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Abstract 
Background: Atopic dermatitis (AD) is a chronic skin condition that millions of 
people around the world live with each day. Performing research studies into 
identifying the causes and treatment for this disease has great potential to provide 
benefit for these individuals. However, AD clinical trial recruitment is a non-trivial 
task due to variance in diagnostic precision and phenotypic definitions leveraged by 
different clinicians as well as time spent finding, recruiting, and enrolling patients 
by clinicians to become study subjects. Thus, there is a need for automatic and 
effective patient phenotyping for cohort recruitment.  
Objective: Our study aims to present an approach for identifying patients whose 
electronic health records suggest that they may have AD.  
Methods: We created a vectorized representation of each patient and trained 
various supervised machine learning methods to classify when a patient has AD. 
Each patient is represented by a vector of either probabilities or binary values 
where each value indicates whether they meet a different criteria for AD diagnosis.  
Results:  The most accurate AD classifier performed with a class-balanced accuracy 
of 0.8036, a precision of 0.8400, and a recall of 0.7500 when using XGBoost 
(Extreme Gradient Boosting).  
Conclusions: Creating an automated approach for identifying patient cohorts has 
the potential to accelerate, standardize, and automate the process of patient 
recruitment for AD studies; therefore, reducing clinician burden and informing 
knowledge discovery of better treatment options for AD.  
Keywords: patient phenotyping; atopic dermatitis; machine learning; natural 
language processing 
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Introduction 

Background 
Atopic dermatitis (AD) is a common skin disease with a population 

prevalence of approximately 30% [1]. It is often diagnosed in early childhood, but 
onset can occur at any age [2–5]. Symptoms of AD include inflamed, red, irritated, 
and itchy skin and can cause significant physical and emotional distress.  AD is often 
associated with other allergic illnesses including asthma, seasonal allergies, and 
food allergies [2,3,5–7].  

AD is thought to be associated with skin barrier dysfunction and immune 
dysregulation [5]. AD has also been associated with genetic variation as well as 
environmental factors [5]. Classic treatment for AD has included the use of 
moisturizers, topical steroids, and other topical anti-inflammatory agents [8]. 
However, in the past few years, there have been significant treatment advances, 
which include systemic agents that alter immune function such as dupilumab. 
Therefore, due to the widespread nature of AD, the need for improved knowledge of 
the natural history of AD, the need to understand the efficacy of new treatments, 
and the need to develop new treatments, there is an urgent need to understand the 
clinical course of individuals with AD.  However, identifying appropriate cohorts of 
patients for medical studies can be difficult and time consuming. Because AD is so 
common as well as diagnosed and managed by many different clinicians in varying 
healthcare settings, a potential source population would be patients from a health 
system’s electronic health records (EHRs) [9]. Investigators often ascertain a 
patient’s illness using International Classification of Disease (ICD) hospital billing 
codes as recorded during routine office visits. However, it has been previously 
demonstrated that reliance on ICD codes is not an accurate method for the 
ascertainment of AD study cohorts [9,10]. Furthermore, epidemiologic studies have 
used different methods and algorithms including the UK Working Party (UKWP) 
diagnostic criteria and the Hanifin and Rajka (HR) criteria [11,12]. Investigators 
attempting to conduct clinical trials and observational studies have also relied on 
manual, large-scale chart review, a process that is inefficient, slow, and tedious [9]. 
This motivates the need for a standard method to accurately, automatically, and 
efficiently identify potential patient cohorts from their text medical records via 
natural language processing (NLP) and machine learning (ML) techniques.   

Prior Work 
Previously, researchers have aimed to phenotype patients with AD using EHR 

data. In particular, Gustafson et al. trained a logistic regression model with lasso 
regularization to identify cases of AD from the Northwestern Medical Enterprise 
Data Warehouse (NMEDW) which contained both structured data (ICD-9/ICD-10 
codes, medication prescriptions, and lab results), as well as unstructured data 
(clinician notes from patient encounters) [10]. A gold standard diagnosis was 
assigned to each patient in their dataset by two rheumatologists following a chart 
review when using the UK Working Party (UKWP) criteria, and (alternatively) when 
using the Hanifin and Rajka (HR) criteria.  
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Although similar, our work differs in the following ways: 1) we survey a wide 
range of supervised machine learning algorithms as opposed to only using lasso 
regularized logistic regression, 2) we use transformer embeddings of sentences to 
represent information in each patient’s records and aggregate these embeddings 
with MLP networks to create a patient vector representation for patient 
phenotyping, and 3) we performed an ablation study of processing methods to 
compare the impact on performance in using a probability-based vs binary label of 
whether each patient meets various AD diagnostic criteria when creating a vector to 
represent each patient for input to our final AD patient phenotyping algorithms.  

Contributions 
 The primary contributions of our paper are as follows:  

● We introduce and validate a rules-based approach for aggregating 
information from patient electronic health record (EHR) data to generate 
binary-valued patient vectors that are used with standard ML algorithms for 
patient phenotyping  

● We introduce and validate a transformer-based approach for aggregating 
information and patient phenotyping by using BERT models (BERT Base 
Uncased and BioClinical BERT) to generate patient vectors of probabilities, 
which are used with standard ML algorithms for patient phenotyping.  

● We compare the aforementioned approaches to 1) discern whether a 
transformer model pretrained on clinical text can provide performance 
benefits over a transformer model not pretrained on clinical text, and to 2) 
discern whether a transformer-based approach for aggregating information 
could outperform a rules-based approach for aggregating information.  

● We demonstrate that multi-layer perceptron (MLP) networks can be used 
with BERT sentence embeddings to identify which sentences in patient 
records are relevant to the diagnosis of atopic dermatitis. These MLP 
networks can then be used during clinician chart review to highlight 
sentences that are relevant to diagnosis and therefore accelerate the process 
of chart review during clinical trial recruitment.  
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Methods 

Overview 
To predict whether a patient may qualify as a subject for an AD study based 

on their electronic health record, we first assigned patients in our dataset to either 
the training or testing sets. Then, for each patient, we aggregated the text from their 
EHR and constructed a vector representation of clinical features indicative of AD 
according to the UKWP criteria. Lastly, we leveraged our vectorized patient 
representations to train several machine learning classifiers to predict whether each 
patient has AD. In the following sections, we detail this process.  

Dataset Creation 
We initially sampled 2,000 patients and their clinical records from Epic 

Clarity, Penn Medicine’s EHR database. We selected Penn Medicine patients who 
were diagnosed with a subset of AD-related ICD codes [9]. Of the 2,000 sampled 
patients, we identified 1,926 patients who had clinical notes for processing. We then 
de-identified these patient records according to the Safe Harbor method using 
PHIlter [13]. Each patient in the dataset was also manually reviewed and labeled 
according to the UK Working Party (UKWP) diagnostic criteria for AD. According to 
the UKWP criteria, in order to qualify as having AD, a patient must have an itchy 
skin condition along with 3 or more of the following: a history of flexural 
involvement, a history of asthma or hay fever, a history of dry skin, an onset of rash 
under the age of 2 years, or a visible flexural dermatitis. Our dataset was validated 
by two clinicians (a board-certified dermatologist (DJM) and a medical fellow (RF)), 
resulting in 137 patients with AD and 1,789 patients without AD.  
 
Figure 1. Waterfall diagram of cohort  
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Training and Testing Split 
 We first created our training set. Due to the heavy class imbalance in our 
dataset, we decided to create a balanced training set to prevent biasing the model 
towards either AD or non-AD patients. In particular, we created the training set by 
assigning 80% of the 137 patients with AD to our training set, and under sampling 
from the non-AD patients to match the number of patients with AD. The remaining 
20% of the 137 patients were assigned to both of our testing sets. This resulted in a 
training set that had 109 patients with AD, and 109 patients without AD.  
 Next, we created two testing sets. The first testing set was class-balanced and 
was intended to show how our patient classification model can generalize to unseen 
samples if the class distribution was kept the same. The second testing set was 
class-imbalanced (30% of patients with AD and 70% of patients without AD), and 
was intended to show how our patient classification model can perform when the 
class-distribution of the dataset matches the prevalence of AD in the United States.  

We created the first (balanced) testing set by including the 20% (previously 
reserved for testing) of the 137 patients with AD, and combining them with an equal 
number of patients without AD who have not been used during training. This 
resulted in a (balanced) testing set that had 28 patients with AD and 28 patients 
without AD.  

Furthermore, we created the second (unbalanced) testing set by including 
the same 20% of the 137 patients with AD, but instead combining them with a 
greater number of patients without AD to match the 30% prevalence rate of AD 
found in the US [1]. This resulted in a (unbalanced) testing set with 28 patients who 
have AD and 63 patients who don’t have AD.  

We chose not to create a separate hyperparameter tuning set and instead 
applied cross validation for hyperparameter tuning on the training set due to the 
data scarce setting of our experiments. 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.08.25.23294636doi: medRxiv preprint 

https://paperpile.com/c/4Z28Ka/xy45v
https://doi.org/10.1101/2023.08.25.23294636
http://creativecommons.org/licenses/by/4.0/


Vector Representation for AD Classification  
Next, we created a vector representation for each patient. We performed 3 

experiments to compare different methods of creating each patient’s vector 
representation (Figure 2).  
 
Figure 2. AD Phenotyping pipeline across all 3 experiments 

 

Description of Patient Vector Representation 
Each patient’s vector representation is 8 elements long, where each element 

of the vector is representative of whether the patient fulfills a different AD diagnosis 
criteria based on the UKWP criteria as well as clinician feedback (Table 1). Across all 
three experiments, each element in the patient vector corresponds to a distinct 
classification task; however in experiments 1 and 2 each element is a probability, 
and in experiment 3 each element is a binary value.  

In experiments 1 and 2, elements 1 through 8 of each patient’s vector 
represent the highest probability that any sentence in the patient’s EHR mentions 1) 
AD or synonyms of AD, 2) keywords that suggest hay fever allergies, 3) keywords 
that suggest atopic allergies, 4) keywords that suggest eczema or rashes, 5) 
keywords that indicate dry or itchy skin, 6) keywords denoting non-asthma 
medications, 7) keywords suggesting the presence of asthma, and 8) keywords 
indicating the use of asthma medications.  

In experiment 3, instead of each element representing a probability, each 
element represents a binary value of whether there was at least 1 sentence in the 
corresponding patient record suggesting the presence of the corresponding AD 
indicator.  
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Table 1. Meaning of each patient vector element 
Element AD Indicator (Diagnostic Criteria) 

1 EHR directly mentions patient has AD 
2 Patient has hay fever allergies 
3 Patient has atopic allergies 
4 Patient has eczema or rashes 
5 Patient has dry or itchy skin 
6 Patient uses non-asthma medications related to treating AD 
7 Patient has asthma 
8 Patient uses asthma medications 

 
In the first two experiments, each patient’s vector elements represent 

probabilities (ranging from 0 to 1). Each probability value is derived from a distinct 
MLP classifier. Experiments 1 and 2 were performed to compare the use of two 
BERT models (BERT Base Uncased [14,15] in experiment 1, and BioClinical BERT 
[16,17] in experiment 2) for creating sentence embeddings used to train multi-layer 
perceptron (MLP) networks (or alternatively, sentence classifiers). A separate MLP 
network is trained for each element of the patient vector. Each MLP network is 
trained to distinguish sentences in one of the 8 AD indicator categories from 
sentences in all other categories. Furthermore, medSpacy was used to split 
documents into sentences and label each sentence with different categories. After 
each sentence classifier is trained, embeddings of all sentences in each patient’s full 
EHR are passed through each sentence classifier and an aggregation function (max 
operator) is used to assign a value to each element of each patient’s vector. Our goal 
in experiments 1 and 2, was to test the hypothesis that a BERT model pretrained on 
clinical text (BioClinical BERT) could outperform a BERT model trained on non-
clinical text (BERT Base Uncased).  

In experiment 3, each patient’s vector elements are binary (either 0 or 1). 
Each element corresponds to a diagnostic criteria and represents whether 
medSpacy was able to identify at least 1 sentence in the patient’s record with a 
keyword and affirming context that suggests the patient meets the corresponding 
diagnostic criteria. Our goal was to conduct an ablation study to test the hypothesis 
that an AD patient classifier leveraging BERT embeddings to create the patient 
vector representation will better discern whether a patient has AD than an AD 
patient classifier without BERT embeddings.  

Preprocessing for Experiments 1-3 
Before each experiment, we applied the same preprocessing steps to assign 

one or more labels to each sentence in our corpus of documents in both our training 
and testing sets. Each sentence can be labeled as applying to one, multiple, or none 
of the 8 AD indicators previously defined.  

For each of the 8 diagnostic criteria, we first created a list of keywords and 
phrases (for each vector element) that suggested the presence of the corresponding 
diagnostic criteria. Next, we used medSpacy with the ConText algorithm to split 
each document into sentences and categorize each sentence [18]. Using medSpacy 
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allows us to obtain sentences that suggest the presence of each of the 8 diagnostic 
criteria due to medSpacy’s use of regex and rules-based keyword matching. 
Furthermore, medSpacy’s implementation of the ConText algorithm allows us to 
discern between sentences that affirm from negated assertions. We define negated 
sentences for each AD indicator as sentences where the indicator is ruled out, 
sentences where the indicator is experienced by someone other than the patient, 
and sentences where the existence of the indicator is hypothetical [19–22].  

After assigning one or more categorical labels to each sentence with 
medSpacy, we then performed 3 different experiments to create a vectorized 
representation of each patient.  

In tables 2 and 3 below, we include some statistics on the dataset obtained 
after preprocessing.  

As shown in table 2, AD patients have approximately twice as many 
sentences as non-AD patients. The average number of documents and sentences are 
the same (within patients who have AD, and similarly within non-AD patients) 
between BERT Base Uncased and BioClinical BERT experiments because these 
values are only dependent on medSpacy’s preprocessing of documents. 
Furthermore, using BioClinical BERT to tokenize sentences tends to yield more 
tokens (on average) per patient and per document. We hypothesize this is because 
the BioClinical BERT tokenizer is able to recognize more clinical terms and therefore 
yields more tokens for the same sentence than using the tokenizer from BERT Base 
Uncased.  
 
Table 2. Differences in number of documents, sentences, and tokens between AD 
and non-AD patients 

 AD Patient AD Patient Non-AD 
Patient 

Non-AD 
Patient 

 BERT Uncased BioClinical 
BERT 

BERT Uncased BioClinical 
BERT 

Avg # docs 
(per patient) 

23.44 23.44 7.99 7.99 

Avg # 
sentences (per 
patient) 

392.99 392.99 193.69 193.69 

Avg # tokens 
(per patient) 

16035.39 17054.11 7241.02 7674.35 

Avg # 
sentences (per 
doc) 

16.77 16.77 24.25 24.25 

Avg # tokens 
(per doc) 

684.16 727.63 906.45 960.69 

Avg # tokens 
(per sentence) 

40.80 43.40 37.38 39.62 
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As shown in table 3, sentences in category 5 (relating to dry or itchy skin) tend to 
have the most tokens, whereas sentences in category 6 (relating to the use of non-
asthma medications related to treating AD) tend to have the least number of tokens. 
We hypothesize that this is because categories where the average number of tokens 
per sentence is greater tend to correspond to more general categories where many 
terms and sentences could apply, whereas categories where the average number of 
tokens per sentence is lower tend to correspond to more specific categories thus 
yielding a lower average number of tokens per sentence. Additionally, similarly to 
before, we can see that using BioClinical BERT tends to result in a greater number of 
tokens per sentence than using BERT Base Uncased for the same sentence.  
 
Table 3. Mean number of tokens for sentences identified in each category 

 BERT Uncased (Mean # 
tokens per sentence) 

BioClinical BERT (Mean # 
tokens per sentence) 

Category 1 99.49 106.16 
Category 2 81.18 92.41 
Category 3 79.20 82.07 
Category 4 83.74 92.55 
Category 5 106.64 112.58 
Category 6 74.93 80.17 
Category 7 92.85 109.40 
Category 8 76.13 83.57 
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Experiments 1 and 2 – Patient Vector Construction with BERT Embeddings  
In experiments 1 and 2, we first used the sentences medSpacy identified in 

each category to create class-balanced training and testing sets for each MLP 
network classifier, as shown in table 4. The same training and testing set was used 
for both experiment 1 (BioClinical BERT) and experiment 2 (BERT Base Uncased).  
 
Table 4. Training and testing dataset size for each classifier  

Classifier # of training samples # of testing samples 
1 2766 862 
2 1302 392 
3 532 168 
4 9822 2454 
5 1466 354 
6 9114 2316 
7 1596 520 
8  4764 1070 
 
Next, we used pretrained BERT models to generate embeddings of the 

sentences in each classifier’s training and testing set. We incorporated pretrained 
BERT models because these models have been trained on a much larger corpus than 
our existing dataset, and BERT provides a context sensitive embedding of text which 
other techniques such as bag of words don’t provide. Furthermore, we used BERT 
Base Uncased in experiment 1, and Alsentzer et. al’s BioClinical BERT in experiment 
2 because we wanted to quantify how much of a difference in performance that 
using a model pretrained on clinical text can provide over a model that has not been 
pretrained on clinical text.  

Using these embeddings, we trained a multi-layer perceptron (MLP) network 
to distinguish sentence embeddings in each category from sentence embeddings 
that aren’t in the corresponding category. Each of our MLP’s were trained with the 
following architecture: a fully connected input layer of shape 768 by 100, followed 
by a ReLU (Rectified Linear Unit) activation, further followed by a fully connected 
output layer of shape 100 by 2. We trained each of our MLP’s for 10 epochs with the 
cross-entropy loss function, the stochastic gradient descent (SGD) optimizer, a 
learning rate of 0.001, and a momentum value of 0.9. The final layer of each MLP can 
then be used to obtain the probability that any given sentence embedding comes 
from the category for which the MLP is being trained by passing the logits of the 
final layer to the softmax function.  
 We used the Rectified Linear Unit activation function as defined below, 
where x is the input to the ReLU function:  

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 
 We also used the softmax function as defined below, where e is the standard 
exponential function, �⃗�𝑖is element at index i of the K element long input vector �⃗�.  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�⃗�)𝑖 =  
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝐾
𝑖=1
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We chose to embed our sentences once with pretrained BERT models, and 
then feed these saved embeddings to our MLP networks as opposed to adding a 
classification head (a linear layer) to the end of our pretrained BERT models. 
Although doing so only allows us to fine tune the weights in our MLP network (as 
opposed to also fine tuning the weights BERT uses to embed the sentences), doing 
so allows us to iterate over different experiments more quickly and with less 
computational power. In particular, we are able to 1) avoid the large computational 
expense of gradient calculations during backpropagation for all 12 layers of 
transformers used by BERT when fine tuning the model, 2) avoid the computational 
expense of repeatedly generating the same embeddings from BERT multiple times 
(if we chose to freeze the weights of BERT and only fine tune an added classification 
head/linear layer), and 3) iterate more efficiently over different hyperparameter 
combinations across different experiments with our MLP networks.  

 
Figure 3. Patient vector representations of AD indicators in experiments 1 and 2  

 
After training a separate MLP network for each of the 8 categories, we 

generated a vector representation for each patient where each of the 8 vector 
elements represents the highest probability that any given sentence in the patient 
record affirms the presence of the corresponding AD indicator. We accomplished 
this by iterating through all sentences in each patient’s full EHR and passing the 
sentence embedding through each of our 8 trained MLP networks to obtain 8 
probabilities for each sentence corresponding to the probability that the sentence 
affirms each of the 8 AD indicators we previously selected. Then, for each patient 
and for each AD indicator, we kept the highest probability that any given sentence in 
the patient’s record affirms the presence of the AD indicator.  
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Experiment 3 – Patient Vector Construction without BERT Embeddings 
In experiment 3, we generated each patient’s vector representation by 

assigning a 1 to each element of the patient vector if medSpacy with the ConText 
algorithm identified at least 1 sentence in the patient’s record that affirms or 
suggests the presence of the AD indicator for which the vector element corresponds 
to. Experiment 3 was conducted as an ablation study to quantify the performance 
benefit (if at all) of using contextual BERT text embeddings to generate probability 
scores that the patient meets various AD indicators.  
 
Figure 4. Patient vector representations of AD indicators in experiment 3 
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AD Phenotyping with Vector Representations  
In all three experiments, after generating a vector representation for each 

patient, we collated each patient vector representation with the corresponding label 
our clinicians assigned the patient when validating the dataset. Then, we fed the 
vector patient representation and corresponding patient label through a variety of 
classification algorithms. These include logistic regression, support vector machines 
(SVM), decision trees, random forests, K nearest neighbors (KNN), Extreme Gradient 
Boosting (XGBoost), and Adaptive Boosting (AdaBoost). During training for each of 
the previously mentioned classifiers, we used 5-fold cross validation to determine 
the best set of hyperparameters to use (as opposed to creating a separate validation 
set) due to the data scarce setting of our experiments. We then used the selected 
hyperparameters to train each algorithm on the entire training set and evaluated 
performance on the unbalanced and balanced testing sets. In addition to using the 
previously mentioned classifiers, we also used the stacking algorithm provided by 
scikit-learn to obtain an ensemble prediction from the different classifiers [23]. To 
quantify performance, we calculated the accuracy, precision, recall, F1-score, 
negative predictive value (NPV), and specificity of each algorithm on both testing 
sets.  
 We define accuracy, precision, and recall as follows, where TP is the number 
of true positives, TN is the number of true negatives, FP is the number of false 
positives, and FN is the number of false negatives:  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 Additionally, we define the F1-score, NPV, and specificity as follows:  

𝐹1 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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Results 

Performance of MLP Networks  
In this section, we compare the performance of several MLP classifiers in 

distinguishing sentences relevant to diagnosis of AD. This corresponds to the “Train 
separate MLP network (sentence classifier)” box in Figure 2.  

As part of our AD Phenotyping pipeline, we trained various MLP networks to 
classify when a given sentence embedding indicates the presence of an AD indicator, 
and we compared performance of BioClinical BERT embeddings to BERT Base 
Uncased embeddings when training these MLP networks. In both cases, the 
classifier with the highest accuracy was the classifier for category 1 (sentences with 
direct mentions of AD). The classifiers with the two lowest accuracies were either 
the classifier for category 5 (sentences with mentions of dry or itchy skin) or the 
classifier for category 7 (sentences with mentions of asthma) for both the use of 
BioClinical BERT embeddings and the use of BERT Base Uncased embeddings. 
However, the accuracy in classifier 7 was lower when using BERT Base Uncased 
embeddings than when using BioClinical BERT embeddings.   
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 In experiment 1, the accuracies across AD indicator classifiers ranged from 
0.7373 (classifier 5) to 0.9002 (classifier 1) as shown in table 5 below.  
 
Table 5. Accuracy of different multi-layer perceptron networks in discerning 
sentences by AD indicator categories using BioClinical BERT sentence embeddings  

Classifier AD Indicator Accuracy 
1 Direct mention of AD 0.9002 
2 Mention of hay fever allergies 0.8954 
3 Mention of atopic allergies 0.8214 
4 Mention of eczema or rash 0.8284 
5 Mention of dry or itchy skin 0.7373 
6 Mention of non-asthma medications 0.8204 
7 Mention of asthma 0.7712 
8  Mention of asthma medications 0.8299 

 
In experiment 2, the accuracies across AD indicator classifiers ranged from 

0.7269 (classifier 7) to 0.9153 (classifier 1) as shown in table 6 below.  
 
Table 6. Accuracy of different multi-layer perceptron networks in discerning 
sentences by AD indicator categories using BERT Base Uncased sentence 
embeddings  

Classifier AD Indicator Accuracy 
1 Direct mention of AD 0.9153 
2 Mention of hay fever allergies 0.7730 
3 Mention of atopic allergies 0.7976 
4 Mention of eczema or rash 0.8439 
5 Mention of dry or itchy skin 0.7288 
6 Mention of non-asthma medications 0.8096 
7 Mention of asthma 0.7269 
8  Mention of asthma medications 0.8738 
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AD Phenotyping with Patient Vector Representations  
In this section, we compare performance in patient classification when using 

different methods for creating patient vector representations. This encompasses all 
three experiments and corresponds to the “Use vector patient representations to 
classify whether patient has AD” box in Figure 2.  

In experiment 1, we leveraged BioClinical BERT sentence embeddings to 
train various MLP networks to discern sentence embeddings in different AD 
indicator categories. Then, we applied these trained MLP networks (sentence 
classifiers) along with an aggregation function (max operator) to assign values to 
each element of each patient’s vector representation. Lastly, we used each patient’s 
vector representation with their validated label to train various ML algorithms. We 
evaluated on both a balanced and unbalanced testing set.  

As shown in table 7, the accuracy on the balanced testing set ranges from 
0.5893 (Decision Tree) to 0.7321 (Logistic Regression and SVM).  
 

Table 7: AD Phenotyping Performance on Balanced Testing Set in Experiment 1 
(BioClinical BERT) 

Model Accuracy Precision Recall F1 NPV Specificity 

Logistic Regression 0.7321 0.7241 0.7500 0.7368 0.7407 0.7500 

SVM 0.7321 0.7826 0.6429 0.7059 0.6970 0.7857 

Decision Tree 0.5893 0.6316 0.4286 0.5106 0.5676 0.7500 

Random Forest 0.6964 0.7037 0.6786 0.6909 0.6897 0.8214 

KNN 0.6786 0.7273 0.5714 0.6400 0.6471 0.7857 

XGBoost 0.6071 0.6154 0.5714 0.5926 0.6000 0.8571 

AdaBoost 0.6429 0.6538 0.6071 0.6296 0.6333 0.7857 

Stacking Classifier 0.6964 0.7391 0.6071 0.6667 0.6667 0.7500 

 
 As shown in table 8, the range of accuracies on the unbalanced testing set is 
slightly lower, ranging from 0.5824 (Decision Tree) to 0.7253 (Stacking Classifier).  
 
Table 8: AD Phenotyping Performance on Unbalanced Testing Set in Experiment 1 
(BioClinical BERT) 

Model Accuracy Precision Recall F1 NPV Specificity 

Logistic Regression 0.6813 0.4884 0.7500 0.5915 0.8542 0.6984 

SVM 0.6923 0.5000 0.6429 0.5625 0.8181 0.7302 

Decision Tree 0.5824 0.3438 0.3929 0.3667 0.7119 0.7143 

Random Forest 0.7143 0.5313 0.6071 0.5667 0.6845 0.7619 

KNN 0.6593 0.4571 0.5714 0.5079 0.7857 0.7937 

XGBoost 0.6264 0.4211 0.5714 0.4848 0.7736 0.7619 

AdaBoost 0.6044 0.4048 0.6071 0.4857 0.7755 0.7302 

Stacking Classifier 0.7253 0.5429 0.6786 0.6032 0.8393 0.6984 
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In experiment 2, we followed the same process as in experiment 1; however, 
we used BERT Base Uncased instead of BioClinical BERT. As shown in table 9, the 
accuracy of our AD patient classifiers on the balanced testing set ranges from 0.5179 
(AdaBoost) to 0.6250 (Random Forest). 
 
Table 9: AD Phenotyping Performance on Balanced Testing Set in Experiment 2 
(BERT Base Uncased) 

Model Accuracy Precision Recall F1 NPV Specificity 

Logistic Regression 0.5893 0.5758 0.6786 0.6230 0.6087 0.5000 

SVM 0.6071 0.5938 0.6786 0.6333 0.6250 0.5357 

Decision Tree 0.6071 0.6071 0.6071 0.6071 0.6071 0.6071 

Random Forest 0.6250 0.6522 0.5357 0.5882 0.6061 0.7143 

KNN 0.5536 0.5714 0.4286 0.4898 0.5429 0.6786 

XGBoost 0.5536 0.5556 0.5357 0.5455 0.5517 0.5714 

AdaBoost 0.5179 0.5185 0.5000 0.5091 0.5172 0.5357 

Stacking Classifier 0.6071 0.6071 0.6071 0.6071 0.6071 0.6071 

 
 As shown in table 10, the range of accuracies of our AD patient classifiers on 
the unbalanced testing set is slightly higher, ranging from 0.5714 (Logistic 
Regression and SVM) to 0.6703 (Random Forest).  
 
Table 10: AD Phenotyping Performance on Unbalanced Testing Set in Experiment 2 
(BERT Base Uncased) 

Model Accuracy Precision Recall F1 NPV Specificity 

Logistic Regression 0.5714 0.3878 0.6786 0.4935 0.7857 0.5238 

SVM 0.5714 0.3878 0.6786 0.4935 0.7857 0.5238 

Decision Tree 0.6484 0.4474 0.6071 0.5152 0.7925 0.6667 

Random Forest 0.6703 0.4737 0.6429 0.5455 0.8113 0.6825 

KNN 0.6264 0.4000 0.4286 0.4138 0.7377 0.7143 

XGBoost 0.6374 0.4286 0.5357 0.4762 0.7679 0.6825 

AdaBoost 0.5934 0.3784 0.5000 0.4308 0.7407 0.6349 

Stacking Classifier 0.6484 0.4474 0.6071 0.5152 0.7925 0.6667 
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 In experiment 3, we performed an ablation study and assigned binary labels 
to the elements of each patient’s vector based on whether medSpacy was able to 
identify at least one sentence in each of the AD indicator categories that each vector 
element corresponds to. As shown in table 11, the accuracy across our AD patient 
classifiers on the balanced testing set ranges from 0.6964 (KNN) to 0.8036 
(XGBoost). 
 
Table 11: AD Phenotyping Performance on Balanced Testing Set in Experiment 3 
(Binary Vector Encoding) 

Model Accuracy Precision Recall F1 NPV Specificity 

Logistic Regression 0.7679 0.7586 0.7857 0.7719 0.7778 0.7500 

SVM 0.7857 0.7857 0.7857 0.7857 0.7857 0.7857 

Decision Tree 0.7857 0.7667 0.8214 0.7931 0.8077 0.7500 

Random Forest 0.7857 0.8077 0.7500 0.7778 0.7667 0.8214 

KNN 0.6964 0.7391 0.6071 0.6667 0.6667 0.7857 

XGBoost 0.8036 0.8400 0.7500 0.7925 0.7742 0.8571 

AdaBoost 0.7857 0.7857 0.7857 0.7857 0.7857 0.7857 

Stacking Classifier 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 

 
 As shown in table 12, the lower bound of the range of accuracies across our 
AD patient classifiers on the unbalanced testing set is higher and the upper bound of 
the accuracies is lower. The accuracies on the unbalanced testing set ranges from 
0.7143 (Stacking Classifier) to 0.7582 (Random Forest and Stacking Classifier).  
 
Table 12: AD Phenotyping Performance on Unbalanced Testing Set in Experiment 3 
(Binary Vector Encoding) 

Model Accuracy Precision Recall F1 NPV Specificity 

Logistic Regression 0.7253 0.5366 0.7857 0.6377 0.8800 0.6984 

SVM 0.7473 0.5641 0.7857 0.6567 0.8846 0.7302 

Decision Tree 0.7473 0.5610 0.8214 0.6667 0.9000 0.7143 

Random Forest 0.7582 0.5833 0.7500 0.6563 0.8727 0.7619 

KNN 0.7363 0.5667 0.6071 0.5862 0.8197 0.7937 

XGBoost 0.7582 0.5833 0.7500 0.6563 0.8727 0.7619 

AdaBoost 0.7473 0.5641 0.7857 0.6567 0.8846 0.7302 

Stacking Classifier 0.7143 0.5250 0.7500 0.6176 0.8627 0.6984 
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Discussion 

Sentence Classification Results 
 We hypothesized that using BioClinical BERT sentence embeddings to train 
sentence classifiers would provide better performance than using BERT Base 
Uncased sentence embeddings due to the clinical setting of our data. Given the 
results in tables 5 and 6, we observed that this was most often true in the context of 
sentence classification because we were able to achieve better performance in the 
majority (5 out of 8) of the sentence classification tasks when using BioClinical 
BERT embeddings as opposed to BERT Base Uncased embeddings.  

Using BioClinical BERT sentence embeddings yielded stronger performance 
when distinguishing sentences in 5 of the 8 sentence categories – category 2 
(mentions of hay fever allergies), category 3 (mentions of atopic allergies), category 
5 (mentions of dry or itchy skin), category 6 (mentions of non-asthma medications), 
and category 7 (mentions of asthma). More specifically, we observed higher 
accuracies when using BioClinical BERT sentence embeddings for classifiers 2 
(0.8954), 3 (0.8214), 5 (0.7373), 6 (0.8204), and 7 (0.7712) than their 
corresponding counterparts when using BERT Base Uncased embeddings for 
classifiers 2 (0.7730), 3 (0.7976), 5 (0.7288), 6 (0.8096), and 7 (0.7269). We 
observed that the differences in performance between using BioClinical BERT 
embeddings and BERT Base Uncased embeddings are most pronounced for 
classifiers 2 and 7 which correspond to mentions of hay fever allergies and asthma 
mentions. We hypothesize this is because hay fever allergies and asthma (and their 
synonyms) may be very common terms in clinical notes; therefore, models trained 
on clinical data (BioClinical BERT) may be able to provide stronger performance 
than models trained on non-clinical text (BERT Base Uncased) which may not have 
as many mentions of hay fever allergies or asthma.  

Conversely, using BERT Base Uncased embeddings yielded stronger 
performance when distinguishing sentences in the other 3 of 8 sentence categories – 
category 1 (direct mentions of AD), 4 (mentions of eczema or rashes), and 8 
(mentions of asthma medications). More specifically, we observed higher accuracies 
when using BERT Base Uncased sentence embeddings for classifiers 1 (0.9153), 4 
(0.8439), and 8 (0.8738) than their corresponding counterparts when using 
BioClinical BERT embeddings for classifiers 1 (0.9002), 4 (0.8284), and 8 (0.8299). 
We observed differences in performance between using BERT Base Uncased 
embeddings and BioClinical BERT embeddings are most evident for classifier 8 
which corresponds to mentions of asthma medications. Although this is 
counterintuitive at first (we would expect that a classifier using embeddings 
generated from BioClinical BERT to be able to better recognize allergy medicines), 
we believe that the performance benefit from using BERT Base Uncased can be 
attributed to the list of terms we give to medSpacy when asking it to identify 
sentences in category 8. Many of the asthma medications in category 8 sentences are 
either monoclonal antibody medications ending in -mab (Ex: benralizumab, 
mepolizumab, omalizumab, etc) or hydrofluoroalkanes (Ex: atrovent hfa, flovent hfa, 
xopenex hfa, etc). Because monoclonal antibodies are very specialized types of 
medication, they may not occur as frequently as other terms in the corpus used to 
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train BioClinical BERT so a more general model such as BERT Base Uncased may 
provide more robust performance. Additionally, because the hydrofluoroalkane 
allergy medications in category 8 sentences are often abbreviated with “hfa” which 
can have alternate medical meanings such as high-functioning autism or health 
facility administrator, the BioClinical BERT embeddings might not be representative 
of the presence of allergy medications in the sentence, so a more general model such 
as BERT Base Uncased may be able to provide better performance.  
 More broadly looking at the results in table 5 and 6, we can see that the least 
accurate classifier has an accuracy of 0.7288, while the most accurate classifier is 
able to achieve an accuracy of 0.9153. Furthermore, when aggregating the most 
accurate classifiers from both tables we can see that we are able to achieve 
accuracies of 0.9153 (classifier 1) for identifying sentences that directly suggest the 
patient has AD, 0.8954 (classifier 2) for identifying sentences that mention hay fever 
allergies, 0.8214 (classifier 3) for identifying sentences that mention atopic allergies, 
0.8439 (classifier 4) for identifying sentences that mention eczema or skin rashes, 
0.7373 (classifier 5) for identifying sentences that mention dry or itchy skin, 0.8204 
(classifier 6) for identifying sentences that mention non-asthma medications related 
to diagnosis of AD, 0.7712 (classifier 7) for identifying sentences that mention 
asthma, and 0.8738 (classifier 8) for identifying sentences that mention asthma 
medications. Because our training and testing sets were both class-balanced and the 
majority (6 of the 8) of the most accurate classifiers previously mentioned achieve 
accuracies between 0.8204 and 0.9153, we believe these results are promising and 
indicate that our sentence classifiers could potentially be used to save time in a 
clinical setting during chart review by identifying (and highlighting for review) 
sentences relevant to diagnosis of AD when recruiting for clinical trials.  
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AD Phenotyping Results 
Per tables 7 through 10, our earlier hypothesis holds - using clinical 

embeddings (BioClinical BERT) to generate the patient vector representation does 
provide better performance in patient phenotyping than using non-clinical 
embeddings (BERT Base Uncased). Comparing evaluation on the balanced testing 
set in tables 7 and 9, we observe that using BioClinical BERT embeddings provides 
higher accuracy in almost all models, with the exception of Decision Trees where 
BERT Base Uncased provides better performance (accuracy of 0.6071) as compared 
to BioClinical BERT (accuracy of 0.5893). Comparing evaluation on the unbalanced 
testing set in tables 8 and 10, we observed that the same trend follows – using 
BioClinical BERT embeddings provides higher accuracy in almost all models, with 
the exception of Decision Trees and XGBoost where using BERT Base Uncased 
embeddings provides better performance (accuracy of 0.6484 for Decision Trees 
and 0.6374 for XGBoost) as compared to their counterparts with BioClinical BERT 
embeddings (accuracy of 0.5824 for Decision Trees and 0.6264 for XGBoost).  

As part of our experimental design, we included an ablation study in 
experiment 3 so we could compare the difference in performance during patient 
phenotyping when removing the use of BERT models to create each patient’s vector 
representations. On the class-balanced testing set, we observed that accuracies 
range from 0.6071 to 0.7321 when using BioClinical BERT embeddings in table 7, 
accuracies range from 0.5179 to 0.6250 when using BERT Base Uncased 
embeddings in table 9, and accuracies range from 0.6964 to 0.8036 when removing 
the use of BERT models in table 11 (experiment 3). On the unbalanced testing set, 
we observed that accuracies range from 0.5824 to 0.7253 when using BioClinical 
BERT embeddings in table 8, accuracies range from 0.5714 to 0.6703 when using 
BERT Base Uncased embeddings in table 10, and accuracies range from 0.7143 to 
0.7582 when removing the use of BERT models in table 12 (experiment 3).  

In both cases (evaluation on the balanced testing set, and evaluation on the 
unbalanced testing set), we found that models in experiment 3 (our ablation study) 
generally outperform (or are as good as) their corresponding counterparts in 
experiments 1 and 2 (our BERT experiments) across all metrics (accuracy, 
precision, recall, F1, NPV, and specificity), with the exception that the stacking 
classifier in experiment 1 (BioClinical BERT) has marginally stronger accuracy and 
precision than the stacking classifier in experiment 3. This shows that traditional 
rules-based approaches (experiment 3) can outperform BERT-based approaches for 
generating a patient vector representation for downstream patient phenotyping.  

We hypothesize that models in experiments 1 and 2 showed lower 
performance because errors from our sentence classifiers in earlier stages of the 
pipeline could have propagated to later stages of the pipeline during patient 
phenotyping. Because we leveraged the max operator to aggregate probabilities that 
any given sentence in the patient record applies to each category, more sentences in 
each patient record would lead to a greater chance that an erroneous prediction 
with a high probability would lead to a false positive error in the creation of each 
patient’s vector representation in experiments 1 and 2.  

Although there is a wide range in performance for our AD patient 
phenotyping algorithms, we believe that we have reached our goal of developing a 
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system capable of AD patient phenotyping for clinical trial recruitment because 
tables 11 and 12 show promising results. Furthermore, our system can be used as a 
first step during AD clinical trial recruitment to filter out most patients who may not 
qualify for AD trials and therefore save valuable clinician time. We believe our 
pipeline is important and valuable because unlike other diseases such as influenza, 
COVID-19, and cancer, there is no gold-standard test result that can be used to 
determine when a patient has atopic dermatitis. Instead, clinicians must spend large 
amounts of time undergoing chart review to individually determine whether each 
patient has atopic dermatitis.  
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Limitations 
One limitation of our study was the small size of our dataset. Although we 

had a total of 1,926 patients in our dataset, only 137 of them were validated as 
having AD. During training, we leveraged 109 of the 137 AD patients, and sampled 
another 109 non-AD patients to create a class balanced training set. The small size 
of the training set could lead to overfitting and therefore result in reduced 
performance on the testing set. Future work could involve obtaining more data from 
patients with AD, as well as exploring the use of an imbalanced dataset but using a 
class-weighted loss function to counteract the class-imbalance.  

A second limitation of our study was the input limit size of the large language 
models that were used. Both BERT Base Uncased and BioClinical BERT had an input 
limit of 512 tokens. This meant that any input text that was longer than 512 tokens 
would be ignored when training BERT. Consequently, we couldn’t simply directly 
concatenate all documents from each patient’s EHR and feed the tokenized 
documents of each patient into BERT with an added classification head for training 
as well as direct prediction of whether the patient has AD. Instead, we designed a 
pipeline around distilling information from all documents in each patient’s EHR into 
a patient vector representation and then using this patient vector representation to 
train various classical ML algorithms for phenotyping the patient. Future work could 
involve exploring the use of other LLM’s that are suited for long inputs such as 
Longformer or Doc2Vec for predicting when a patient should be labeled as having 
AD.  

A third limitation of our study was the list of AD indicators we selected. We 
didn’t consider additional AD indicators and we also did not consider the use of 
different combinations (or subsets) of the AD indicators selected. This is particularly 
relevant in considering that 1) our pipeline is intended to be used for identifying 
patients with AD, and 2) that one of our AD indicators (category 1) directly targets 
whether there is any given sentence in the patient’s record that mentions AD which 
could be in the context of a family history of AD, a potential (but not confirmed) 
diagnosis of AD, as well as a confirmed diagnosis of AD, among other possibilities. If 
this AD indicator is removed, then one interesting research question could be 
whether our pipeline is still able to maintain performance similarly to what it is 
currently able to achieve. Future work could involve assessing the performance 
impact from removing (or adding) the use of various AD indicators. We could then 
determine if our pipeline is relying too much on or overfitting to one or more 
indicators. Furthermore, we could also re-design our patient vector and separate the 
feature for category 1 (any sentence that mentions AD) into 3 separate indicators, 
whether there is 1) a family history of AD, 2) an affirmed diagnosis that the patient 
has AD, and 3) uncertainty of whether the patient has AD. Doing so could potentially 
improve precision.  
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.08.25.23294636doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.25.23294636
http://creativecommons.org/licenses/by/4.0/


Potential Applications 
Given the aforementioned results, we believe our AD classifier could be 

operationalized to facilitate reliable and efficient EHR chart review. For example, 
sentence classifiers could visually indicate AD indicators inline text, therefore 
reducing information foraging efforts by clinicians. Additionally, AD phenotyping 
classifiers could indicate the strength of a patient match to UKWP criteria, exact or 
partial, based on AD indicator sentence classifications. Furthermore, ranking patient 
cases by match strength could reduce the number of cases reviewed to generate 
both case and matched controls.  

Conclusions 
 In conclusion, we present and validate a promising pipeline for phenotyping 
patients with AD during clinical trial recruitment. To do so, we compare a rules-
based and transformer-based approach for creating a vector representation of each 
patient, and compare downstream performance in patient phenotyping with various 
standard ML algorithms. We find that a traditional rules-based approach 
outperforms using a transformer-based approach (Experiment 3). We hope that our 
pipeline can be deployed in hospital settings during clinical trial recruitment as an 
initial first step to automatically filter candidates before manual review. 
Additionally, we show that multi-layer perceptron networks can identify whether 
sentences are relevant to AD diagnosis. These multi-layer perceptron networks can 
later be deployed in clinical settings to highlight which sentences relevant for 
physicians during manual chart review, therefore reducing physician burden. Future 
work can involve extending our patient phenotyping pipeline to other datasets and 
other diseases.  
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