1 Knowledge, Attitudes and Demand Toward Cardiovascular Polygenic Risk Testing in Clinical

2 Practice: Cross-Sectional Survey of Patients

- 3 Short title: Polygenic risk testing patient survey
- 4
- 5 Shanjot Brar, MD^{1*}, Jared Townsend, BSc¹, Joban Phulka, MD¹, Laura Halperin, MD¹, Janet Liew,
- 6 BSc², Jeremy Parker, PhD², Liam R. Brunham, MD, PhD^{2,3}, Zachary Laksman, MD^{2*}
- 7 1. Department of Medicine, University of British Columbia, Vancouver, Canada
- 8 2. Division of Cardiology, Department of Medicine, University of British Columbia,
- 9 Vancouver, Canada
- 10 3. Department of Medical Genetics, Centre for Heart Lung Innovation
- 11
- 12 *Corresponding authors:
- 13 a. Shanjot Brar, MD
- 14 Gordon & Leslie Diamond Health Care Centre
- 15 2775 Laurel St, 9th Floor, Vancouver, BC, Canada V5Z1M9
- 16 Tel: 778-242-6293. Email: <u>shanjot@student.ubc.ca</u>
- 17 b. Zachary Laksman, MD (senior corresponding author)
- 18 1033 Davie St Suite 211, Vancouver, BC V6E 1M7
- 19 Tel: 604-806-8256. Email: zlaksman@mail.ubc.ca

- 21
- 22

23 ABSTRACT

24 Background:

25 The goal of this study was to assess patients' prior exposure and current level of knowledge of

26 polygenic risk scores (PRSs). We also explored reactions to receiving a high-risk or low-risk

27 score, and gauged the overall attitudes and demand patients have with regards to PRSs.

28 Methods:

29 We developed an online investigator-designed survey based on existing validated tools and

30 previously designed surveys on genetic testing. There were two versions of the survey, one

31 including a hypothetical high-risk PRS and one with a low-risk PRS. We administered the survey

32 among patients attending a specialized cardiovascular prevention clinic.

33 Results:

34 A total of 226 participants responded to the survey. The study population was predominantly 35 high-income earning, educated, and of European descent. 177 patients (79%) had never read or heard about polygenic testing. 209 patients (93%) had never discussed polygenic testing with 36 37 their health care professional (HCP). 208 patients (93%) had never received polygenic testing. The average score on the knowledge guiz was 2.47/10 [95% C.I. (2.17, 2.78)]. Participants that 38 39 received a high-risk survey scored 20.52/35 [95% C.I. (16.14, 24.9)] with regards to negative 40 emotions while low-risk survey participants scored 17.96/35 [95% C.I. (13.98, 21.94)] (p<0.001). 41 Participants that received a high-risk survey scored 5.78/10 [95% C.I. (3.77, 7.79)] with regards to uncertainty and low-risk survey participants scored 4.34/10 [95% C.I. (2.50, 6.18)] (p<0.001). 42 43 Participants that received a high-risk survey scored 12.42/15 [95% C.I. (10.43, 14.41)] for 44 demand and low-risk survey participants scored 12.22/15 [95% C.I. (9.66, 14.78)] (p=0.549).

Conclusions:

46	Patients have limited	prior exposure and	knowledge of PRSs.	Compared to recei	ving a low-risk
----	-----------------------	--------------------	--------------------	-------------------	-----------------

- 47 score, participants receiving a high-risk score have more negative emotions and feelings of
- 48 uncertainty. Despite the lack of knowledge, and the high rate of negative emotions and
- 49 uncertainty, demand for PRSs in cardiology practice is high and expected to increase.

67 **ABBREVIATIONS**

- 68 Non-standard Abbreviations and Acronyms:
- 69 PRS(s) polygenic score(s)
- 70 AHA American Heart Association
- 71 UBC University of British Columbia
- 72 FACTOR Feelings About genomiC Testing Results
- 73 CAD coronary artery disease
- 74 CAC coronary artery calcium
- 75 CDC Centres for Disease Control and Prevention
- 76 NIH National Institutes of Health
- 77 DTC direct to consumer
- 78
- 79
- 80
- 81
- 82
- 83
- 00
- 84
- 85
- 86
- 87
- 57
- 88

89 INTRODUCTION

90	Polygenic risk scores (PRSs) are being increasingly used to help predict diseases with complex
91	inheritance patterns that have thus far not been explained by mendelian inheritance, such as
92	atrial fibrillation and coronary artery disease. ^{1,2} PRSs also have the potential to contribute to
93	the developing field of personalized medicine beyond risk prediction, and may inform
94	personalized treatment strategies. ³ A recent American Heart Association (AHA) scientific
95	statement explored the science, clinical considerations and future challenges of PRSs for
96	cardiovascular disease and concluded that the addition of PRSs to clinical risk tools consistently
97	enhances predictive ability. ⁴ There are many technical limitations to PRSs, however beyond this,
98	the current workforce is not equipped to utilize PRSs in clinical practice due to insufficient
99	knowledge, training, and tools. ⁵ Patients and consumers have minimal exposure and experience
100	incorporating complex genomic information and probabilities into their decision making. ⁶
101	Studies have investigated patient responses to PRSs in other clinical diseases ^{1,7,8} , however such
102	information is lacking in the cardiovascular space. Understanding these care gaps will help to
103	inform future implementation strategies.
104	
105	In this study, we directly tested the hypothesis that patients are poorly prepared to receive and
106	integrate genetic results, including cardiovascular PRSs. To do this, we assessed patients' prior

107 exposure and current level of knowledge of PRSs. We also explored patients' reactions to

108 receiving a high-risk or low-risk result. Finally, we gauged the overall attitudes and demand

109 patients have with regards to PRSs.

110

111 METHODS

112 We used an online survey with quantitative responses through the University of British 113 Columbia (UBC) Survey tool (Supplemental Appendix). The UBC Survey tool is a Canadian-114 hosted program that is compliant with the British Columbia Freedom of Information and 115 Protection Act. This project was approved by the UBC Research Ethics Board, REB# H22-02087. 116 Initially, a consecutive chart review of patients that were attending at the St. Paul's Hospital 117 Healthy Heart Program was conducted. The Healthy Heart Program is a guaternary referral 118 centre located in Vancouver, British Columbia, which focuses on primary and secondary 119 cardiovascular disease prevention. Patients that had previously consented to be contacted for 120 research were identified from chart review. These patients were then individually contacted via 121 phone call to consent to receive an email to participate. Patients who provided verbal consent 122 were then individually sent an email which included a consent form and a link to the survey. 123 Participants were randomly assigned 1:1 to receive either a high-risk or low-risk version of the 124 survey. An example recruitment email is provided in the supplemental appendix. 125 126 The survey design was based on existing validated tools and previously designed surveys on 127 genetic testing^{1,7–13} and was divided into the following components: a) Demographics, b) Prior 128 knowledge, c) Knowledge of polygenic risk scores, d) Educational video e) Response toward a "high-risk" or "low-risk score" and f) Demand. Participant knowledge was assessed using a ten-129 130 question quiz, with a total score ranging from 0-10. The high-risk survey included an example of 131 a polygenic risk score percentile of >95%, while the low-risk survey included an example of a

132 polygenic risk score percentile <5%. The Feelings About genomic Testing Results (FACToR) scale

133	was adapted and used to assess participant reactions to high-risk and low-risk results. ¹ Negative
134	emotions were assessed using seven statements, with each statement being scored from a
135	range of 0-5 (1 = Not at all, 5 = A great deal). Uncertainty was assessed using two statements
136	with each statement being scored from a range of 1-5 (1 = Not at all, 5 = A great deal). A total
137	score was then tabulated for both negative emotions (minimum = 7, maximum = 35) and
138	uncertainty (minimum = 2, maximum = 10). A higher score indicated higher uncertainty, and
139	more negative emotions. Participant demand for PRSs was assessed using three separate
140	statements with each statement being scored from a range of 0-5 (1 = strongly disagree, 5 =
141	strongly agree). A total score was then tabulated (minimum = 3, maximum = 15). A higher score
142	indicated greater demand. The survey in its entirety, including both high-risk and low-risk
143	examples, as well as the educational video are provided in the supplemental material.
144	
145	RESULTS
146	A total of 1,756 patient charts were reviewed, of which 1,130 patients who had expressed
147	interest in research participation were identified. These patients were individually contacted via
148	telephone and 366 patients consented to participate in our survey. Half the participants were
149	sent the high-risk survey (n=183) and half were sent the low-risk survey (n=183) via email. 118
150	participants responded to the high-risk survey and 108 participants responded to the low-risk

151 survey (Figure 1).

152

Participant characteristics including age, gender, highest level of education, household income
and ethnicity are listed in Table 1. 177 patients (79%) had never read or heard about polygenic

155	risk scores. 209 patients (93%) had never discussed polygenic risk scores with their health care
156	professional (HCP). 208 patients (93%) had never received polygenic risk score results (Figure
157	2). The average score on the knowledge quiz was 2.47/10 [95% C.I. (2.17, 2.78)].
158	Participants that received a high-risk survey scored 20.52/35 [95% C.I. (16.14, 24.9)] with
159	regards to negative emotions while participants that received a low-risk survey scored 17.96/35
160	[95% C.I. (13.98, 21.94)] (p<0.001). Participants that received a high-risk survey scored 5.78/10
161	[95% C.I. (3.77, 7.79)] with regards to uncertainty while participants that received a low-risk
162	survey scored 4.34/10 [95% C.I. (2.50, 6.18)] (p<0.001) (Table 2).
163	
164	Participant demand for PRS testing was high overall 12.32/15 [95% C.I. (11.99, 12.65)] and was
165	not significantly different between individuals who received a high-risk survey 12.42/15 [95%
166	C.I. (10.43, 14.41)] compared to a low-risk survey 12.22/15 [95% C.I. (9.66, 14.78)] (p=0.549)
167	(Table 3).
168	
169	DISCUSSION
170	PRSs have a promising future application for identifying individuals at risk of cardiovascular
171	disease and creating more individualized treatment plans, however, there are many technical
172	and systematic limitations that must be overcome prior to their inclusion in routine
173	cardiovascular care. ^{2,4} As these limitations are overcome, and PRSs are used more regularly in
174	routine care, it is increasingly important that we understand patient perspectives as we train
175	our future workforce and develop implementation strategies across different health systems.

176 Previous studies have investigated patient responses to PRSs in other clinical diseases ^{1,7,8},

however to our knowledge, this is the first study examining patient perspectives in thecardiovascular space.

179

180	One of the proposed goals of PRSs in clinical practice is to use genetic based risk as a means of
181	promoting healthy behaviours and motivating high risk individuals to make lifestyle
182	changes. ^{4,6,15,16} Numerous studies however have failed to show a change in patient behaviour
183	by communicating genetic risk. ^{17–19} Knowles et. al. demonstrated no major effect of
184	communicating a genetic risk score for CAD in reducing certain health risk behaviours. ²⁰
185	Conversely, studies have shown behaviour modification associated with patients who
186	underwent coronary artery calcium (CAC) testing. ^{21,22} Although patients' behavioural response
187	to genetic risk is influenced by multiple factors, a significant barrier includes patients'
188	understanding and interpretation of genetic risk. ^{16,23,24} Many authors have suggested that
189	patients' understanding of cardiovascular PRSs is poor. ²⁵ Our study confirms this finding and
190	despite the education level of our surveyed patients, 177 patients (79%) had never read or
191	heard about polygenic testing, and the average score on the knowledge quiz was 2.47/10
192	(24.7%). Moreover, the survey population was selected from a group of patients already
193	followed at a sub-specialized cardiovascular disease prevention clinic, and an even lower level
194	of exposure and knowledge would be expected if this survey was offered to a broader and
195	more diverse population.
196	Genetics related literacy impacts the value patients place on genetic information as well as how
197	patients evaluate the utility of genetic testing. ^{13,26} Low genetic literacy has also been associated

198 with poor understanding of the limitations of genetic testing.²⁷ This implies that a low

199	knowledge of genetic testing, as seen in our study, would result in a significant risk of
200	misinterpretation or misapplication of genetic risk scoring. Although this phenomenon has not
201	been explicitly reported in the cardiovascular space, it is well documented in other clinical fields
202	that integrate genetic testing. ^{12,27} It is unclear, the level of knowledge or the methods of
203	knowledge translation that are required for the clinical implementation of cardiovascular PRSs,
204	and further understanding of this topic is needed. Furthermore, it has already been identified
205	both by the CDC and the NIH that the current workforce of clinicians and health care providers
206	are undertrained and poorly suited to provide the requisite education regarding complex
207	probabilistic polygenic testing. ^{28,29}
208	
209	Our results also demonstrate that patients given a high-risk PRS report higher levels of negative
210	emotions and uncertainty about PRSs than those who received a low-risk PRS. This was an
211	expected finding, as previous studies have shown, that patients will often perceive health data
212	as threats and the recommended behavioural change will be quite different from their health
213	care provider. ²³ This finding is seen even more commonly when it is related to genetic
214	information. ^{30,31} This demonstrates a dilemma for clinicians and health care providers as
215	patients with high-risk PRS will likely require more intensive risk modifying treatment plans and
216	closer monitoring but may also have a significant amount of uncertainty and negative emotions
217	to overcome. Previous studies have shown that patient interpretation of genetic risk
218	information is not only related to the statistical findings, but also to patients' uncertainties
219	related to the topic. ^{32,33} The higher degree of uncertainty and negative emotions will be an
220	obstacle for clinical implementation and must be accounted for in future integration of PRSs.

221

222	Despite the high level of negative emotions and uncertainty, surveyed patients reported that
223	the health benefits of PRS outweigh the risks (79.6% responded agree or strongly agree) and
224	believe that polygenic testing should be included in heart disease prevention programs for the
225	general public (81.9% responded agree or strongly agree). Furthermore, surveyed patients
226	reported that they would like PRS included in their care plans (85.3% responded agree or
227	strongly agree). Taken together, this suggests a high demand for use of PRSs in clinical practice.
228	This trend was demonstrated across all participant groups, regardless of whether they received
229	a high-risk score, or a low-risk score. These findings were expected, as a demand for genetic
230	testing in the general population is high, as exemplified by the estimated 26 million people that
231	had used online direct-to-consumer (DTC) genetic testing by the end of 2018. ¹⁵ A high demand
232	for PRSs is a promising finding for the future implementation of PRSs, however as highlighted
233	above, the majority of patients have poor knowledge and understanding of PRSs, and thus the
234	potential for misapplication remains quite high.
235	
236	The future of PRSs includes a potential for individualized screening, preventative measures, and
237	pharmacotherapy. This brings a slew of challenges for clinicians and health care providers,
238	including how to determine the best ways to communicate the science. Guidelines on how to
239	navigate communication of genetic information to patients with cardiovascular disease such as

240 inherited rhythm disorders, hypertrophic cardiomyopathy and familial hypercholesteremia

241 exist, however such guidelines are lacking for PRSs.^{34,35} Importantly clinicians must be able to

242 effectively communicate the benefits, risk and limitations of PRSs.⁶ There is clinical need to

	develop educational materials for both patients and guidelines for clinicians on how to convey
244	this information. Knowledge translation in PRSs will be a great challenge moving forward,
245	however there are many evidence-based strategies that exists for the presentation of genetic
246	risk. ^{36,37} Incorporating these lessons to PRSs will be pivotal to ensure patients understand and
247	can effectively engage in their care. Lessons can also be learned from shared decision making
248	tools in the cardiovascular space, such as tools to help guide patient centered conversations
249	about anticoagulation in atrial fibrillation. ³⁸ Previous studies have shown that such shared
250	decision making tools can significantly lower decisional conflict between patients and
251	clinicians. ³⁹ Development of similar tools for PRSs would potentially enhance patient and
252	physician experience with navigating discussion and implementation of PRSs.
253	
254	Limitations
254 255	Limitations Our study has important limitations, largely related to the selection of our patient population.
254 255 256	Limitations Our study has important limitations, largely related to the selection of our patient population. The study population was predominantly high-income earning, educated, and of European
254 255 256 257	Limitations Our study has important limitations, largely related to the selection of our patient population. The study population was predominantly high-income earning, educated, and of European descent. As our survey required consent at two different stages prior to distribution of the
254 255 256 257 258	Limitations Our study has important limitations, largely related to the selection of our patient population. The study population was predominantly high-income earning, educated, and of European descent. As our survey required consent at two different stages prior to distribution of the survey, this specific population is likely a result of selection bias and may indicate that this
254 255 256 257 258 259	LimitationsOur study has important limitations, largely related to the selection of our patient population.The study population was predominantly high-income earning, educated, and of Europeandescent. As our survey required consent at two different stages prior to distribution of thesurvey, this specific population is likely a result of selection bias and may indicate that thisspecific population is more interested in PRSs. This would need further investigation, however
254 255 256 257 258 259 260	Limitations Our study has important limitations, largely related to the selection of our patient population. The study population was predominantly high-income earning, educated, and of European descent. As our survey required consent at two different stages prior to distribution of the survey, this specific population is likely a result of selection bias and may indicate that this specific population is more interested in PRSs. This would need further investigation, however would contribute to the growing concern regarding widening care disparities related to PRSs. ¹⁴
254 255 256 257 258 259 260 261	Limitations Our study has important limitations, largely related to the selection of our patient population. The study population was predominantly high-income earning, educated, and of European descent. As our survey required consent at two different stages prior to distribution of the survey, this specific population is likely a result of selection bias and may indicate that this specific population is more interested in PRSs. This would need further investigation, however would contribute to the growing concern regarding widening care disparities related to PRSs. ¹⁴
254 255 256 257 258 259 260 261 262	Limitations Our study has important limitations, largely related to the selection of our patient population. The study population was predominantly high-income earning, educated, and of European descent. As our survey required consent at two different stages prior to distribution of the survey, this specific population is likely a result of selection bias and may indicate that this specific population is more interested in PRSs. This would need further investigation, however would contribute to the growing concern regarding widening care disparities related to PRSs. ¹⁴ Further, our method of accessing patients was through a specialized cardiovascular disease prevention clinic where patient attendance likely indicates their want, or need, to make risk

a routine cardiology clinic. Additionally, we accessed patients that had already consented to

265	research involvement due to the process of ethical approval. As such these patients are likely
266	highly engaged in their care and may not represent the patient population in contemporary
267	clinical practice.
268	Conclusions
269	Patients attending a specialized cardiovascular clinic focused on primary and secondary
270	prevention had limited prior exposure and knowledge with regards to PRSs. When compared to
271	receiving a low-risk score, participants that receive a high-risk score have more negative
272	emotions and feelings of uncertainty. Despite the lack of knowledge, and the high rate of
273	negative emotions and uncertainty, patient demand for PRSs in contemporary cardiology
274	practice is high. The analytical aspects of PRSs are continually being addressed, however there
275	needs to be concurrent focus on improving patient and provider exposure and knowledge to
276	avoid future harm. Future studies should focus on the development of educational materials
277	and guidelines to address the barriers brought forward by this study.
278	
279	SOURCE OF FUNDING
280	This research did not receive any specific grant from funding agencies in the public, commercial,
281	or not-for-profit sectors.
282	
283	DISCLOSURES
284	The authors have no conflicts to disclose.
285	
286	

287 **REFERENCES**

- 288 1. Peck L, Borle K, Folkersen L, Austin J. Why do people seek out polygenic risk scores for
- complex disorders, and how do they understand and react to results? *European Journal of*
- 290 *Human Genetics*. 2022;30(1):81–87.
- 291 2. Phulka JS, Ashraf M, Bajwa BK, Pare G, Laksman Z. Current State and Future of Polygenic
- 292 Risk Scores in Cardiometabolic Disease: A Scoping Review. *Circulation: Genomic and Precision*
- 293 *Medicine*. 2023;16(3):286–313.
- 3. Yang S, Zhou X. Accurate and Scalable Construction of Polygenic Scores in Large Biobank
- 295 Data Sets. *The American Journal of Human Genetics*. 2020;106(5):679–693.
- 4. O'Sullivan JW, Raghavan S, Marquez-Luna C, Luzum JA, Damrauer SM, Ashley EA, O'Donnell
- 297 CJ, Willer CJ, Natarajan P, on behalf of the American Heart Association Council on Genomic and
- 298 Precision Medicine; Council on Clinical Cardiology; Council on Arteriosclerosis, Thrombosis and
- 299 Vascular Biology; Council on Cardiovascular Radiology and Intervention; Council on Lifestyle and
- 300 Cardiometabolic Health; and Council on Peripheral Vascular Disease. Polygenic Risk Scores for
- 301 Cardiovascular Disease: A Scientific Statement From the American Heart Association.
- 302 *Circulation*. 2022;146(8).
- 303 5. Haga SB, Kim E, Myers RA, Ginsburg GS. Primary Care Physicians' Knowledge, Attitudes, and
- 304 Experience with Personal Genetic Testing. *Journal of Personalized Medicine*. 2019;9(2):29.
- 305 6. Slunecka JL, Van Der Zee MD, Beck JJ, Johnson BN, Finnicum CT, Pool R, Hottenga J-J, De
- 306 Geus EJC, Ehli EA. Implementation and implications for polygenic risk scores in healthcare.
- 307 *Human Genomics*. 2021;15(1):46.

- 308 7. Suckiel SA, Braganza GT, Aguiñiga KL, Odgis JA, Bonini KE, Kenny EE, Hamilton JG, Abul-Husn
- 309 NS. Perspectives of diverse Spanish- and English-speaking patients on the clinical use of
- 310 polygenic risk scores. *Genetics in Medicine*. 2022;24(6):1217–1226.
- 8. Hollitt GL, Siggs OM, Ridge B, Keane MC, Mackey DA, MacGregor S, Hewitt AW, Craig JE,
- 312 Souzeau E. Attitudes Towards Polygenic Risk Testing in Individuals with Glaucoma.
- 313 *Ophthalmology Glaucoma*. 2021:S2589419621002635.
- 9. Saya S, McIntosh JG, Winship IM, Milton S, Clendenning M, Kyriakides M, Oberoi J,
- 315 Buchanan DD, Jenkins MA, Emery JD. Informed choice and attitudes regarding a genomic test to
- 316 predict risk of colorectal cancer in general practice. *Patient Education and Counseling*.
- 317 2022;105(4):987–995.
- 318 10. Smit AK, Sharman AR, Espinoza D, Wallingford C, Young M, Dunlop K, Tiller J, Newson AJ,
- 319 Meiser B, Cust AE, Yanes T. Knowledge, views and expectations for cancer polygenic risk testing
- 320 in clinical practice: A cross-sectional survey of health professionals. *Clinical Genetics*.
- 321 2021;100(4):430–439.
- 322 11. Scherr CL, Kalke K, Ramesh S, Fakhari H, Dellefave-Castillo LM, Smith ME, Kalny C, McNally
- 323 EM, Rasmussen-Torvik LJ. Integrating clinical genetics in cardiology: Current practices and
- recommendations for education. *Genetics in Medicine*. 2022;24(5):1054–1061.
- 325 12. Haga SB, Barry WT, Mills R, Ginsburg GS, Svetkey L, Sullivan J, Willard HF. Public Knowledge
- 326 of and Attitudes Toward Genetics and Genetic Testing. *Genetic Testing and Molecular*
- 327 *Biomarkers*. 2013;17(4):327–335.
- 328 13. Kaphingst KA, Blanchard M, Milam L, Pokharel M, Elrick A, Goodman MS. Relationships
- 329 Between Health Literacy and Genomics-Related Knowledge, Self-Efficacy, Perceived

- 330 Importance, and Communication in a Medically Underserved Population. Journal of Health
- 331 *Communication*. 2016;21(sup1):58–68.
- 332 14. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current
- polygenic risk scores may exacerbate health disparities. *Nature Genetics*. 2019;51(4):584–591.
- 15. Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments.
- 335 *Genome Medicine*. 2020;12(1):44.
- 16. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk
- 337 scores. *Nature Reviews Genetics*. 2018;19(9):581–590.
- 17. Weinberg DS, Myers RE, Keenan E, Ruth K, Sifri R, Ziring B, Ross E, Manne SL. Genetic and
- 339 Environmental Risk Assessment and Colorectal Cancer Screening in an Average-Risk Population:
- A Randomized Trial. *Annals of Internal Medicine*. 2014;161(8):537.
- 18. Silarova B, Sharp S, Usher-Smith JA, Lucas J, Payne RA, Shefer G, Moore C, Girling C,
- Lawrence K, Tolkien Z, Walker M, Butterworth A, Di Angelantonio E, Danesh J, Griffin SJ. Effect
- 343 of communicating phenotypic and genetic risk of coronary heart disease alongside web-based
- 344 lifestyle advice: the INFORM Randomised Controlled Trial. *Heart*. 2019;105(13):982–989.
- 19. Hollands GJ, French DP, Griffin SJ, Prevost AT, Sutton S, King S, Marteau TM. The impact of
- 346 communicating genetic risks of disease on risk-reducing health behaviour: systematic review
- 347 with meta-analysis. *BMJ*. 2016:i1102.
- 20. Knowles JW, Zarafshar S, Pavlovic A, Goldstein BA, Tsai S, Li J, McConnell MV, Absher D,
- 349 Ashley EA, Kiernan M, Ioannidis JPA, Assimes TL. Impact of a Genetic Risk Score for Coronary
- 350 Artery Disease on Reducing Cardiovascular Risk: A Pilot Randomized Controlled Study. *Frontiers*
- 351 *in Cardiovascular Medicine*. 2017;4:53.

352	21. Kalia NK, Cespedes L, Youssef G, Li D, Budoff MJ. Motivational effects of coronary artery
353	calcium scores on statin adherence and weight loss. Coronary Artery Disease. 2015;26(3):225–
354	230.
355	22. Mamudu HM, Paul TK, Veeranki SP, Budoff M. The effects of coronary artery calcium
356	screening on behavioral modification, risk perception, and medication adherence among
357	asymptomatic adults: A systematic review. Atherosclerosis. 2014;236(2):338–350.
358	23. Marteau TM, Weinman J. Self-regulation and the behavioural response to DNA risk
359	information: A theoretical analysis and framework for future research. Social Science &
360	Medicine. 2006;62(6):1360–1368.
361	24. Austin J. The effect of genetic test-based risk information on behavioral outcomes: A critical
362	examination of failed trials and a call to action. American Journal of Medical Genetics Part A.
363	2015;167(12):2913–2915.
364	25. Klarin D, Natarajan P. Clinical utility of polygenic risk scores for coronary artery disease.
365	Nature Reviews Cardiology. 2022;19(5):291–301.
366	26. Hooker GW, Peay H, Erby L, Bayless T, Biesecker BB, Roter DL. Genetic literacy and patient
367	perceptions of IBD testing utility and disease control: a randomized vignette study of genetic
368	testing. Inflammatory Bowel Diseases. 2014;20(5):901–908.
369	27. Milo Rasouly H, Cuneo N, Marasa M, DeMaria N, Chatterjee D, Thompson JJ, Fasel DA,
370	Wynn J, Chung WK, Appelbaum P, Weng C, Bakken S, Gharavi AG. GeneLiFT: A novel test to
371	facilitate rapid screening of genetic literacy in a diverse population undergoing genetic testing.
372	Journal of Genetic Counseling. 2021;30(3):742–754.

28. Osei, Jeffery. Polygenic Risk Scores in Clinical Practice? Still Making the Case. *Genomic and*

374 Precision Health.

29. Wand H, Lambert SA, Tamburro C, Iacocca MA, O'Sullivan JW, Sillari C, Kullo IJ, Rowley R,

376 Dron JS, Brockman D, Venner E, McCarthy MI, Antoniou AC, Easton DF, Hegele RA, et al.

377 Improving reporting standards for polygenic scores in risk prediction studies. *Nature*.

378 2021;591(7849):211–219.

379 30. Prior L, Wood F, Gray J, Pill R, Hughes D. Making risk visible: The role of images in the

assessment of (cancer) genetic risk. *Health, Risk & Society*. 2002;4(3):241–258.

381 31. Walter FM. Lay Understanding of Familial Risk of Common Chronic Diseases: A Systematic

382 Review and Synthesis of Qualitative Research. *The Annals of Family Medicine*. 2004;2(6):583–

383 594.

384 32. Wöhlke S, Schaper M, Schicktanz S. How Uncertainty Influences Lay People's Attitudes and

385 Risk Perceptions Concerning Predictive Genetic Testing and Risk Communication. Frontiers in

386 *Genetics*. 2019;10:380.

387 33. Engelhardt EG, Pieterse AH, Han PKJ, Van Duijn-Bakker N, Cluitmans F, Maartense E, Bos

388 MMEM, Weijl NI, Punt CJA, Quarles Van Ufford-Mannesse P, Sleeboom H, Portielje JEA, Van Der

389 Hoeven KJM, Woei-A-Jin FJS, Kroep JR, et al. Disclosing the Uncertainty Associated with

390 Prognostic Estimates in Breast Cancer: Current Practices and Patients' Perceptions of

391 Uncertainty. *Medical Decision Making*. 2017;37(3):179–192.

392 34. Burns C, James C, Ingles J. Communication of genetic information to families with inherited

393 rhythm disorders. *Heart Rhythm*. 2018;15(5):780–786.

- 394 35. Platt J. A Person-Centered Approach to Cardiovascular Genetic Testing. *Cold Spring Harbor*
- 395 *Perspectives in Medicine*. 2020;10(7):a036624.
- 396 36. Lautenbach DM, Christensen KD, Sparks JA, Green RC. Communicating genetic risk
- 397 information for common disorders in the era of genomic medicine. Annual Review of Genomics
- 398 *and Human Genetics*. 2013;14:491–513.
- 399 37. Hamilton KV, Fox LC, Nichols KE. How I Communicate with Patients and Families about
- 400 Germline Genetic Information. *Blood*. 2023:blood.2022017379.
- 401 38. Eckman MH, Wise RE, Naylor K, Arduser L, Lip GYH, Kissela B, Flaherty M, Kleindorfer D,
- 402 Khan F, Schauer DP, Kues J, Costea A. Developing an Atrial Fibrillation Guideline Support Tool
- 403 (AFGuST) for shared decision making. Current Medical Research and Opinion. 2015;31(4):603-
- 404 614.
- 405 39. Wang PJ, Lu Y, Mahaffey KW, Lin A, Morin DP, Sears SF, Chung MK, Russo AM, Lin B, Piccini
- 406 J, Hills MT, Berube C, Pundi K, Baykaner T, Garay G, et al. Randomized Clinical Trial to Evaluate
- 407 an Atrial Fibrillation Stroke Prevention Shared Decision-Making Pathway. Journal of the
- 408 *American Heart Association*. 2023;12(3):e028562.
- 409

- 411
- 412
- 413
- 414
- 415

TABLES

417 Table 1. Patient demographics.

Age, n (%)	
18-30 years	5 (2)
31-40 years	10 (4)
41-50 years	27 (12)
51-60 years	57 (25)
>60 years	127 (56)
Gender, n (%)	
Male	121 (54)
Female	105 (46)
Highest level of education, n (%)	
Did not Finish High School	6 (3)
High School	27 (12)
Post-Secondary	77 (34)
Bachelor's Degree	77 (34)
Master's Degree	21 (9)
Doctorate/PhD	18 (8)
Household income, n (%)	
<\$50,000	37 (16)
\$50,000 - \$150,000	110 (49)
>\$150,000	79 (35)
Ethnicity, n (%)	
African	1 (0)
European	155 (69)
East Asian	15 (7)
South Asian	11 (5)
Southeast Asian	6 (3)
First Nations/Indigenous	2(1)
Hispanic	1(0)
Middle Eastern	2(1)
Other	33 (15)

425 **Table 2. Participant negative emotions and uncertainty scores for polygenic risk scores.**

	High Risk	Low Risk			
	N = 118	N = 108	P value		
Negative Emotion					
Total Score (/35) ± SD	20.52 ± 4.38	17.96 ± 3.98	<0.001		
Uncertainty					
Total Score (/10) ± SD	5.78 ± 2.01	4.34 ± 1.84	<0.001		

426

427 Table 3. Participant demand for polygenic risk scores.

		High Risk	Low Risk	P value
		N = 118	N = 108	
	Belief			
	Total Score (/15) ± SD	12.42 ± 1.99	12.22 ± 2.56	0.549
428				
429				
430				
431				
432				
433				
434				
435				
436				
437				
438				

461

462

	Yes, n (%)	No, n (%)
A. Have you ever read or heard about polygenic testing?	47 (21)	177 (79)
B. Have you ever discussed polygenic testing with an HCP?	15 (7)	209 (93)
C. Have you ever received polygenic testing?	16 (7)	208 (93)

463 **Figure 2. Participant prior knowledge of Polygenic Risk Scores (PRS)**

464

465 SUPPLEMENTAL MATERIAL

466 Material attached separately.