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Abstract 

Background: We investigated systemic biochemical changes in Alzheimer’s disease (AD) by 

investigating the relationship between circulating plasma metabolites and both clinical and 

biomarker-assisted diagnosis of AD. 

Methods: We used an untargeted approach with liquid chromatography coupled to high-

resolution mass spectrometry to measure exogenous and endogenous small molecule metabolites 

in plasma from 150 individuals clinically diagnosed with AD and 567 age-matched elderly  

without dementia of Caribbean Hispanic ancestry.  Plasma biomarkers of AD were also 

measured including P-tau181, Aβ40, Aβ42, total tau, neurofilament light chain (NfL) and glial 

fibrillary acidic protein (GFAP). Association of individual and co-expressed modules of 

metabolites were tested with the clinical diagnosis of AD, as well as biologically-defined AD 

pathological process based on P-tau181 and other biomarker levels.  

Results: Over 4000 metabolomic features were measured with high accuracy. First principal 

component (PC) of lysophosphatidylcholines (lysoPC) that bind to or interact with 

docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AHA) was 

associated with decreased risk of AD (OR=0.91 [0.89-0.96], p=2e-04).  Restricted to individuals 

without an APOE ε4 allele (OR=0.89 [0.84-0.94], p= 8.7e-05), the association remained. Among 

individuals carrying at least one APOE ε4 allele, PC4 of lysoPCs moderately increased risk of 

AD (OR=1.37 [1.16-1.6], p=1e-04). Essential amino acids including tyrosine metabolism 

pathways were enriched among metabolites associated with P-tau181 levels and heparan and 

keratan sulfate degradation pathways were associated with Aβ42/Aβ40 ratio reflecting different 

pathways enriched in early and middle stages of disease.  
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Conclusions: Our findings indicate that unbiased metabolic profiling can identify critical 

metabolites and pathways associated with β-amyloid and phosphotau pathology. We also 

observed an APOE ε4 dependent association of lysoPCs with AD and that biologically-based 

diagnostic criteria may aid in the identification of unique pathogenic mechanisms.   
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Introduction 

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive 

and memory decline, affecting millions of individuals worldwide. Despite extensive research, the 

underlying pathogenic mechanisms of AD have not been fully revealed, hindering the 

development of effective therapeutic strategies. However, recent advancements in high-

throughput omics technologies have provided a powerful platform to explore the complex 

molecular landscape of AD1. 

Mass spectrometry-based metabolic profiling, a.k.a. metabolomics, offers a comprehensive 

analysis of small molecules involved in cellular metabolism. It provides a unique opportunity to 

unravel metabolic alterations associated with disease pathogenesis, thus contributing to a better 

understanding of AD at the molecular level2-5. Untargeted metabolomics allows the unbiased 

profiling of the entire metabolome, including both known and unknown metabolites. 

Metabolomic studies in AD have revealed a range of altered metabolic signaling. Several studies 

have demonstrated dysregulation of energy metabolism pathways in AD6-8. These alterations 

involve changes in glucose metabolism9, including reduced glycolysis10-14 and impaired 

mitochondrial function15-17, and decreased levels of metabolites such as glucose, lactate, and 

pyruvate18.  Alterations in the tricarboxylic acid (TCA) cycle intermediates, have also been 

observed. Studies have reported lower levels of phosphatidylcholine, phosphatidylethanolamine, 

and sphingomyelins in AD19-22, suggesting disruptions in membrane integrity and signaling 

pathways, altered cholesterol metabolism has also been implicated. Other studies have uncovered 

alterations in amino acid metabolism in AD23. Reduced levels of certain amino acids, such as 
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tryptophan24, phenylalanine25,26, tyrosine27,28, and branched-chain amino acids (valine, leucine, 

isoleucine)3,29-38 may reflect disruptions in neurotransmitter synthesis, neuroinflammation, and 

protein homeostasis. Studies have also shown alterations in the levels of neurotransmitters such 

as acetylcholine, glutamate, and γ-aminobutyric acid (GABA) in AD patients39-43. These changes 

may contribute to cognitive dysfunction and synaptic alterations in the disease. 

Several groups have reported elevated levels of reactive oxygen species (ROS) and oxidative 

damage markers, along with alterations in antioxidant metabolites and enzymes, have been 

observed in whole blood and brains of AD patients. These findings suggest a role for altered 

redox status in AD pathogenesis44-47. 

Given that metabolomics is the omics layer closest to the phenotype, it has the potential to 

uncover critical insights into the disease risk and progression, and potentially uncover 

therapeutic targets. By integrating metabolomics data with clinical diagnosis and plasma 

biomarker levels of AD, we aim to identify metabolic networks underlying the disease. In this 

study, we investigated the association between metabolites and clinical and biomarker assisted 

diagnosis of AD to detect early and mid-stage metabolic changes in disease. 

Methods 

Participants. The Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) has been 

recruiting individuals with suspected sporadic and familial AD and healthy controls similar in 

age through advertisements in local newspapers and radio stations, and through clinical referrals 

in the Dominican Republic and in the Washington Heights neighborhood of New York City48. 

Participants in this study provided informed consent under protocols approved by the Columbia 

University Irving Medical Center Institutional Review Board, and the National Health Bioethics 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2023. ; https://doi.org/10.1101/2023.08.24.23294581doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.24.23294581
http://creativecommons.org/licenses/by-nc-nd/4.0/


Committee of the Dominican Republic (CONABIOS). They underwent a medical and 

neurological interview for history and detailed examinations, a neuropsychological test battery, 

and collection of blood for plasma and DNA processing. Brain tomography or magnetic 

resonance as well as CSF were performed in a subgroup of participants. The diagnosis of 

Alzheimer's clinical syndrome according to NIA-AA criteria49. All clinical diagnosis were 

determined in a consensus conference attended by a neurologist, a neuropsychologist, and an 

internist with expertise in dementia and geriatrics. For the analyses in this manuscript, biological 

samples and data from individuals recruited between January 1, 2018, and April 30, 2022, were 

considered. 

 

Sample collection 

Blood was collected in K2EDTA tubes by standard venipuncture and transported to a laboratory 

for centrifugation, preparation of plasma, and storage at -80˚C within 2 hours of collection. CSF 

was obtained by standard aseptic technique, distributed into aliquots of 400 µL each in 

polypropylene tubes, frozen, and stored at -80ºC48. 

 

Plasma and CSF metabolomics data generation 

Plasma and CSF metabolites were extracted using acetonitrile and the extracts were injected in 

triplicate on two chromatographic columns: a hydrophilic interaction column (HILIC) under 

positive ionization (HILIC+)50 and a C18 column under negative ionization (C18-)51 coupled to a 

Thermo Orbitrap HFX Q-Exactive mass spectrometer, scanning for molecules within 85 – 1250 

kDa. This produced three technical replicates per sample per column. The untargeted mass 
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spectral data were processed through a computational pipeline that leverages open source feature 

detection and peak alignment software, apLCMS52  and xMSanalyzer53. The feature tables were 

generated containing information on the mass-to-charge (m/z) ratio, retention time, and median 

summarized abundance/intensity of each ion for each sample. Correction for batch effects was 

performed using ComBat, which uses an empirical Bayesian framework to adjust for known 

batches in which the samples were run54. Each of these ions are referred to as metabolic features. 

For the analysis, metabolic features detected in at least 70% of the samples were retained, 

leaving 3253 features from the HILIC+ column and 3628 features from the C18- column for 

plasma samples and 4460 features from the HILIC+ column and 4501 features from the C18- 

column for CSF samples. Zero-intensity values were considered below the detection limit of the 

instrument and were imputed with half the minimum intensity observed for each metabolic 

feature. The intensity of each metabolic feature was log10 transformed, quantile normalized, and 

auto-scaled for normalization and standardization. 

 

Metabolite annotation 

Annotations were made using an internal library and by matching to the Human Metabolome 

Database (HMDB) using the R package xMSannotator (version 1.3.2)53. This uses a multistage 

clustering algorithm method to determine metabolic pathway associations, intensity profiles, 

retention time, mass defect, and isotope/adduct patterns to assign putative annotations to 

metabolic features. When a feature had multiple matches, we used the following rules to assign 

an annotation: first, we screened features based on the confidence score assigned by 

xMSannotator, and the annotation with the highest score was used. Second, if all annotations had 

the same score, we chose the annotation with the lowest difference in expected and observed 
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mass (delta parts per million (ppm)). Finally, if all features had the same score and delta ppm, we 

indicated the identity as “multiple matches” since we couldn’t decipher a unique putative 

annotation. If a feature did not match any database entries, it was denoted as “unknown” (33% 

from HILIC + column and 40% from C18 – column). The confidence in annotation was based on 

criteria defined by Schymanski et al55, where level 1 corresponds to a confirmed structure 

identified through MS/MS and/or comparison to an authentic standard; level 2  to a probable 

structure identified through spectral matches to a database; level 3 to a putative identification 

with a speculative structure; level 4 to an unequivocal molecular formula but with insufficient 

evidence to propose a structure; and level 5 to an exact mass but not enough information to 

assign a formula. 

 

Blood based biomarker analyses 

The methods have been previously described in detail48. Briefly, the plasma biomarkers assays 

were performed in duplicate using the SIMOA HD-X platform. Neurology 3-Plex A kits were 

used to determine levels of Aβ42, Aβ40, and T-tau, the Advantage V2 kit for P-tau181, and the 

Neurology 2-Plex B for GFAP and NfL. Ratio of Aβ42/Aβ40 was also calculated.  

 

Biomarker positive for AD 

Based on previous analysis48, P-tau-181 plasma level < 2.33 considered biomarker status 

negative and ≥ 2.33 considered biomarker status positive. We use biomarker positive and 

biological AD interchangeably in the manuscript.  
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Statistical analysis approach 

We used two approaches to find circulating metabolic features associated with outcomes of 

interest: 1) a metabolome-wide association study (MWAS) framework with correction for 

multiple comparisons by controlling the false discovery rate (FDR) at 5%, and 2) a co-expression 

analysis to find modules of metabolic features associated with outcomes, providing a means of 

unsupervised dimensionality reduction based on correlation between the metabolic features. Both 

analyses were conducted separately for data from each column. All analyses were conducted in 

R (version 3.6.3). 

 

Metabolome-wide association study (MWAS): MWAS was conducted using multiple linear 

models, adjusted for age and sex. The analyses were conducted separately for data from each 

column. We corrected for multiple comparisons using an FDR of 5% and q-values were 

estimated using the Benjamini-Hochberg (BH) method.  

 

Metabolite Co-abundance analysis: Co-abundance modular analysis was conducted using 

weighted gene correlation network analysis56  using the WGCNA R package (version 1.69). 

Using normalized intensity values for each metabolic feature from each sample, we first 

constructed a metabolic feature co-expression network using pairwise Pearson correlations 

between each metabolic feature. We used a soft threshold of 4 for the HILIC+ data and 3 for the 

C18 – data, chosen based on saturation of the R2 at 0.9. This correlation network, where the 

nodes are metabolic features and edges are the scaled correlation coefficients, was used to create 
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the topological overlap matrix (TOM), which provides a measure of similarity between a given 

pair of metabolic features in the network. This similarity matrix was used to create a dendrogram 

to assign metabolic features into modules based on their co-expression pattern. We used the 

following parameters: minimum module size of 30, merge cutHeight of 0.25, an unsigned 

network, and a reassign threshold of 0. After network and dendrogram construction, modules 

were defined using the moduleEigengenes function in WGCNA. The module eigengene is a 

quantitative representation of a module derived from a principal component analysis (PCA) as 

the first PC, conducted using only those metabolic features that were part of the module. 

Association analyses were conducted to find modules associated with outcomes in linear 

regression models, adjusted for age and sex. We used the Bonferroni method to correct for 

multiple comparisons.  

Subgroup comparisons: Subgroup comparisons were conducted using logistic regression and 

multinomial logistic regression using the R package nnet (version 7.3-12). We created three 

different models to compare the six different subgroups: a) BM+/Cases, BM+/Controls and 

BM-/cases vs BM-/Controls-using healthy participants with biomarker status negative (BM-) as 

the reference (i.e BM-/controls), we compared metabolic features with differential levels in 

participants with i) biomarker status positive and a clinical diagnosis of AD (BM+/Cases), ii) 

biomarker status negative and a clinical diagnosis of AD (BM-/Cases) and biomarker positive 

with no clinical diagnosis of AD (BM+/Controls) ; b) BM+/Case and BM+/Control vs BM-

/Control- metabolic features with differential levels among BM+/control, BM+/case, compared 

to BM-/control; and c) BM+/case compared to BM+/control. 

Pathway analysis. To determine the biological relevance of the metabolic features associated 

with AD and biomarkers, we conducted pathway analysis using the “functional analysis” module 
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in MetaboAnalyst (version 5.0, ref)57, a web-based interface for comprehensive metabolomic 

data analysis. We used the MWAS results from both columns and applied a nominal p-value cut-

off of 0.01 to determine metabolic pathway enrichment using the mummichog algorithm and the 

human MFN reference database58. We present results for pathways with a Fisher’s exact test p-

value < 0.3. 

 

Chemical class enrichment.  

This approach was used to determine the different chemical classes represented by metabolic 

feature members of WGCNA modules significantly associated with outcomes. The main 

chemical classes enriched was determined using the Enrichment Analysis module in 

MetaboAnalyst using the HMDBIDs for features with an annotation confidence score < 3.  

 

Construction of lysophosphatidylcholine (lysoPCs) components and stratified analysis by 

APOE-ε4 status  

Based on findings described below we performed principal component analyses using all 

features that were annotated as lysoPCs from both columns (44 from HILIC + and 13 from C18-

). Since PCs 1-5 explained ~60% of the variance in the data, we used the first five PCs in logistic 

regression models to find the association with clinical diagnosis of AD and biomarker positive 

status, adjusted for age and sex. We tested for the presence of an interaction between the 

combinations of the lysoPCs and the presence of at least one APOE-ε4 allele and performed a 

stratified analysis since there was a significant interaction term between APOE-ε4 allele and 

PC4.  
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Correlation between plasma and CSF metabolites 

Among people with both plasma and CSF metabolomics data available (n = 113), plasma 

metabolites with level 1 confidence that were significantly associated with any outcome were 

tested for their correlation with the same metabolite identified in CSF using spearman 

correlation. 

 

Association between lysoPCs and brain pathology in the ROSMAP cohort 

To provide external validation of our findings with lysoPCs, we obtained data from the 

ROSMAP cohort and examined associations between lysoPCs and brain pathology. We 

identified metabolites identified as LysoPCs and computed principal components as described 

above. Amongst the 42 PCs generated, we tested association of the top five with amyloid, 

tangles, total global pathology, clinical and pathological diagnosis of Alzheimer’s disease (AD).  

 

Results  

Study participants  

717 participants were included in the study of whom 150 (20.9%) were diagnosed with clinical 

AD and 567 were cognitively unimpaired controls (Table 1). The study population had a mean 

age of 69.6 years (standard deviation (SD) = 7.6), the individuals with clinical AD were slightly 

older, with a mean age of 73.2 (SD = 8.3), compared to controls who had a mean age of 68.6 (SD 

= 7.2).  Two-thirds of the group were women (65%) and this proportion was similar among AD 

patients (67%) and controls (65%). A third of the study group  had at least one APOE-ε4 allele 
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(38%) and this proportion was only marginally higher in AD  (43%) compared to controls (36%). 

Among AD , 58% were biomarker positive, while 29% of controls were biomarker positive. The 

mean levels of most plasma-based AD biomarkers were higher in AD than in controls, including 

P-tau181 (3.02 pg/mL (SD = 1.7) in AD and 2.13 pg/mL (SD = 1) in healthy controls), NfL 

pg/mL (26.4 (SD = 20.5) in AD and 17.3 pg/mL (SD = 19.2) in healthy controls), and GFAP 

pg/mL (219 (163) in AD and 140 pg/mL (96) in healthy controls). The mean ratio of Αβ42/Αβ40 

was nominally lower in AD cases (0.049 (SD = 0.01)) compared to healthy controls (0.053 (SD 

= 0.03)). A subset of the study population, n = 113, also had CSF metabolomic data generated (S 

Table 1). Among them, 35 were clinically diagnosed with AD and 78 were controls. We also 

obtained postmortem brain tissue metabolomic data from a subset of participants from the 

ROSMAP cohort, n = 110 (S Table 2). Of them, 71 were diagnosed with AD and had brain 

pathology information available. 

 

Metabolome wide association study 

We identified 6445 and 5827 metabolites in the HILIC+ and C18- columns respectively. 

Restricting to metabolites seen in at least 70% of the group, 3253 and 3628 metabolites were 

filtered for further analysis. 669 metabolites were associated with at least one phenotype (clinical 

diagnosis of AD, P-tau181 biomarker positive for AD or biological AD, plasma levels of 

Αβ42/Αβ 40 ratio, NfL, P-tau181 and GFAP). Of those, 174 metabolites were annotated with 

level 1 to level 3 confidence based on Schymanski scale (Figure 1, Table 2, supplementary Table 

1).  
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We identified 107 metabolites nominally associated (p<0.05) with both clinical AD and 

biomarker positive status for AD. Metabolites associated with being biomarker positive for AD 

were enriched in tyrosine and urea cycle/amino acid metabolism pathways.  Dodecanoylcarnitine 

(adj p=0.009) and Ramipril (adj p=0.02) were the top analytes associated with clinical AD while 

LysoPC(18:0) (adj p=0.02) and creatinine (adj p=0.02) were associated with biological AD. 151 

metabolites with a level 1-3 confidence score for annotation were associated (adj p<0.05) with at 

least one measured plasma biomarker (Figure 2, Supplementary Table 1). The strongest 

association observed was 3-oxododecanoic acid with Αβ42/Αβ40 ratio (adj p= 4.03E-23). Oxalic 

acid and hexacosanoyl carnitine were also strongly associated with Αβ42/Αβ40 ratio. 

Metabolites associated with Αβ42/Αβ40 ratio were enriched in heparan sulfate, chondroitin 

sulfate and keratan sulphate degradation processes. Increased sulfation and heparan sulfate 

proteoglycan degradation have been widely reported in AD related neuritic plaques previously. 

Valyl serine, creatinine and citrulline were among the 76 well annotated metabolites associated 

with plasma levels of P-tau181. Several lysophosphatidylcholines (lysoPCs) including 

LysoPC(22:6),  LysoPC(18:0) and  LysoPC(20:4) were inversely associated after multiple testing 

correction with  plasma P-tau181 levels (Supplementary Table 1). Metabolites associated with P-

tau181 levels were enriched in several essential amino acid metabolism pathways including 

tyrosine, arginine and proline metabolism, valine, leucine, and isoleucine degradation, and 

aminosugars, starch and sucrose metabolism. Lysine metabolism, aspartate and asparagine 

metabolism and arginine and proline metabolism were enriched only among P-tau181 associated 

metabolites.  
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406 metabolites were associated with NfL levels in plasma, of which 107 were annotated with 

Level 1-3 confidence (Figure 2, Supplementary Table 1). Gluconate (adj p= 4.56E-11) and 

Arabinose (adj p= 2.93E-08) in the pentose pathway and DL-2-Aminoadipic Acid (adj p=1.53e-

09) in Lysine/Glutamate metabolism were the top metabolites associated with NfL. Metabolites 

associated with NfL shared common pathways with those associated with Αβ42/Αβ40 ratio 

including heparan sulphate, chondroitin sulphate and keratan sulphate degradation. Pentose 

phosphate, aminosugars metabolism and hexose phosphorylation pathways were shared by 

metabolites associated with both NfL and P-tau181. Sialic acid metabolism was observed only 

amongst NfL associated metabolites.  

Increased creatinine levels were associated with biological AD, increased amounts of plasma P-

Tau181 and NfL. Several LysoPCs were observed to decrease in biological AD, and with 

increased amounts of plasma NfL and P-tau181 levels. Only LysoPC(18:1) was found to increase 

with increased levels of GFAP, although it was observed to decrease with increased P-tau181 

and NfL levels indicating  a time dependent abundance depending on the disease stage. 

Metabolites in patients with discordant biological and clinical status of AD. First we 

compared healthy participants with no negative biomarker diagnosis (BM-/Control) with the 

other three groups (BM+/Case, BM+/Control and BM-/Case) (Figure 3, Supplementary Figure 

S8). LysoPCs, in particular, LysoPC 22:6 (DHA) and LysoPC 20:5 (EPA) are reduced in clinical 

AD and biomarker positive patients. They are depleted the most in patients with both biological 

and clinical diagnosis of AD. Similarly, creatinine is increased in BM+ and clinical AD patients 

and is highest in patients with elevated Ptau-181. Tyrosine metabolism is enriched amongst 

metabolites that are elevated in patients with either clinical or biological AD. Glycosphingolipid 
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metabolism is altered only in patients with only clinical diagnosis of AD and urea cycle and 

amino group metabolism is altered in biological AD patients. 

Co-abundance analysis of metabolites  

We clustered co-abundant metabolites using WGCNA independently on metabolites detected in 

the HILIC and C18 columns. WGCNA identified 18 and 15 co-abundant metabolic color-coded 

modules in HILIC and C18 columns respectively with at least 30 metabolites (Supplementary 

Figure S2). We then tested association of each module with clinical and biological AD and levels 

of the plasma biomarkers (Figure 4A). Purple module was negatively associated with biological 

AD (adj p=9e-05) while black module was associated with P-tau181 levels (adj p=3e-04). 

Salmon and greenyellow modules were associated both with biological AD and P-tau181 levels. 

Enrichment analysis of the metabolites co-abundant in the purple module found that fatty amides 

(adj p=5e-03), Glycerophosphocholines (adj p=5e-03) and sphingoid bases (adj p=5e-03) were 

over-represented in the module (Figure 4B). Glycerophosphocholines (adj p=3e-22) were also 

significantly enriched in the greenyellow module, while amino acids and peptides were the top 

group over-represented in the black (adj p=1.31e-16) and salmon modules (9.22E-07).  

 

We then identified the hub metabolites that are most connected to other metabolites in the purple, 

salmon and greenyellow modules. Interestingly, 12 lysoPCs were hub metabolites in the purple 

module and all of them were more abundant in biomarker negative participants compared to 

individuals who were biomarker positive and defined to have biological AD (Figure 4C). 

Phosphatidylcholines (PC) and LysoPCs were also the hub metabolites in the greenyellow 

module and (Figure 4E, Supplementary table 2) and were also more abundant in healthy 
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participants compared to biomarker positive patients. Creatinine was the most connected 

metabolite in the salmon module and as previously described, was increased in AD patients 

compared to controls.  

 

LysoPCs association with AD biomarkers 

Both MWAS and WGCNA detected lysoPCs to be significantly associated with biological AD, 

P-tau181 and NFL levels. Thus, we tested joint association of all lysoPCs with clinical and 

biological AD by constructing lysoPC principal components. We constructed PCs for the 55 

lysoPCs detected by HILIC and C18 columns found that the first five PCs explained over 75% of 

the variance (Supplementary Figure S3). We tested association of the first five PCs together in a 

regression model adjust for age and sex (Figure 5A). PC1 and PC4 were associated with 

biological AD whereas PC5 was associated with clinical diagnosis of AD. PC1 and PC5 were 

decreased in AD patients whereas PC4 was increased in disease. Further stratifying participants 

by presence of absence of APOE ε4 allele (Figure 5B), we found that PC1 and PC5 were 

protective of biological AD and clinical AD respectively, only in APOE ε4 non-carriers, whereas 

risk conferred by PC4 was restricted to APOE ε4 carriers. We investigated the loadings of the 

LysoPCs on PCs 1,4 and 5 and particularly focused on LysoPCs that have poly unsaturated fatty 

acids (PUFAs) at the sn-1 and sn-2 positions (Figure 5C, Supplementary Figure S6). LysoPCs 

that carry eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid 

(AHA) are positively correlated with PC1 and hence decreased in biological AD, particularly in 

APOE ε4 non-carriers. Both DHA and AHA were negatively correlated but EPA was positively 

correlated.to PC4 which increased risk of biological AD. We also tested the correlation between 

PCs 1,4 and 5 with circulating PUFAs in plasma (Supplementary Figure S5). PC1 was positively 
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correlated with circulating levels of EPA and AHA, PC4 was negatively correlated with most 

measured plasma PUFAs and PC5 was positively correlated with linolenic acid, EPA and DHA 

and negatively correlated with AHA.  This indicates that LysoPCs might play a role in AD 

biology in conjunction with APOE.  

 

LysoPC analysis in the ROSMAP cohort  

To determine the generalizability of our results we examined the association between lysoPCs 

and AD pathology in the ROSMAP cohort. We used the metabolomics data derived from 110 

brain samples in the ROSMAP cohort to test association of LysoPCs and phosphatidylcholines 

(PCs) with pathological definition of AD, amyloid burden, tangle density, and global pathology. 

First, we detected 14 LysoPCs and 13 PCs in the ROSMAP cohort. We constructed principal 

components from the LysoPCs and tested association with AD pathology (Supplementary Figure 

S7). We identified that PC3 is positively associated with increased tangle density, global 

pathology and a pathological diagnosis of AD. Of the LysoPCs carrying PUFAs, we only 

detected AHA in the ROSMAP cohort. AHA is increased in tangles, global pathology and 

pathological definition of AD. Three phosphatidylcholines were negatively associated with 

amyloid burden and tau tangles implying that LysoPCs and PCs are reduced in post-mortem AD 

brains. These findings are consistent with plasma LysoPCs observation in the EFIGA cohort.  

 

Discussion 

We investigated the association of metabolites with plasma biomarkers and clinical diagnoses in 

a cohort of Caribbean Hispanics to identify metabolic pathways associated with hallmarks of AD 
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pathology. Two of the most notable findings were that metabolite profiles differed when a 

clinical diagnosis was used versus a validated plasma biomarker-based diagnosis and that 

lysoPCs, which have been reported in recent studies in AD59,60, were identified in our unbiased 

approach in a Hispanic population.  

 

LysoPCs were associated with both quantitative levels of plasma P-tau181 and biological AD 

(defined by P-tau181). Co-abundance analysis revealed P-tau181 association of metabolic 

modules that harbor several LysoPCs as hub metabolites, suggesting a critical role in disease 

pathogenesis. Several studies have observed lower levels of lysoPCs in the brains, CSF and 

plasma of AD patients61-72. These changes often involve lysoPC species, particularly those that 

bind to anti-inflammatory PUFAs being decreased in patients with AD. Some lysoPC species 

have been implicated in promoting neurotoxicity and inflammation73-75. They can induce 

oxidative stress, impair mitochondrial function, and activate immune cells, leading to neuronal 

damage and death.  LysoPCs are also involved in dysregulation of lipid metabolism these 

disturbances. The breakdown of phosphatidylcholine, a major lipid component of cell 

membranes, can generate lysoPCs. Disruptions in enzymes involved in this process, such as 

phospholipase A2 (PLA2), have been observed in AD and may contribute to altered lysoPC 

levels76-78. 

 

We observed a differential effect of LysoPCs within APOE ε4 carriers and non-carriers. The risk 

conferred by LysoPCs was restricted to APOE ε4 carriers, while the protective effects were 

significant within APOE ε4 non-carriers. We previously showed significant differences in 
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metabolic profiles in a small multi-ethnic AD cohort and these differences remained when the 

analysis was restricted to APOE ε4 carriers79. APOE ε4 carriers tend to exhibit higher levels of 

specific LysoPC species in CSF, plasma, and brain tissue compared to non-carriers80-83. Elevated 

levels of certain LysoPCs in APOE ε4 carriers have been linked to increased Aβ deposition, tau 

phosphorylation, and neuroinflammation. Distinct patterns of LysoPC alterations have been 

observed in APOE ε4 carriers compared to non-carriers.  

 

We also found essential amino acids metabolism (tryptophan and tyrosine) were associated with 

clinical and biological diagnosis of AD. Urea cycle/amino group metabolism was associated with 

only the biological diagnosis of AD. Tyrosine is an essential amino acid and plays a crucial role 

in the synthesis of catecholamines. Limited research has focused on measuring tyrosine levels 

specifically in the AD patient brains but administering tyrosine orally can enhance memory and 

cognitive function84. Tryptophan is an essential amino acid and a precursor for the synthesis of 

serotonin, a neurotransmitter involved in mood regulation and cognition. Alterations in 

tryptophan metabolism may impact serotonin availability in the brain and contribute to AD 

pathophysiology, particularly (Aβ) pathology. Aβ accumulation can disrupt tryptophan 

metabolism, leading to altered levels of tryptophan and its metabolites. Conversely, tryptophan 

metabolites, such as kynurenic acid, can affect Aβ aggregation and clearance, potentially 

influencing disease progression. Interestingly Tryptophan levels in plasma were associated with 

clinical diagnosis of AD and were also mildly correlated with CSF levels (correlation=0.24, 

Table 2). 
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Heparan sulfate, chondroitin sulfate and keratan sulphate degradation processes were associated 

with Aβ42/40 ratio. Heparan sulfate, chondroitin sulfate, and keratan sulfate are types of 

glycosaminoglycans (GAGs) or sulfated carbohydrates that are found in the extracellular matrix 

of cells. GAGs have been reported in accumulation and clearance of in Aβ. Heparan sulfate 

proteoglycans (HSPGs) are a type of protein with heparan sulfate chains that interact with Aβ 

and can contribute to the formation of amyloid plaques.  Chondroitin sulfate proteoglycans 

(CSPGs) and HSPGs have been implicated in the regulation of Aβ clearance. These sulfated 

glycosaminoglycans can interact with various proteins involved in the clearance of Aβ, including 

neprilysin and insulin-degrading enzyme. Disruption of the balance between Aβ production and 

clearance, partly mediated by GAGs, may contribute to the accumulation of Aβ in AD. GAGs 

can interact with various inflammatory molecules, including cytokines and chemokines, and 

modulate neuroinflammatory processes in AD. Chondroitin sulfate and heparan sulfate chains 

present on proteoglycans can act as binding sites for inflammatory molecules, contributing to the 

activation of immune cells and the generation of a pro-inflammatory environment in the brain. 

Taken together these results suggest that understanding metabolic heterogeneity in AD 

pathogenesis may enable identification of biological mechanisms for specific subgroups with the 

disease and that it is essential to combine biochemical analysis with biomarkers of disease. 

Specifically, identification of metabolic pathways associated with plasma biomarkers might 

indicate biological mechanisms underlying AD pathology at different stages of the disease. We 

observed common metabolic pathways perturbed in clinical AD and elevated Aβ42/40 ratio, 

indicating that these metabolites might be involved in both amyloidogenic and later (clinical) 

stages of the disease. Similarly, distinct set of metabolites were observed in association with 

elevated P-tau181 and NfL levels, suggesting processes that might be involved both in 
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neurofibrillary change and neurodegeneration. However, more investigation specifically with 

longitudinal measures of biomarkers and metabolic assessments are needed to disentangle the 

metabolic cascades in different stages of disease progression.  Finally, this study demonstrates 

the ability of high-resolution mass spectrometry-based untargeted metabolomics to reveal 

biochemical differences in participants with differential plasma biomarker profiles and to 

identify metabolic perturbations in different stages of the disease. This has the potential to open 

up a new era of biochemically-based discovery in AD.   
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Table 1. Characteristics of the study population.  

 

 

control 
(N=567) 

AD  
(N=150) 

ALL 
(N=717) 

Age at diagnosis or last 
visit (years)    

Mean (SD) 68.6 (7.17) 73.2 (8.26) 69.6 (7.64) 
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Sex 
   

Men 200 (35.3%) 50 (33.3%) 250 (34.9%) 

Women 367 (64.7%) 100 (66.7%) 467 (65.1%) 

Plasma pTau181 cut-off 
   

<2.33 (Biomarker -) 376 (66.3%) 57 (38.0%) 433 (60.4%) 

≥ 2.33 (Biomarker +) 163 (28.7%) 87 (58.0%) 250 (34.9%) 

Missing 28 (4.9%) 6 (4.0%) 34 (4.7%) 

APOE �4 allele 
   

�4 allele absent 358 (63.1%) 86 (57.3%) 444 (61.9%) 

At least 1 �4 allele 206 (36.3%) 64 (42.7%) 270 (37.7%) 

Missing 3 (0.5%) 0 (0%) 3 (0.4%) 

Plasma pTau181 
   

Mean (SD) 2.13 (1.00) 3.02 (1.67) 2.32 (1.23) 

Missing 28 (4.9%) 6 (4.0%) 34 (4.7%) 

Plasma NfL 
   

Mean (SD) 17.3 (19.2) 26.4 (20.5) 19.2 (19.8) 

Missing 28 (4.9%) 6 (4.0%) 34 (4.7%) 

Plasma GFAP 
   

Mean (SD) 140 (95.9) 219 (163) 157 (118) 

Missing 28 (4.9%) 6 (4.0%) 34 (4.7%) 

Plasma A�42/A�40 ratio 
   

Mean (SD) 0.053 (0.031) 0.049 (0.011) 0.053 (0.028) 

Missing 33 (5.8%) 7 (4.7%) 40 (5.6%) 
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Table 2. Metabolic features associated with outcomes investigated using a metabolome-wide association study framework. 
m/z: mass-to-charge ratio, Time: Retention time, ID score: confidence in annotation based on Schymanski scale (1 being the highest 
and 5 the lowest), ESI: electrospray ionization, Delta ppm: mass difference in parts per million, �CSF: correlation coefficient for 
metabolite measured in CSF (this was performed in a subset of participants, n =113). See supplemental table for complete list of 
features associated at FDR of 5%.  

Outcome m/z 
Time 

(s) 
Annotation 

ID 
score 

ESI 
Delta 
ppm 

Adduct � 
FDR  

q-value 
�CSF Pathway 

Clinical AD 203.0827 35.5 Tryptophan 1 - 0.49 Std -0.334 0.045 0.24 Tryptophan metabolism 

 
133.0143 27.3 Malic Acid  1 - 0.38 Std 0.341 0.045 

 
TCA cycle, gluconeogenesis 

 
342.2649 109.1 Dodecanoylcarnitine 3 - 0.23 M-H -0.386 0.009 

 
Fatty acid oxidation 

Biomarker/ 
pTau181 
positive 

114.0663 33.5 Creatinine 1 + 0.96 Std 0.390 0.021 0.32 
Urea cycle/amino group 
metabolism 

 
524.3703 32.2 LysoPC (18:0) 1 + 1.47 Std -0.326 0.021 

 

Glycerophospholipid 
metabolism 

 
176.1033 82.9 Citrulline 1 + 1.87 Std 0.337 0.025 0.34 

Arginine and proline 
metabolism 

pTau181 203.1038 27.1 Valyl-Serine 1 - 0.34 Std -0.245 2.9E-04 
 

Glycine, serine, and threonine 
metabolism 

 
114.0663 33.5 Creatinine 1 + 0.96 Std 0.251 6.2E-04 0.32 

Urea cycle/amino group 
metabolism 

 
176.1033 82.9 Citrulline 1 + 1.87 Std 0.199 0.003 0.34 

Arginine and proline 
metabolism 

Aβ42/Aβ40 213.1497 242.2 3-Oxododecanoic acid 3 - 0.38 M-H -0.011 4.0E-23 
 

Fatty acid metabolism 

 
88.9881 236.8 Oxalic acid 3 - 0.79 M-H -0.006 5.4E-06 

 
Glyoxylate and dicarboxylate 
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metabolism 

 
540.4982 22.9 Hexacosanoyl carnitine 3 + 0.81 M+H -0.006 8.1E-06 

 
Fatty acid oxidation 

NfL 195.051 33.4 Gluconate 1 - 0.15 Std 5.822 4.6E-11 0.52 Pentose phosphate pathway 

 
160.0615 36.7 

2-Aminoadipic acid/ N-
methylglutamic acid 

1 - 0.12 Std 5.305 1.5E-09 0.16 Lysine/Glutamate metabolism 

 
149.0455 30.1 

Arabinose/lyxose/ribose/ 
xylose 

1 - 0.34 Std 5.030 2.9E-08 0.33 Pentose phosphate pathway 

GFAP 718.2797 178.4 
5-Methyltetrahydropteroyltri 
glutamate 

3 + 0.85 M+H -17.369 0.032 
 

Methionine metabolism (gut 
bacteria) 

 
522.3552 32.9 LysoPC (18:1) 3 + 0.42 M+H 16.776 0.044 

 

Glycerophospholipid 
metabolism 

 
405.3727 24.3 Dihydroxycholestane 3 + 0.02 M+H -16.646 0.044 

 
Bile acid biosynthesis 
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Figure 1. Metabolic features and pathways associated with clinical AD and with
biomarker positive status. In A, a modified Miami plot shows features with positive beta
values above the zero line and those with negative beta values below the zero line. The dark
blue points indicate features with FDR q-value < 0.05 for data obtained for each column (C18
and HILIC). In B, the overlap in features associated with clinical AD and biomarker positive
status at nominal p < 0.05 (light blue and dark blue points) for each column. In C, the metabolic
pathways, with Fisher’s exact test p < 0.3, enriched by features nominally associated with the
clinical AD and biomarker positive status. An asterisk indicates pathway that were significantly
enriched (p < 0.05). 
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Figure 2. Metabolic features and pathways associated with plasma-based biomarkers of
AD. In A, a modified Miami plot shows features with positive beta values above the zero line
and those with negative beta values below the zero line. The dark blue points indicate features
with FDR q-value < 0.05 for data obtained for each column (C18 and HILIC). In B, the overlap in
features associated with the four biomarkers at nominal p < 0.05 (light blue and dark blue
points) for each column. In C, the metabolic pathways, with Fisher’s exact test p < 0.3, enriched
by features nominally associated with the biomarkers. An asterisk indicates pathways that were
significantly enriched (p < 0.05). Αβ42/ Αβ40: ratio of A 42 to A 40 measured in plasma, GFAP:
glial fibrillary acidic protein, NfL: neurofilament light chain, pTau181: tau phosphorylated at
threonine-181. 
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Figure 3. Subgroup analysis based on clinical diagnosis and biomarker positive status.
Results from multinomial and regular logistic regression were used to determine metabolic
pathways enriched. A colored box indicates an enriched pathway with Fisher’s exact test p-
value < 0.3 while an asterisk indicates statistically significant enrichment (p < 0.05). 
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Figure 4. Results from co-expression analysis using data from the HILIC column. In A, the
volcano plot shows metabolic modules significantly associated with clinical AD, biomarker
positive status and AD biomarkers using Bonferroni adjusted p-value. In B, the chemical classes
enriched by module member metabolic features present at a proportion of at least 6.5%. In C,
module hub members of the purple module with KME > 0.6 and associated with biomarker
positive status at FDR q-value < 0.05. In D, module hub members of the salmon module with
KME > 0.6 and associated with biomarker positive status at FDR q-value < 0.05. In E, module
hub members of the greenyellow module with KME > 0.6 and associated with biomarker
positive status at FDR q-value < 0.05. In F, module hub members of the yellow module with
KME > 0.6 and associated with clinical AD at FDR q-value < 0.05. 
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Figure 5. Lysophosphatidylcholines (LysoPCs) associated with clinical AD and
biomarker positive status. In A, the odds ratio (point) and confidence interval (whiskers) of
PC1 – 5 in relation to biomarkers positive status and clinical AD. In B, the results from analysis
stratified by APOE- 4 allele status. In C, the loadings of LysoPCs on the three PCs (PC1, PC4,
and PC5) significantly associated with biomarkers positive status or clinical AD. 
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