.3)	2000- 2019	>5x10 ⁴	SEER 2000- 2003+NPCR, ACS, Inc. SR	72.7	2011- 2014	136	Langer-Gould (2017) [69]
	333.6 (332.5-334.8)	2012- 2016	99% popul.	Henley (2020) [44]	77.6 (75.8-79.4)	1988- 1994	4 921	Bate (2010) [33]
United Mexican States ^g (Mexico)	142.4	2020	43 281	GLOBOCAN, IARC database [WHO] (2021) [51]	83 (mean, %)	1980- 2016	262 epid. studies	Zuhair (2019) [28]
				/	90.1	2006	20 000	Conde-Glez (2013) [52]

All cancers combined (both genders, all ages)								
All races/ethnicities	440.1 (439.1-441.0)	2000- 2019	12 778	SEER 2000- 2003+NPCR, ACS, Inc. SR	48	2000- 2020	29 epid. studies	Fowler (2022) [32]
(incl. Hispanic)	447.9 (447.6-448.2)	2012- 2016	99% popul.	Henley (2020) [44]	58.9 (57.1-60.4)	1988- 1994	21 639	NHANES III, Staras (2006) [5]
Demographic stratification	1		-					
White (Non-Hispanic) (referent)	469.3 (468.0-470.6)	2000- 2019	2.7x10 ⁶	SEER 2000- 2003+NPCR, ACS, Inc. SR	46.35	1988- 1994	8 212	NHANES III Staras (2006) [5]
(referency)	467.5 (447.6-448.2)	2012- 2016	99% popul.	Henley (2020) [44]				
Black (Non-Hispanic)	452.7 (449.6-455.8)	2000- 2019	4.2x10 ⁵	SEER 2000- 2003+NPCR, ACS, Inc. SR	75.8 (74.4-76.9)	1988- 1994	6 228	NHANES III Staras (2006) [5]
	466.9 (465.8-467.9)	2012- 2016	99% popul.	Henley (2020) [44]				
API (Non-Hispanic)	303.7 (301.0-306.5)	2000- 2019	2.7x10 ⁵	SEER 2000- 2003+NPCR, ACS, Inc. SR	93.3 (90.1-95.7)	2003- 2008	342	Badami (2009) [78]
	293.6 (292.5-294.8)	2012- 2016	99% popul.	Henley (2020) [44]				

Rubicz (2013) [48]
737
4 921 NHANES III,
Bate (2010) [33]
20 000 Conde-Glez
(2013) [52]
262 Zuhair (2019) [28]
studies
4 2(

822

823 ^a Sources of data: Surveillance, Epidemiology, and End Result SEER*Stat Database (2001-2019) – United States Department of

824 Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute and National Program of

825 Cancer Registries (NPCR). Based on the 2021 submission. The U.S. Population Data File information is used in meticulous

826 calculation of integrated SEER and NPCR incidence of cancer by authors of the publications cited herein. Rates are annually averaged

827	per 10 ⁵ population for all anatomic sites and age-standardized to the year 2000 U.S. standard (Census Bureau by the direct method)
828	population (19 age groups - Census P25-1103). Puerto Rico data were excluded. Created by state cancerprofiles.cancer.gov (2022).
829 830 831	^b N, sample size, study reports or counts.
832	^c Significance was set at $p < 0.05$ (associated with the Student <i>t</i> test comparing pairwise difference between CMV prevalence (%) and
833	annual incident cancer rate). Confidence intervals (CI) were available only for some prevalence rates. For significance see Tab. 2 and
834	Statistical Analysis section.
835 836 837	^d Data based on NHIA. Individuals from Hawaii, Seattle, and Alaska Native Registries are excluded (SEER 2003).
838	^e We utilized CMV prevalence estimates for New Zealand 'CMV safe' Pacific Islander blood donors [78]. This was done because,
839	being ancestrally and biologically linked and sharing similar heritage and migration history over the last 5,000 years (as supported by
840	linguistics and anthropology [81]), CMV serology status of the American/Asian Pacific Islanders may be fairly comparable to that of
841	New Zealand/Pacific Islander population. CMV seropositivity of New Zealand Asian blood donors was 77.6% (95% CI: 79.4-81.8).
842 843 844	^f Persons of Hispanic ethnicity can be of any race or subpopulation race combinations. 'Hispanic' and 'Latina/o' are used interchangeably to refer to Latin Americans and/or Spanish-speakers. Analysis of Hispanics should be disaggregated across Hispanic
845	ethnic groups to better understand CMV burden among diverse Hispanic populaces.
846	
847	^g United Mexican States (Mexico) data was introduced as a convenient contrast, a single point excluded from calculations. The most
848	sizeable portion of Hispanics in U.S. is of Mexican descent. The cancer incidence rate per 10 ⁵ persons and age-adjusted to the IARC
849	world standard population is ~140 (95%CI not reported). Central and South American (Latin American) populations also have the
850	lowest overall age-adjusted cancer mortality rates per 10 ⁵ population (man: 91.19 [95% CI: 89.09-93.29]; women: 69.72 [95% CI:

68.42-71.01]) [69]. These populations also have the highest prevalence of CMV seropositivity (80-95%) [33] which underscores
inverse association, shielding from cancer by CMV seropositivity.

853

^h Additional references used in this work, including mostly API and AI/AN: [72-76,64-66], are included for readers who might wish to
 undertake more precise calculations.

856

Notes: Gender by race/ethnicity was modelled by adjusting for age, birthplace, household income level, insurance, household education, and crowding index by Bate *et al.* (2010) [33]. Cancer incidence rates and seroprevalence of CMV data must be viewed cautiously, because of broad geographic cover of the study populations and racial misclassification which differed somewhat over time. Hence quite an amount of biases exists in numerical figures standing for the crude rate estimates chosen. Other weaknesses of the estimates of racial/ethnic disease in data herein used have been previously recognized by Miller *et al.* [46] and other researches (see refs. 42-47 cited in [46]). We relied on their work in the current exploration.

863

865

Table 2. Age-standardized, dela	ay-adjusted incider	nce rates ^a for com	mon cancers ^b (all	
anatomical sites combined, both	genders, all ages)	among the racial/	ethnic groups ^c (2012-	
2016) ^d in the United States comp	pared to population	n CMV seropositiv	vities (%).	
Cancer incidence rate (95% CI) by	Prevalence of	of CMV seropositivity	
race/ethnicity		by race/ethnicity		
		(%)	N	
All races	447.0	50	10 770	

(447.6, 448.2)

Demographic stratification (in descending rank order)

Non-Hispanic White	467.5	46	8 212
	(467.1, 467.8)		
Non-Hispanic Black	466.9	76	6 228
	(465.8, 467.9)		
Non-Hispanic AI/AN	401.4	92	1 410
(PRCDA)	(396.7, 406.1)		
Hispanic	348.9	78	4 921
	(348.0, 349.7)		
Non-Hispanic API	293.6	93	342
	(292.5, 294.8)		
United States of Mexico ^e	140.4	89	20 000
(Mexico)	(NR)		

867

868

869 Abbreviations: AI/AN, American Indian/Alaska Native; API, Asian/Pacific Islander; CI,

870 confidence interval; PRCDA, Indian Health Services Purchased/Referred Care Delivery Area *n*,

sample size (unweighted), NR, not reported.

872 Sources of data: Henley et al. (2020) [44], Cronin et al. 2022 [45], GLOBOCAN, 2020

873 (Estimated incidence rate of cancer for Mexico came from national mortality estimates by

modelling, using mortality/incidence ratios derived from cancer registry data in neighboring

countries) but see **Table 1**; Cannon *et al.* (2010) [2], Staras *et al.* (2006), Bate *et al.* (2010) [33],

and Conde-Glez *et al.* [52] but please see **Table 1**.

^aRates are per 100 000 individuals, adjusted for potential delays in reporting and age-adjusted to

the 2000 U.S. standard population (19 age groups; U.S. Bureau of the Census. Current

Population Reports, Publication 25-1130. U.S. Government Printing Office, 2000 [Census P25-

880 1130]).

^bCancer incidence rates are age-adjusted for 2012 to 2016 for all racial/ethnic groups combined.

882 More than 15 cancers may appear for men and women to include the top cancers in each

883 racial/ethnic group.

^cRacial/ethnic groups are mutually exclusive. Data for non-Hispanic AI/AN are restricted to

885 PRCDA counties (including Minnesota).

^dAreas in the United States with high-quality incidence data are included and listed in Table 1 in
Henley *et al.* (2020) [44].

- ^eMexico, provided for the contrast only, was excluded from statistical evaluation of association 888 between incidence of cancer and CMV seroprevalence. 889 *Note:* there is a highly significant inverse association between cancer rates and the corresponding 890 prevalence of CMV seropositivity among the race/ethnic groups in the U.S. (p < 0.001; see, 891 892 Statistical Analysis). Annualized cancer incidence rates (men only, all sites, all ages) among AIs/ANs vary widely (almost 4-fold in the 1980-ties). They were dramatically lower in the 893 Southwest, New Mexico Indians (Navajo, Apache, and Pueblo), 276.6; N=1,103, and Alaska 894 Indians, 668.1; N=547 [73], and also much lower than in Non-Hispanic Whites of New Mexico 895 896 [85]. 897 898 899 900 901 902 903
- 904

Table 3. Worldwide incidence rates (100,000 population/year) of individual malignanciesacross 73 countries [WHO's GLOBOCAN database (51)] correlated to country specificprevalence of CMV seropositivity rates (28).

Tumor/localization	Spearman's	n valua	Inverse
1 umor/localization	ρ	<i>p</i> -value	correlation (+/)
Melanoma (skin)	-0.763	0.001	+
Kidney	-0.754	0.001	+
All cancers	-0.732	0.001	+
All cancers (excluding non-melanoma skin	-0.726	0.001	+
cancer)			
Breast	-0.719	0.001	+

Testis	-0.711	0.001	+
Non-melanoma (skin)	-0.692	0.001	+
Colorectum	-0.671	0.001	+
Vulva	-0.665	0.001	+
Prostate	-0.663	0.001	+
Corpus uteri	-0.656	0.001	+
Oropharynx	-0.651	0.001	+
Pancreas	-0.633	0.001	+
Multiple myeloma	-0.633	0.001	+
Leukemia	-0.632	0.001	+
Hodgkin lymphoma	-0.618	0.001	+
Non-Hodgkin lymphoma	-0.617	0.001	+
Mesothelioma	-0.574	0.001	+
Lip, oral cavity	-0.551	0.001	+
Lung	-0.548	0.001	+
Brain/CNS	-0.541	0.001	+
Thyroid	-0.532	0.001	+
Bladder	-0.519	0.001	+
Ovary	-0.461	0.001	+
Penis	-0.432	0.001	+
Hypopharynx	-0.377	0.001	+
Salivary glands	-0.35	0.002	+
Gallbladder	0.316	0.006	
Nasopharynx	0.266	0.023	
Vagina	-0.224	0.056	+
Larynx	-0.165	0.164	+
Esophagus	-0.149	0.208	+
Cervix uteri	0.118	0.319	
Stomach	-0.085	0.473	+
Kaposi's sarcoma	-0.007	0.953	+

49

Liver	0.007	0.951	
-------	-------	-------	--

905

- 906 *Notes:* Significant inverse correlation, implying a possible prevention of tumorigenesis due to
- primary CMV infection the world over, is marked by +; the apparent lack of this association (i.e.
- 908 absence of CMV-mediated anti-cancer protection) is denoted by --.
- 909 Most recent clinical studies confirm negative (i.e., protective) correlation between CMV
- 910 infection and both colorectal [86] and bronchogenic cancer [87].
- 911 For global correlations, between an aggregated cancer incidence per distinct country and
- the country's specific CMV seropositivity rate, please see Figure 1.
- 913