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Abstract 8 

We demonstrate that heterogeneity in the perceived risks associated with infection within host 9 
populations amplifies the chances of superspreading during the crucial early stages of an 10 
epidemic. Under this behavioural model, individuals less concerned about the dangers from 11 
infection are more likely to be infected and attend larger-sized (riskier) events. For directly 12 
transmitted diseases such as COVID-19, this leads to infections being introduced at rates 13 
above the population prevalence to the events most conducive to superspreading. We develop 14 
an interpretable computational framework for evaluating within-event risks and derive a small-15 
scale reproduction number measuring how the infections generated at an event depend on 16 
transmission heterogeneities and the number of introductions. This quantifies how event-scale 17 
patterns relate to population-level characteristics and generalises previous frameworks. As 18 
event duration and size grow, our reproduction number converges to the basic reproduction 19 
number. We illustrate that even moderate levels of heterogeneity in the perceived risks from 20 
infection substantially increase the likelihood of disproportionately large clusters of infections 21 
occurring at larger events, despite fixed overall disease prevalence. We show why collecting 22 
data linking host behaviour and event attendance is essential for accurately assessing the risk 23 
posed by an invading pathogen in the emerging stages of an outbreak. 24 

Keywords: infectious diseases; behavioural models; risk awareness; reproduction numbers; 25 

importations; superspreading events. 26 

Introduction 27 

The prediction and prevention of superspreading events, which are characterised by primary 28 
infected individuals generating disproportionately large numbers of secondary infections [1], 29 
is a central challenge in infectious disease epidemiology. For acute, directly communicable 30 
diseases such as COVID-19, SARS and Ebola virus disease, superspreading is a major driver 31 
of transmission that leads to less frequent but more explosive outbreaks than we might expect 32 
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under more classical models that neglect the substantial variability in secondary infections 33 
generated by infected hosts [2]. During early or emergent stages of a potential epidemic, when 34 
there are limited immunity levels in the host population and transmission dynamics are 35 
inherently stochastic, superspreading events have been found responsible for spurring both 36 
the initial growth and eventual persistence of epidemics and for limiting the effectiveness of 37 
non-pharmaceutical interventions [1,3–5].  38 

Consequently, identifying the main factors that underly the risk of superspreading is crucial for 39 
effective disease management [4]. Many of these factors are known, with heterogeneities in 40 
(i) host characteristics (e.g., susceptibility, infectiousness and contact patterns), (ii) pathogen 41 
biology (e.g., transmission routes and viral loads), (iii) environmental effects (e.g., ventilation 42 
and gathering size) and (iv) host behaviours (e.g.,  social customs and intervention adherence) 43 
all contributing to the risk of superspreading [3,4,6–8]. However, incorporating these factors 44 
in parsimonious modelling frameworks can be difficult because the mechanisms linking them 45 
to superspreading are still not fully understood. This is particularly the case for factors (iii) and 46 
(iv), with recurrent calls for more comprehensive data collection to help study the relationships 47 
among behavioural, environmental and epidemiological trends [9–11]. Here we explore how 48 
a key feature of host behaviour can shape the likelihood of superspreading and provide a 49 
mathematical demonstration of the benefits of collecting and analysing more data to elucidate 50 
the links between human behaviour and infectious disease epidemics. 51 

We consider how heterogeneity in perceptions of the risk associated with infection throughout 52 
a host population impact heterogeneity in the transmission of new infections in the early stages 53 
of an epidemic. Risk awareness is a documented phenomenon in which individuals engage in 54 
self-protective behaviours in response to the perceived health, economic and other dangers 55 
of acquiring infection. The exact relationship between risk-perception and self-protection in a 56 
population exists on a spectrum spanning more risk-averse individuals to those with larger risk 57 
appetites (e.g., risk deniers) [12–14]. During an epidemic of a directly transmitted pathogen, 58 
risk-averse individuals may reduce their number of contacts by limiting their socialising and 59 
mobility, while those with larger risk appetites may increase their relative infection exposure 60 
(e.g., by hosting unregulated gatherings when infections are rising) [15]. Risk awareness can 61 
improve intervention efficacy (e.g., reducing mobility) or negate it (e.g., via deliberate non-62 
compliance) and substantially change outbreak amplitudes and durations [11,16–19].  63 

Despite its importance, the interplay between risk awareness and superspreading risk has not 64 
been studied in detail, with most research focussing on pathogen and host characteristics 65 
instead of exploring behavioural patterns. We study this interplay under a simple but plausible 66 
hypothesis – that more risk-averse hosts are more likely to avoid events of larger size, due to 67 
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the perception of heightened infection risk at those events [14,19]. Here, events are short-68 
term gatherings (e.g., parties) so that only one generation of infection is possible. While data 69 
directly linking risk perception to event attendance are unavailable, it is known that individuals 70 
modify their behaviour in response to population-level prevalence and that the variability in 71 
individuals’ level of acceptable risk relative to this prevalence baseline correlates well with the 72 
extent to which contacts are reduced during epidemics [12–14,20,21]. A likely pathway for 73 
reducing exposure to invading pathogens is by limiting attendance at riskier (voluntary) events. 74 
This logic underlies our hypothesis and subsequent analysis.  75 

This awareness mechanism implies, for a fixed population prevalence, that larger events (e.g., 76 
concerts, sports matches) are more likely to be attended by individuals who are less risk 77 
averse. Since there is limited infection-induced immunity in the host population during early 78 
epidemic stages, these individuals are also more likely to be infected. This stems from 79 
observations that those with larger numbers of contacts have elevated chances of acquiring 80 
infection, and these individuals are also likely to have larger risk appetites (more risk-averse 81 
individuals tend to reduce contacts) [22]. We posit that this coupling between behaviour and 82 
environment (i.e., modification of event attendance due to risk perception and event size) may 83 
amplify the chances of superspreading occurring at larger events, which have the capacity to 84 
support excessive numbers of infections. To test this hypothesis, we develop a framework to 85 

model the number of infections 𝑦 generated at an event of size 𝑛, given that	𝑥 initially infected 86 

individuals attend that event. This yields a small-scale reproduction number that extends 87 
recent approaches [23–25] to understanding within-event transmission in three directions. 88 

First, we explicitly model the transmission-reducing effects of finite numbers of susceptible 89 

individuals (𝑛 − 𝑥) and imported infections (𝑥) and at the event. As event size and duration 90 

grow, these finite size effects become less important and our small-scale reproduction number 91 

converges to 𝑅!, the popular basic reproduction number. Second, we embed heterogeneity 92 

in transmission at the event within our small-scale reproduction number by allowing variations 93 

in secondary infections that are controlled by a dispersion parameter, 𝑘. This is a within-event 94 

version of the seminal model of superspreading [1,5,26] and includes the broad influence of 95 

factors (i)-(ii) described above. Third, we account for how 𝑥 changes (stochastically) with 𝑛. 96 

This considers factors (iii)-(iv) and depends on the prevalence of infection in the population as 97 

well as the size-biased importation rate of infections into the event, 𝜖(𝑛), which is influenced 98 

by the spectrum of risk appetites about that prevalence. 99 

The functional dependence of 𝜖 on 𝑛 serves as a parsimonious model of risk awareness and 100 

allows us to assess how host behaviour shapes the risk of superspreading (e.g., if 𝜖(𝑛) is an 101 
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increasing function of 𝑛, then this implies a higher infection import rate into larger events). We 102 

explore our central hypothesis by comparing the relative and combined impact of 𝜖(𝑛) and 𝑘 103 

on the tail probability of observing a disproportionately large number of secondary infections 104 

𝑦 at an event. We demonstrate, for a fixed overall import rate (equalling the wider population 105 

prevalence), that risk awareness can substantially amplify the chances of superspreading at 106 
a large event, compared to the scenario in which all individuals attending the large event are 107 

assumed to have similar perceptions of infection risk. This pattern holds regardless of 𝑘 and, 108 

in some instances, we find that the increase in superspreading risk from risk-aware behaviour 109 
outweighs that from inherent transmission heterogeneity.  110 

Methods 111 

Event reproduction numbers including import risk and transmission heterogeneity 112 

We develop a framework for quantifying the risk of acquiring infection at an event (e.g., a party, 113 
concert, sports match), based on a small-scale (within-event) reproduction number. We detail 114 
this below but also sketch the main steps of our methodology and list key notation in Fig 1. 115 

An event is defined as a short-term grouping of 𝑛 people and we allow 0 ≤ 𝑥 ≤ 𝑛 of the 116 

individuals attending the event to be infectious. Initially, there are 𝑥 introductions (i.e., imported 117 

infections) at this event and 𝑛 − 𝑥 susceptible hosts. We assume no prior immunity in the 118 

population and let 𝐏(𝑦|𝑛) be the probability of 0 ≤ 𝑦 ≤ 𝑛 − 𝑥 new infections being generated 119 

at that event as we describe in Eq. (1).  120 

𝐏(𝑦|𝑛) =0 𝐏(𝑦|𝑥, 𝑛)𝐏(𝑥|𝑛)
"

#$!
.					(1) 121 

This depends on 𝐏(𝑦|𝑥, 𝑛), the probability of 𝑦 new infections occurring given the 𝑥 infectious 122 

individuals initially (for events of size 𝑛) and the prior probability of those  𝑥 imports, 𝐏(𝑥|𝑛). 123 

We define the small-scale reproduction number for this event as 𝑅(𝑥) ≝ 𝑥%&𝐄[𝑦|𝑥, 𝑛], with 124 

the expected number of infections generated by 𝑥 imports denoted by 𝐄[𝑦|𝑥, 𝑛]. We expand 125 

this to obtain Eq. (2) below. 126 

𝑅(𝑥) ≝
1
𝑥0 𝑦𝐏(𝑦|𝑥, 𝑛).

"%#

'$!
					(2) 127 

Here 𝑅(𝑥) measures the expected number of new infections generated by each import when 128 

there are 𝑥 imports in total. Although intuitive, this reproduction number formulation is novel.  129 
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A central idea of this study is the importance of 𝐏(𝑥|𝑛) and its dependence on event size 𝑛. 130 

Earlier work assumed that 𝐏(𝑥|𝑛) depends solely on the prevalence of the infection in the 131 

population [25], neglecting how heterogeneities in human behaviour may affect the number of 132 

imported cases at a given event of size 𝑛. To our knowledge, alternative models for 𝐏(𝑥|𝑛) 133 

informed by human behaviour and the influence of this behaviour on the number of infections 134 
generated at the event have not been explored. The heterogeneity in host behaviour that we 135 
consider relates to the spectrum of risk appetites i.e., the fact that different individuals perceive 136 

different infection risks associated with attending an event of size 𝑛. This spectrum alters the 137 

rate of importing  infections into events, relative to the prevalence, and so modulates 𝐏(𝑥|𝑛). 138 

 139 

Fig 1: Modelling framework for event-level transmission subject to risk awareness. We 140 
outline the central steps and define the main notation underlying our proposed framework for 141 
modelling transmission patterns at small events. We refer to equations defined in the Methods. 142 
This framework accounts for how heterogeneity in infection risk perception among individuals 143 
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modulates the number of imported cases 𝑥 at an event of size 𝑛 and hence contributes to the 144 

secondary infections generated at that event 𝑦.   145 

Our event or small-scale reproduction number also generalises prior research by including the 146 

effects of finite 𝑥 and 𝑛. Since only one generation of infection can occur at an event, this finite 147 

initial condition can strongly shape clustering patterns, underscoring the value of modelling 148 

𝐏(𝑥|𝑛). The original event reproduction number [24] considers a single imported infection and 149 

relates to (but is not the same as) our 𝑅(1), which we later show is always an upper bound 150 

for 𝑅(𝑥). By extending the event reproduction number definition, we model the influence of 151 

𝐏(𝑥|𝑛) on the risk of acquiring infection at any event directly. As we explain below, 𝑅(𝑥) also 152 

embeds heterogeneity in transmission from both host characteristics as well as pathogen 153 

biology [1] and is explicitly related to the population-level basic reproduction number, 𝑅! [27]. 154 

To convert Eqs. (1)-(2) into a computable form, we draw on characteristics of both the event 155 

and disease. We denote the (frequency-dependent) transmission rate as 𝛽 and the expected 156 

duration of an individual infection as 𝑑, so that 𝑅! = 𝛽𝑑. We then consider an event that lasts 157 

for time 𝜏, which is assumed to be substantially shorter than 𝑑, so that infectiousness outlasts 158 

the event and at most one generation of infection is possible at the event. We also assume 159 

that the event is closed i.e., for any specific event, 𝑛 takes a constant value. The split of 𝑛 into 160 

𝑥 and 𝑛 − 𝑥 completely defines the epidemiologically important states for the event 161 

If there is only one infected individual at the start of the event, then the probability that any 162 

susceptible host gets infected is the secondary attack rate (SAR), 𝑝 = 1 − 𝑒%
!"
# , making the 163 

standard assumption that the times to infection are exponentially distributed. When there are 164 

𝑠 susceptible individuals, then 𝐄[𝑦|1, 𝑛] = 𝑠𝑝. While this assumes that all the susceptible 165 

individuals are exposed to all infectious ones at the event, we can model more realistic contact 166 

networks as in [27] by modifying 𝑠 to be the subset of susceptible hosts likely to be exposed 167 

to each infection (this connects network and random mixing models). 168 

We generalise this approach in three main directions. First, we model the effect of variability 169 

in the number of imported infections. If there are 𝑥 imports to the event, then the SAR becomes 170 

𝑝 = 1 − 𝑒%(
"
$)(

%
#)*& with 𝛽 = *&

+
. Since there are initially 𝑠 = 𝑛 − 𝑥 susceptible individuals, the 171 

expected number of infections generated at the event is 𝐄[𝑦|𝑥, 𝑛] = (𝑛 − 𝑥)𝑝. The leads to 172 

the event reproduction number 𝑅(𝑥) in Eq. (3) below. Note that 𝑅(0) = 𝑅(𝑛) = 0. 173 
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𝑅(𝑥) =
𝑛 − 𝑥
𝑥 ?1 − 𝑒%(

,
+)(

#
")*&@ ≈ ?1 −

𝑥
𝑛@ ?

𝜏
𝑑@𝑅! + 	𝐎 ?

𝑥
𝑛@.					(3) 174 

This formulation has interesting limiting behaviour at various 𝑥. As the number of susceptibles 175 

grows in excess of imports i.e., "
#
 increases, the 𝐎?#

"
@ terms in the Taylor series approximation 176 

of 𝑅(𝑥) in Eq. (3) become negligible. As 𝑛 becomes large, we find 𝑅(𝑥) → ?,
+
@ 𝑅!. If the event 177 

lasts for the duration of infectiousness (𝜏 = 𝑑), then 𝑅(𝑥) → 𝑅!. This convergence makes 178 

sense since our formulation is equivalent to a finite or small-scale version of random mixing. 179 

Second, we expand this model to include realistic heterogeneity from host characteristics and 180 
pathogen biology. It is unlikely that every infectious individual has the same transmissibility 181 
and we expect substantial variations in the numbers of infections generated by each infected 182 

individual [1,28]. We therefore allow 𝑅! to have some distribution from which every import is 183 

randomly sampled and let 𝑅!
- indicate the sample for the 𝑗./ of the 𝑥 imports at the event. This 184 

heterogeneous version of 𝑅(𝑥) is in Eq. (4), with expected number of infections 𝐄[𝑦|𝑥, 𝑛] =185 

𝑥𝑅(𝑥). Note that Eq. (4) is of the form "%#
#
𝑝/0., with 𝑝/0. as a heterogeneous SAR. 186 

𝑅(𝑥) =
𝑛 − 𝑥
𝑥 G1 − 𝑒%(

,
+)(

&
") ∑ *&

'%
'() H.					(4) 187 

We compute the mean of 𝑅(𝑥) across the transmission heterogeneity for 𝑥 infectious imports 188 

in Eq. (5), with 𝐄/0. indicating expectation about the distributions of the 𝑅!
- and 𝐌2(𝑎) as the 189 

moment generating function about 𝑏 evaluated at 𝑎. As the transmissibility of the 𝑥 imported 190 

infections are independently sampled, 𝐌∑ *&
'%

'()
(𝑎) = 	∏ 𝐌*&

'(𝑎)#
-$& . This reduces to 𝐌*&(𝑎)

𝑥 191 

if samples are identically distributed. The expected number of infections under this model as 192 

a function of 𝑥 is 𝐄/0.N𝐄[𝑦|𝑥, 𝑛]O = 𝑥𝐄/0.[𝑅(𝑥)] with 𝐄/0.[𝑅(𝑥)] from Eq. (5). 193 

𝐄/0.[𝑅(𝑥)] =
𝑛 − 𝑥
𝑥 P1 −𝐌∑ *&

'%
'()

Q?
𝜏
𝑑@ G

1
𝑛HRS.					(5) 194 

Following [28], we evaluate the variance around 𝑅(𝑥) as 𝐕/0.[𝑅(𝑥)] with 𝑎" = ?,
+
@ ?&

"
@ in Eq. 195 

(6). This involves expanding 𝐄/0.[𝑅(𝑥)3] − 𝐄/0.[𝑅(𝑥)]2 and applying properties of 𝐌2(𝑎). 196 

The variance on the expected number of infections is 𝐕/0.N𝐄[𝑦|𝑥, 𝑛]O = 𝑥3𝐕/0.[𝑅(𝑥)]. All of 197 

these statistics remain valid for any model of transmission heterogeneity but we derive analytic 198 
relations under the most widely used model of [1] in the subsequent section. 199 
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𝐕/0.[𝑅(𝑥)] = ?
𝑛 − 𝑥
𝑥 @

3
G𝐌∑ *&

'%
'()

(−2𝑎") −	𝐌∑ *&
'%

'()
(−𝑎")3H.					(6) 200 

Third, we examine how the likelihood of finding that 𝑥 infectious individuals have attended the 201 

event impacts the above quantities. This involves evaluating how 𝐏(𝑥|𝑛) weights the formulae 202 
in Eqs. (4)-(6). This weighting may be random, depend on behavioural preferences as we 203 
posit in the next section (i.e., risk awareness) or be assigned using other rules. We propose 204 

that a more informative measure of the risk of acquiring infection from an event of size 𝑛 and 205 

duration 𝜏 is the import-weighted event reproduction number 𝑅456 as in Eq. (7) below. 206 

𝑅456 =0 𝑅(𝑥)𝐏(𝑥|𝑛)
"

#$!
	.					(7) 207 

While 𝑅456 averages over the possible numbers of imports, it is still a random variable with 208 

samples taken from the distribution controlling transmission heterogeneity. Accordingly, it has 209 

statistics 𝐄/0.N𝑅456O and 𝐕/0.N𝑅456O	that we compute by summing and weighting 𝐄/0.[𝑅(𝑥)] 210 

and 𝐕/0.[𝑅(𝑥)]	by	𝐏(𝑥|𝑛) and 𝐏(𝑥|𝑛)3 respectively. The expected number of new infections 211 

𝐄456[𝑦|𝑛] that is associated with 𝑅456 follows as in Eq. (8). 212 

𝐄456[𝑦|𝑛] =0 𝑥𝑅(𝑥)𝐏(𝑥|𝑛)
"

#$!
.					(8) 213 

Similarly, we obtain the heterogeneous statistics 𝐄/0. Y𝐄456[𝑦|𝑛]Z and 𝐕/0. Y𝐄456[𝑦|𝑛]Z but 214 

the quantities being weighted by	𝐏(𝑥|𝑛) and 𝐏(𝑥|𝑛)3 are now, respectively, 𝑥𝐄het[𝑅(𝑥)] and 215 

𝑥3𝐕/0.[𝑅(𝑥)]. These all proceed from the properties of expectations and variances applied to 216 

a linear weighted sum with independent terms. 217 

Statistical models for event reproduction numbers and importation patterns 218 

Having outlined measures of infection risk in Eqs. (7)-(8), we build into our framework some 219 
likely approaches for integrating transmission heterogeneities and import patterns (including 220 
when those imported infections are risk-sensitive). This allows us to parsimoniously model 221 
traditional and behavioural drivers of superspreading. Additionally, we incorporate process 222 
stochasticity and provide a full Bayesian formulation for our framework. We start by including 223 
the seminal heterogeneity model of [1], which describes individual variations in transmissibility 224 

via a gamma distribution with dispersion 𝑘 and mean 𝑅!. We write this as 𝑅!
- ∼ 𝐆𝐚𝐦?𝑘, *&

:
@ 225 
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with Gam as a shape-scale parameterised gamma distribution. Using scaling and summing 226 

properties of these gamma variables, we hence obtain ∑ 𝑅!
-#

-$& ∼ 𝐆𝐚𝐦?𝑘𝑥, *&
:
@.  227 

This assumes that samples of the basic reproduction number of individuals are independent 228 
and identically distributed and lets us analytically evaluate the moment generating function as 229 

𝐌∑ *&
'%

'()
(−𝑎") = ?1 + *&;#

:
@
%:#

. We substitute this into Eqs. (4)-(6) to precisely compute the 230 

mean and variance of the infections and event reproduction number conditional on a total of 231 

𝑥 introductions as detailed above. We can relax the assumption that the 𝑅!
- are independent 232 

and identically distributed by instead sampling them from different distributions or by applying 233 

alternative dispersion models [28]. The heterogeneous 𝑅!
- constitute a major and traditionally 234 

modelled source of stochasticity underpinning the risk metrics we propose in Eqs. (7)-(8).  235 

A less studied source of stochasticity is variability in the probability that infectious individuals 236 
attend the event. Previous work [25] has treated this deterministically, setting the probability 237 

or rate that an attending individual is infected as equal to the population prevalence 𝜌 (or	𝜌 238 

adjusted by an exposure factor when it is known that the event draws individuals who are less 239 

or more likely to be infected). This is modelled as 𝑥 ∼ 𝐁𝐢𝐧(𝑛, 𝜌), with Bin indicating a binomial 240 

distribution. We generalise this under our behavioural hypothesis. We posit, for a fixed overall 241 

importation level, that this import probability increases with 𝑛. This models risk awareness, in 242 

which risk-averse individuals who are less likely to be infected avoid larger events, or equally 243 
the individuals attending larger sized events are less risk-averse and more likely to be infected. 244 

Risk appetites may also depend on event duration 𝜏, but we do not explore this here. 245 

We model event size bias using sorted Dirichlet weightings. We consider 𝑚 events, the 𝑖./ of 246 

which has size 𝑛< and import rate 𝜖(𝑛<). Sizes sequentially span all integers from 𝑛54= to 𝑛5>? 247 

uniquely (i.e., 𝑛5>? = 𝑛54= +𝑚 − 1) but we can relax this to include any distribution across 248 

event sizes of interest. We fix the total importation rate across all 𝑚 events. This constrains 249 

∑ 𝑛<𝜖(𝑛<) = 𝜌∑ 𝑛<@
<$&

@
<$& , conserving the total number of infections introduced across events 250 

so that the mean importation rate equals 𝜌. We enforce this constraint to allow fair comparison 251 

between the conventional model, in which all imports occur with rate 𝜌, and our size-biased 252 

variations, which describe how variability in perceived risk by hosts affect their attendance at 253 
events. This constraint causes some event sizes to have importation rates above and others 254 

below 𝜌 and allows us to model a spectrum of risk appetites about the baseline prevalence. 255 

This variability in risk perception aligns well with trends found in behavioural surveys [12–14]. 256 
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The 𝜖(𝑛<) values encode our event size biases. We construct them by first sampling a set of 257 

random weights {𝑤<} from a symmetrical Dirichlet distribution i.e., {𝑤<} ∼ 𝐃𝐢𝐫(𝑟) with 𝑟 as a 258 

shape parameter applied to every 𝑤< and ∑ 𝑤< = 𝜌@
<$& . The {𝑤<} set spans all 𝑚 weights with 259 

smaller values of 𝑟 leading to more skewed weightings. At very large 𝑟,  𝑤< ≈
A
@

 for all 𝑖. To 260 

model risk-awareness, where we expect that less risk-averse individuals are more likely to 261 

attend larger 𝑛< events relative to more risk-averse individuals, we sort the {𝑤<} in ascending 262 

order so that 𝑤< increases with 𝑛<. We replicate this procedure across many runs to include 263 

variability from the Dirichlet distribution. For every sampled, sorted {𝑤<}, we define 𝜖(𝑛<) ≝264 

𝑤<𝑛<%&(∑ 𝑛B@
B$& ). This satisfies our benchmarking constraint and parsimoniously models the 265 

spectrum of risk appetites across the host population. 266 

We conceptualise this constraint by observing that in the conventional model 𝐄[𝑥<] = 𝑛<𝜌 for 267 

the 𝑖./ event so that ∑ 𝐄[𝑥<]@
<$& = ∑ 𝑛<@

<$& 𝜌 imports occur into all 𝑚 events on average. In our 268 

risk-aware model 𝐄[𝑥<] = 𝑛<𝜖(𝑛<) and so we chose the 𝜖(𝑛<) to ensure ∑ 𝑛<@
<$& 𝜖(𝑛<) equals 269 

the ∑ 𝐄[𝑥<]@
<$&  from the conventional model. However, we can relax this constraint to describe 270 

when risk awareness itself changes the prevalence (provided we use updated values at time 271 

snapshots) and we can generalise the model to allow 𝑟 to also be size dependent (i.e., 𝑟(𝑛<)). 272 

In summary, we generate import rates that are size biased (with this bias accounting for risk 273 

awareness) and use a single parameter 𝑟 to set the strength of this behavioural effect. 274 

Integrating the above models for heterogeneity and importation, we complete our algorithm 275 
(see Fig 1) for sampling import weighted distributions of event size risk using Eqs. (1)-(2). We 276 
formulate this in Eqs. (9)-(10) with semi-colons discriminating between probabilities that we 277 
evaluate from a distribution and parameters specifying that distribution. For convenience, we 278 

use 𝑆# = ∑ 𝑅!
-#

-$&  for denoting heterogeneous samples and 𝜖(𝑛) for general size bias. 279 

𝐏(𝑦|𝑛, 𝑥) = m 𝐁𝐢𝐧 Q𝑦; 𝑛 − 𝑥, G1 − 𝑒%
,
+
C%
" HR𝐆𝐚𝐦G𝑆#; 	𝑘𝑥,

𝑅!
𝑘 H

D

!
𝑑𝑆# .					(9) 280 

𝐏(𝑦|𝑛) = m 0 𝐏(𝑦|𝑛, 𝑥)	𝐁𝐢𝐧(𝑥; 𝑛, 𝜖(𝑛))
"

#$!
𝐏(𝜖(𝑛)|𝑛)	𝑑𝜖(𝑛)

&

!
.					(10) 281 

We use the probability distributions in Eqs. (9)-(10) together with the definitions of Eqs. (1)-282 
(2) to compute the measures of event risk that we propose in Eqs. (7)-(8). These marginalise 283 
over the distributions of import rate and transmission heterogeneity, which are degenerate 284 

when 𝜖(𝑛) is constant for all 𝑛 or all 𝑅!
- = 𝑅!, respectively. In the Results, we examine the 285 
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properties of our computational framework and apply it to explore how behaviour affects 286 
superspreading. Our framework is freely available at: https://github.com/kpzoo/smallscaleR. 287 

Results 288 

In the Methods, we developed a framework to assess the risk of acquiring infection at an event 289 
by deriving a small-scale reproduction number and the expected number of infections that will 290 
occur at the event. Both measures depend on the levels of heterogeneity in transmission and 291 
variability in the rate at which infectious individuals are likely to attend the event (i.e., imports). 292 
Here we examine the influence of these two key factors in determining outbreak patterns.  293 

Superspreading risk depends on importations and dispersion 294 

Much research has investigated how heterogeneity in transmission can cause superspreading 295 
and hence increase the number of infections likely to result from a gathering or event [1,23]. 296 

Specifically, there has been study of how the dispersion parameter 𝑘 modulates the risk of 297 

superspreading events [26,28,29]. Generally, smaller values of 𝑘 < 1 are predictive of larger 298 

transmission heterogeneity and superspreading risk. However, the influence of the number of 299 

importations 𝑥 at an event of size 𝑛 has received relatively little attention. We examine this by 300 

computing the statistics derived in Eqs. (4)-(6), in which we defined the reproduction number 301 

𝑅(𝑥) as a function of the imports and the resulting number of expected infections 𝐄[𝑦|𝑥, 𝑛]. 302 

We consider an event of size 𝑛 = 30 over a range of dispersions 0.1 ≤ 𝑘 ≤ 10 with a large-303 

scale limit (see Eq. (3)) of ?,
+
@ 𝑅! = 0.3. We sample 𝑅(𝑥) and 𝐄[𝑦|𝑥, 𝑛] from heterogeneous 304 

gamma distributions describing the transmissibility of the sum of all imported infections (see 305 
Methods) and compute statistics from these samples using Eqs. (5)-(6). We plot these results 306 

in Fig 2 to explore the properties of these statistics. Interestingly, we find 𝑅(𝑥) is a decreasing 307 

function of  𝑥, even though every 𝑅(𝑥) has the same limit of ?,
+
@𝑅!. The single import scenario 308 

of 𝑅(1) relates to the event reproduction number proposed in [24]. If we assume, as in several  309 

branching process models, that all imports have reproduction number 𝑅(1) instead of 𝑅(𝑥), 310 

then 𝐄[𝑦|𝑥, 𝑛] and the risk of acquiring infection at the event may be notably overestimated. 311 

Further, increasing heterogeneity (decreasing 𝑘) increases the variance of our statistics but  312 

decreases mean risk as we see from the inversion of the rank of blue to red curves between 313 

top and bottom panels in Fig 2, with 𝐕𝐌[. ] as the ratio of variance to mean. Last, we see that 314 

the dependence of our statistics on the number of imports is substantial and can be as critical 315 

as the value of 𝑘 for describing spread. The value of 𝑥 that leads to the largest possible (peak) 316 
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number of secondary infections at the event is not obvious (and not inferable from 𝑅(𝑥)) as 317 

imports both cause infections and reduce the available susceptible individuals. In Supplement 318 
Fig S1 we show how this peak changes and that the mean risk difference can be appreciable 319 
in different settings. This underpins the importance of  modelling finite event sizes and signifies 320 
that a crucial factor driving the risk of acquiring infection at an event is the import distribution 321 

𝐏(𝑥|𝑛), which is rarely studied.  322 

 323 

Fig 2: Risk statistics for an event with heterogeneous transmission. We plot the mean 324 

(E[. ], top subfigures) and variance to mean ratio (VM[. ], bottom subfigures) of the small-scale 325 

event reproduction number 𝑅(𝑥) (panel A) and the mean count of new infections E[𝑦|𝑥, 𝑛] 326 

(panel B) as a function of the number of imports 𝑥. We compute these via Eqs. (4)-(6) and 327 

compile statistics over 10E samples from heterogeneous offspring distributions with dispersion 328 

parameter 𝑘 ranging from 0.1 to 10 (increasing from blue to red, with grey depicting all 329 

intermediate values). For comparison, we show the large-scale reproduction number ?,
+
@𝑅! 330 
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and the number of initial susceptible individuals at the event, 𝑛 − 𝑥. We repeat this analysis 331 

at a larger value of ?,
+
@𝑅! = 3 in Supplement Fig S1. 332 

Population prevalence modulates the superspreading potential at events 333 

Having observed the importance of the number of imports, 𝑥 when assessing the transmission 334 

risk at events, we explore the influence of the distribution of introductions to the event, 𝐏(𝑥|𝑛). 335 

Conventionally [25], 𝐏(𝑥|𝑛) can be defined as a binomial distribution with the probability of an 336 

import being equal to the prevalence of the infection in the wider population, 𝜌. This is our null 337 

model, and we explore how it integrates with our proposed event statistics (see Eqs. (4)-(8)). 338 
We consider epidemics in their initial stages i.e., there is no vaccination- or infection-acquired 339 

immunity, so 𝜌 is small and there are 𝑛 − 𝑥 susceptible individuals at the event. We maintain 340 

parameter settings from Fig 2 but weight samples of small-scale reproduction numbers and 341 

mean numbers of imported infections using 𝐏(𝑥|𝑛), which is 𝐁𝐢𝐧(𝑥; 𝑛, 𝜌) with 𝜌 ranging from 342 

0.01 − 0.1 (1–10%). We compute histograms and statistics of these samples in Fig 3.  343 

We examine homogeneous (𝑘 = 10) and heterogeneous (𝑘 = 0.1)  dispersion levels and plot 344 

the log survival (or tail) probabilities of realised numbers of new infections 𝑦 and associated 345 

small-scale event reproduction numbers 𝑅 in panels A-B of Fig 3 for different values of 𝜌. We 346 

compute these probabilities via Eqs. (7)-(8). Larger values for these probabilities respectively 347 
indicate that superspreading is more likely (i.e., disproportionately more infections than 348 

𝐄/0. Y𝐄456[𝑦|𝑛]Z occur) and that imports have increased potential to cause superspreading 349 

(i.e., transmissibility above 𝐄/0.N𝑅456O). This distinction is rarely explored because it is less 350 

important at population levels, where superspreading models are commonly used [1,26,28]. 351 
However, the limiting finite-size effects of events make this distinction crucial. Histograms of 352 

samples of the infections at the event for some of the values of 𝜌 in A-B are shown in Fig 3C. 353 

 354 
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 355 

Fig 3:  The importation rate magnifies the effects of heterogeneous transmission. We 356 

plot the log survival probabilities for the number of new infections	𝑦 (panel A) and related event 357 

reproduction numbers 𝑅 (panel B). We account for the probability of 𝑥 imports (distributed as 358 

Bin(𝑥; 𝑛, 𝜌)) at an event of size 𝑛 = 30 with the population prevalence as 𝜌 (increasing from 359 

blue to red with grey indicating intermediate values). Larger P(𝑦 ≥ 𝑐) signifies more realised 360 

heterogeneity (higher likelihoods that disproportionate numbers of infections result from the 361 

event), while larger P(𝑅 ≥ 𝑐) signifies more heterogeneity in transmissibility (higher potential 362 

for superspreading events). In panels A-B, dashed curves are for 𝑘 = 10	(spread is mostly 363 

homogeneous) and solid curves are for 𝑘 = 0.1 (spread is heterogeneous). We compute 364 

these quantities from Eqs. (4)-(8). Panel C shows histograms of 10E samples of 𝑦 at two 𝜌 365 
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values underpinning panels A-B. Thicker tails or more rightwards mass in these distributions 366 
indicate a higher chance of a large number of infections at the event. We repeat this analysis 367 

at a larger event size of 𝑛 = 100 in Supplement Fig S2 for comparison. 368 

We find that increasing prevalence ranks the 𝑦 survival curves for both 𝑘 scenarios (panel A) 369 

(at a given threshold tail size 𝑐, probabilities increase with 𝜌) but has limited impact on the 𝑅 370 

curves (panel B). The latter trend is expected as 𝜌 does not change transmissibility. However, 371 

the fact that prevalence alone can mediate realised superspreading risk is important and, to 372 
our knowledge, unexplored. We confirm this with the histograms of panel C, which have thicker 373 

tails or at least more rightward probability mass as 𝜌 grows (even at large 𝑘). The variances 374 

of the 𝑦 values (not shown) also rise with 𝜌. We show equivalent analyses for a larger sized 375 

event (𝑛 = 100) in Supplement Fig S2 and recover similar results. The rate at which infections 376 

are introduced is therefore critical to assessing the chances of superspreading at  event.  377 

The risk of superspreading is a key determinant of whether cases of disease at the beginning 378 
of an outbreak will lead to a major epidemic because local infection clusters can propagate 379 

forward, snowballing into wider waves of infections. In standard models, the 𝑅 survival curves 380 

correlate strongly with those of 𝑦 [1,28]. However, the added variation we see in the 𝑦 curves 381 

in Fig 3 highlights that superspreading risk is above that expected from 𝑅 alone and, further, 382 

that chances of stochastic extinction are reduced (the histograms show 𝐏(𝑦 = 0) falling with 383 

𝜌). Understanding the interaction between the import rate (determined by the prevalence) and 384 

finite event size effects is therefore essential for accurately inferring the risk of superspreading 385 
at an event and hence the chance of epidemic establishment. Next, we demonstrate that the 386 
realised superspreading risk can further rise if risk awareness affects event attendance. 387 

Risk awareness controls importation rates and amplifies superspreading risk 388 

We previously assumed that the importation rate into an event was small, constant and equal 389 

to the population infection prevalence 𝜌. However, this is unrealistic as event attendance will 390 

depend on individual preferences. Data have found that individual perceptions of infection risk 391 
can regulate transmission dynamics and that a spectrum of risk appetites exist in a population 392 
[13,30,31]. Many models couple behavioural changes to prevalence [10,17] and prevalence 393 
elasticity, in which self-protective behaviours vary with prevalence, have been observed. We 394 
hypothesise, for a fixed prevalence baseline, that heterogeneity in individual risk perception 395 
(i.e., the risk spectrum) may mean that risk-averse individuals avoid larger events where they 396 
expect higher chances of becoming infected. Events with large numbers of attendees are then 397 
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disproportionately likely to be attended by less risk-averse individuals (those with large risk 398 
appetites), who have higher chances of introducing infection to the event. 399 

We explore this idea by altering the null model from the above section in which the probability 400 

that an event attendee is already infected is 𝜌. We propose a size-biased model where risk 401 

appetite or awareness adjusts the event-scale rate of importation based on event size 𝑛. We 402 

realise this using weights that assign a rate 𝜖(𝑛) that scales with 𝑛 (see Methods) but ensures 403 

the total infections imported into all events is conserved on average i.e., overall transmission 404 

levels are constrained. We consider a set of 𝑚 events, the 𝑖./ of which has size 𝑛<. The weight 405 

𝑤< is set to increase with 𝑛< but satisfies ∑ 𝑤< = 𝜌@
<$& . The skew of the 𝑤< i.e., strength of the 406 

size-bias, is controlled by the parameter 𝑟. We apply this model with differing weight strengths 407 

𝑟 using Eqs. (9)-(10) and under the parameter settings from Fig 3, to obtain Fig 4.  408 

In Fig 4, we study weight choices characterising two risk-awareness levels (green and red), 409 
in which the probability that an attendee is an imported infection increases with the event size, 410 
a relatively risk-stable case (blue) and a null model (black, dashed) completely neglecting risk-411 
awareness. We show corresponding import rates in panel A of Fig 4 and compute a critical 412 

event size 𝑛∗, at which 𝜖(𝑛) is closest to 𝜌. For the risk-aware models (green and red), events 413 

above this size have higher infection risk than assumed by conventional (null) models. In 414 
panels B-C, we illustrate that size-biasing substantially amplifies the mean and variance of the 415 

number of infections 𝑦, doubling or tripling the risks at larger events, relative to the null model 416 

(see insets), for the risk strength parameters and constraints we consider. This amplification 417 
outweighs the suppression of infections at smaller events as well as susceptible depletion 418 
caused by imports and signifies that risk awareness can strongly shape infection patterns. Our 419 

𝜖(𝑛) constraints limit variations in the total mean infections across events (panel D). 420 
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 421 

Fig 4: Event size bias substantially elevates the risk of infection. We compare the risk of 422 
acquiring infection at an event under models with size-biased import rates due to variability in 423 

risk perception against a null model with constant importation rate at the prevalence 𝜌. Panel 424 

A shows the size-biased rates 𝜖(𝑛), parametrised by 𝑟, for 𝑚 = 46 events with sizes spanning 425 

5: 50. Smaller 𝑟, decreasing from blue to green to red, indicates more skewed 𝜖(𝑛) functions 426 

but conserves the overall infection import rate. The critical event size 𝑛∗ demarcates when 427 

𝜖(𝑛) is closest to 𝜌 (risk neutral event sizes). Panels B-C illustrate the resulting mean and 428 

variance of the number of infections at an event (E[𝑦|𝜖], V[𝑦|𝜖]) relative to the equivalent 429 

quantities from the null model (E[𝑦|𝜌], V[𝑦|𝜌]) for dispersion parameter 𝑘 = 0.1. In panels A-430 

C, we show medians with 95% credible intervals as computed using Eqs. (7)-(10). These 431 
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marginalise over 10G samples from the distributions of transmission heterogeneity (controlled 432 

by 𝑘) and number of importations (controlled by 𝜌 and 𝜖(𝑛)). We also provide ratios of the 433 

means of these plots for panels B-C as insets. Panel D shows the total mean number of 434 

infections over all events, which remains mostly stable due to our 𝜖(𝑛) constraints.  435 

 436 

Fig 5: Superspreading risk increases with risk awareness. We repeat the analyses in Fig 437 

4 but for varying prevalence rates 𝜌 at a given risk-awareness strength 𝑟 = 0.5 in panel A and 438 

for differing strengths at prevalence 𝜌 = 0.05 in panel B. These show mean numbers of 439 

infections E[𝑦|ϵ] under risk-aware models relative to that from the null model E[𝑦|𝜌] (we plot 440 

only medians of distributions for dispersion parameter 𝑘 = 0.1). We demonstrate how risk 441 

awareness modulates the risk of superspreading at a medium and large sized events (dashed 442 
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vertical lines in panels A-B) by exploring tail infection survival probabilities P(𝑦 ≥ 𝑐) in panels 443 

C-D. See Supplement Fig S3 and Fig S4 for further accompanying simulations and statistics. 444 

We show the underlying mean, variance and VM ratios of the small-scale, event reproduction 445 
numbers as well as VM ratios for infections in Supplement Fig S3. These support the trends 446 

in Fig 4. We also repeat this analysis for epidemics with homogeneous spread (𝑘 = 10) in 447 

Supplement Fig S4. Interestingly, while the variance in the number of infections is smaller, the 448 
ratios of the means and variances among risk aware and the null model (panels B-C of Fig 449 

S4) are similar and rise with 𝑛, indicating that risk awareness alone can introduce additional 450 

superspreading risk. These results (with Fig 3) mean that neglecting the risk spectrum within 451 
host populations, as is done in conventional models where the probability that an attendee is 452 

initially infected is set solely by the prevalence 𝜌, can lead to substantial underestimation of 453 

the likelihood of superspreading.  454 

We confirm this in Fig 5, where we illustrate how log survival or tail probabilities of infections 455 

(log 𝐏(𝑦 ≥ 𝑐)) change with the risk awareness strength 𝑟 and 𝜌. In panel A, we fix 𝑟 and find 456 

that the median risk of infections, relative to the null risk-neutral model, is largely unchanged. 457 
This verifies that the skew of the size-bias from risk awareness is a key variable. In panel B, 458 
we see how median relative risk at larger events increases with risk awareness levels (i.e., as 459 

𝑟 falls), for fixed 𝜌. We highlight two event sizes 𝑛 = (24, 48), which have relative risks below 460 

and above 1 (dashed lines in A-B) and examine their tail probabilities in panels C-D. In C we 461 
find that, for both sizes, superspreading risk rises with prevalence as tail probabilities at any 462 

threshold 𝑐 scale with 𝜌. In D we note that risk awareness at a given prevalence can reduce 463 

likelihood of superspreading at smaller events but considerably amplify the superspreading 464 
risk at larger events (seen as an inversion in the ranking of curves from blue to red).  465 

Across our simulations, this amplification from host behaviours can be as much as tenfold (2-466 

2.5 natural log units in the tail probabilities at 4 ≤ 𝑐 ≤ 6 in panel D at 𝑛 = 48). We reinforce 467 

these conclusions by computing the associated statistics of new infections (panel A) and our 468 
small-scale reproduction numbers (panel B) in Fig 6. There we verify that the mean and 469 
variance of the number of infections grow with prevalence and the variability in risk awareness 470 
within the population, but that the realised heterogeneity is not inferable from the heterogeneity 471 
in reproduction numbers. Consequently, the population risk spectrum can independently drive 472 
increased superspreading risk at larger events that may have critical ramifications because 473 
larger events can support more infections and contribute disproportionately to the 474 
establishment of infection in the host population early in an epidemic. As a result, accurate 475 
characterisation of small-scale behavioural patterns, in combination with estimation of both 476 
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the wider-scale prevalence of infection in the population and transmission heterogeneities, are 477 
integral to correctly quantifying the risk of superspreading. 478 

 479 

Fig 6: Risk awareness is the key driver of superspreading risk at large events. We 480 
expand on the results in Fig 5 (using the same parameter values) and compute the mean and 481 

variance of the small-scale reproduction number 𝑅 and the number of infections at the event 482 

𝑦. Panel A plots these for differing prevalence 𝜌 at fixed risk-awareness strengths 𝑟 (smaller 483 

values indicate stronger risk awareness), while B varies 𝑟 at fixed 𝜌. Increasing 𝜌 leads to a 484 

higher mean number of infections and more variation in the number of infections. Decreasing 485 

𝑟 reduces the mean as well as the variance in the number of infections at smaller events but 486 

amplifies them at larger events, increasing the risk of superspreading. The statistics of the 487 
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reproduction numbers do not reflect the realised numbers of infections (decreases in 488 
variances at larger event sizes occur due to saturation) confirming that variability in the risk 489 
awareness between individuals is the major driver of the event-level infection patterns.  490 

Discussion 491 

Human behaviour is a key driver of infectious disease outbreaks, yet it is not often considered 492 
in detail in epidemiological modelling studies. While variations in individual perceptions of the 493 
risks associated with acquiring infection are known to shape important macroscopic properties 494 
of an epidemic, such as disease incidence time series or patterns of spread [11,17,32], few 495 
studies have explored how human behaviour impacts the chances of superspreading. This 496 
phenomenon, while infrequent and seeded at small scales such as events or gatherings, can 497 
generate disproportionate numbers of infections, which can substantially influence large-scale 498 
epidemic growth and persistence, particularly during early or emergent stages [3,5,26]. Data 499 
or even models connecting the spectrum of infection risk perceptions within host populations 500 
to attendance of events are rarely available or studied [9,24]. Here we aspired to resolve this 501 
gap by investigating the effects of plausible relationships between human behaviour and event 502 
attendance on superspreading and by highlighting how small-scale behavioural data collection 503 
can be useful for improving the accuracy of epidemic modelling and hence control. 504 

We developed a computational framework (Eqs. (1)-(10)) to model small-scale transmission 505 
at events (e.g., weddings, parties, sports matches or concerts) where superspreading may 506 
arise and individual behaviour can impact pathogen dynamics. Our framework quantifies, 507 
under a standard random mixing assumption, how finite event size effects together with 508 
heterogeneities in both the transmissibility among hosts and the rate of introductions of 509 
infections to an event, contribute to the numbers of infections generated at that event. This 510 
generalises several earlier approaches [23–25] and allowed us to define a within-event (small-511 
scale) reproduction number that measures how importations and individual-level variations 512 

impact the transmissibility at events. Our event reproduction number 𝑅(𝑥) meaningfully links 513 

to population-level characteristics through its convergence to 𝑅! when the event size and 514 
duration scale asymptotically (see Methods). 515 

Using 𝑅(𝑥), we showed that previous transmissibility metrics, whether derived from branching 516 

processes [1] or earlier event-level approaches [24], can overestimate transmission and the 517 
number of infections likely to occur at an event (Fig 2 and Supplement Fig S1). This result 518 
holds for any model in which the finite supply of susceptible individuals at an event is not 519 
accounted for and is exacerbated when there are multiple imported infections, because the 520 
number of susceptible individuals that any imported case can infect falls [33]. Further, this 521 
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finite-size effect highlighted that it is essential to collect data on the number of infections 522 
introduced into events to accurately quantify superspreading risk (Fig 3 and Supplement Fig 523 
S2), which we found to depend strongly on both the number of imported infections and more 524 
conventionally evaluated heterogeneities [3]. This insight hinted at one potential reason why 525 
behavioural patterns might affect the likelihood of superspreading – if risk awareness alters 526 
the distribution of infections imported into events, then it could also modulate the chances of 527 
superspreading occurring at those events.  528 

We explored this possibility using a parsimonious model of human behaviour. We posited that 529 
variations in infection risk perceptions or awareness in a population might cause more risk-530 
averse individuals to (probabilistically) avoid larger events, which they believe present a higher 531 
risk of acquiring infection. Our framework allowed us to model this as a size-biased weighting 532 
on the rate of introducing infections to an event that is a function of both the wider population 533 
prevalence and the event size. This draws on real-world observations that there is a spectrum 534 
of self-protective behaviours in host populations that are driven by prevalence baselines and 535 
heterogeneous risk perceptions [10,12,14,19,20]. Across numerous model simulations, we 536 
found, for given event sizes and fixed overall prevalence values, that risk awareness amplifies 537 
the chances of superspreading at large events (Fig 4 and Supplement Figs S3-4) but limits 538 
transmission at smaller events. 539 

Moreover, as either the prevalence or variability in risk awareness increases (characterised 540 

by strength parameter 𝑟), the chances of superspreading elevate (Fig 5 and Fig 6). This holds 541 

irrespective of the inherent heterogeneity in transmissibility at the event (characterised by 542 

dispersion parameter 𝑘), which describes the impact of conventional superspreading drivers 543 

such as pathogen biology and host characteristics. Further, the mean, variance and probability 544 
of large numbers of infections at the event all support this trend. Since this amplification of 545 
within-event transmission occurs precisely at those events with the capacity to support larger 546 
numbers of infections (i.e., at larger events, where the effect of susceptible depletion when 547 
there are more imports is less), this behavioural mechanism can have major consequences. 548 
This may be especially critical during the sensitive, initial stages of potential epidemics, when 549 
increased superspreading can spur growth and trigger progression from sporadic outbreaks 550 
into sustained waves of infection [3,5]. 551 

Although these results underscore the importance of human behaviour in driving infectious 552 
disease outbreaks, our approach, like any mathematical modelling study, involved several 553 
simplifying assumptions. First, we assumed random mixing within events, so any susceptible 554 
individual can interact with any infectious individual with equal probability. In reality, contact 555 
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networks form at events, and the structure of these networks may differ with the size and type 556 
of event. While frameworks for embedding contact structure in epidemiological models exist 557 
(for example, multilayer networks can be used to link risk awareness and infection structure 558 
[32–34]), they can be complex and difficult to interpret or require high resolution data that are 559 
typically unavailable [9,30,35]. We also note that our inclusion of transmission heterogeneities 560 
as in [1], together with our weighting of the risk of introductions based on event size, do reflect 561 
some features of real-world transmission networks while preserving interpretability.  562 

Second, we assumed that event sizes and durations were pre-determined and fixed the overall 563 
import rate across all events. However, risk awareness could itself reduce event durations, 564 
sizes, frequencies and thus the prevalence of infections. Conversely, if events are prevented, 565 
due to government policy, then less risk-averse individuals may initiate their own unregulated 566 
gatherings, which could increase transmission (a rebound effect) [15]. This feedback between 567 
behaviour and environment (risk and event properties) might affect chances of superspreading 568 
[11]. Characterising this feedback is difficult due to a lack of data linking event properties and 569 
human behaviour [9,36]. Future collection and analysis of such data will be vital for grounding 570 
hypotheses and avoiding overly strong or prescriptive modelling assumptions.  571 

Third, and relatedly, we did not attempt to model the causes of or temporal changes in the 572 
different levels of perceived infection risks among individuals. During initial epidemic stages 573 
and especially for novel pathogens, data can be sparse and erratic [35,37]. The perception of 574 
the risks associated with acquiring infection may therefore be affected by unreliable reports 575 
and major uncertainty about the true risk posed by the invading pathogen. Moreover, these 576 
risk perceptions might change across time as population immunity builds or if pharmaceuticals 577 
that reduce the severity of infections are introduced at later epidemic stages. It could even be 578 
the case that after the epidemic peak, the less risk averse individuals are actually more likely 579 
to harbour at least partial immunity. Modelling these poorly understood effects would require 580 
strong assumptions that are hard to validate.  581 

To avoid all of the above issues, we only considered initial epidemic stages and focussed on 582 
isolating the risk-awareness induced patterns given a set of events and a prevalence baseline. 583 
We made a minimal assumption, supported by survey data on population behaviours [12–14], 584 
that there is a spectrum of risk about this baseline. Our aim was twofold – to discover how risk 585 
perceptions could impact superspreading and to show why collecting auxiliary data describing 586 
variations in epidemic-related human behaviour, such as event attendance, are necessary. 587 
Improving understanding of the coupling between risk-sensitive behaviours and epidemiology 588 
would create a platform for future investigation of the outstanding problems mentioned above. 589 
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While our modelling approach is relatively simple, it provides clear evidence that behavioural 590 
patterns can substantially amplify the risk of superspreading. Heterogeneity in infection risk 591 

perception within host populations, modelled by an event size-biased importation rate 𝜖(𝑛), 592 

translates into the potential for substantial transmission at large events during early stages of 593 
infectious disease epidemics. Because superspreading plays a pivotal role in epidemic growth 594 
and the chance of pathogen establishment, further data are required to uncover and specify 595 

the form of 𝜖(𝑛) and the mechanisms that shape the coupling between epidemiological and  596 

behavioural patterns. We bolster calls for enhanced surveillance that collects such data [9,30]. 597 
Surveys linking perceptions of infection risk with attendance at events [19] are essential to 598 
determine when variability in risk awareness may be a principal driver of superspreading. This 599 
is important to inform, design and target public health interventions more effectively [4]. 600 
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