
Title: 
Improving diagnosis of non-malarial fevers in Senegal: Borrelia and the contribution of tick-
borne bacteria 
 
Authors: 
Zoë C. Levine1,2,3, Aita Sene4, Winnie Mkandawire1,5, Awa B. Deme4, Tolla Ndiaye4, Mouhamad 
Sy4, Amy Gaye4, Younouss Diedhiou4, Amadou M. Mbaye4, Ibrahima Ndiaye4, Jules Gomis4, 
Médoune Ndiop6, Doudou Sene6, Marietou Faye Paye1, Bronwyn MacInnis1,7, Stephen F. 
Schaffner1,7,8, Daniel J. Park1, Aida S. Badiane4, Andres Colubri1,5, Mouhamadou Ndiaye4, 
Ngayo Sy9, *Pardis C. Sabeti1,7,8,10, *Daouda Ndiaye4, *Katherine J. Siddle1,11 
 
Affiliations 
1Broad Institute of Harvard and MIT, Cambridge, MA, USA.  
2Harvard Graduate Program in Biological and Biomedical Science, Boston, MA, USA.  
3Harvard/MIT MD-PhD Program, Boston, MA, 02115, USA.  
4Centre International de recherche, de formation en Génomique Appliquée et de Surveillance 
Sanitaire (CIGASS), Dakar, Senegal.  
5University of Massachusetts Medical School, Worcester, MA, USA.  
6Programme National de Lutte contre le Paludisme (PNLP), Ministère de la Santé, Dakar Fann, 
Senegal.  
7Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public 
Health, Harvard University, Boston, MA, USA.  
8Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.  
9Service de Lutte Anti Parasitaire, Thies, Senegal.  
10Howard Hughes Medical Institute, Chevy Chase, MD, USA.  
11Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 
USA. 
 
*Corresponding authors 
 
 
Abstract 1 
 2 

The worldwide decline in malaria incidence is revealing the extensive burden of non-3 
malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To 4 
characterize NMFI in Senegal, we collected venous blood and clinical metadata from febrile 5 
patients and healthy controls in a low malaria burden area. Using 16S and unbiased 6 
sequencing, we detected viral, bacterial, or eukaryotic pathogens in 29% of NMFI cases. 7 
Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia 8 
found in 15% and 3.7% of cases, respectively. Four viral pathogens were found in a total of 7 9 
febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one 10 
putative P. ovale infection. We developed a logistic regression model to distinguish Borrelia 11 
from NMFIs with similar presentation based on symptoms and vital signs. These results 12 
highlight the challenge and importance of improved diagnostics, especially for Borrelia, to 13 
support diagnosis and surveillance. 14 
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Main text 15 
 16 
Introduction 17 

Febrile illness is a significant cause of morbidity and mortality in West Africa.  While 18 
malaria remains the most common single pathogen causing febrile illness, its incidence has 19 
decreased sharply in the last two decades; in Senegal, for example, control measures 20 
decreased malaria incidence from 122 per 1000 in 2006 to 59 per 1000 in 20211,2. As the 21 
malaria burden has decreased, the importance of non-malarial febrile illness (NMFI) has 22 
become more apparent. Unlike malaria, however, many of the pathogens causing NMFI are not 23 
the target of robust surveillance programs, and rapid diagnostic tests (RDTs), the backbone of 24 
both clinical care and surveillance, are not available3. 25 

A broad range of pathogens across kingdoms can cause NMFI, but surveillance studies 26 
often focus on one or a few pathogens and therefore are limited in their ability to detect all 27 
causes of disease. Causal pathogens include arboviruses, such as Dengue virus and 28 
Chikungunya virus, which cause both sporadic febrile illness and outbreaks in Senegal4,5. 29 
Bacterial pathogens are a common cause of severe illness requiring hospitalization, including 30 
several vaccine-preventable illnesses such as Streptococcus pneumoniae and Neisseria 31 
meningitidis6 and bacterial zoonoses are increasingly recognized as a common cause of 32 
ambulatory febrile illness, including tick and louse-borne relapsing fevers, spotted fever, Q 33 
fever, Leptospirosis and Brucellosis6–8. While fungal infections appear less common, Candida 34 
and Cryptococcus have been reported across West Africa, with cryptococcal disease being 35 
particularly common in HIV-positive patients6.  Non-malarial parasitic diseases including 36 
trypanosomiasis and leishmaniasis are also common6.  37 

In the absence of comprehensive surveillance efforts that capture multiple pathogen 38 
types, appropriate public health interventions are hindered by our limited understanding of the 39 
full landscape of common causes of NMFI in the region. Unbiased sequencing, also known as 40 
metagenomic sequencing (mNGS), is a powerful tool for detection of microbial nucleic acids in 41 
clinical samples without a priori knowledge of a pathogen9 and is increasingly used for 42 
surveillance in regions at high risk of emerging and reemerging disease10–13. However, the low 43 
abundance of pathogen nucleic acids relative to host and commensal microbial material 44 
requires deep sequencing and can lead to false conclusions14,15. Unbiased approaches are 45 
complemented by more targeted strategies, such as 16S sequencing for bacterial pathogens16, 46 
that specifically amplify pathogen nucleic acids reducing required sequencing depth and 47 
simplifying interpretation. This technique has been applied to detect bacterial bloodstream 48 
infections17,18 and tick-borne bacterial illness19.  49 

This study aimed to determine and characterize the major causes of NMFI in Thiès, 50 
Senegal, a peri-urban community with overall low malaria incidence where malaria transmission 51 
dynamics have been deeply characterized20. We collected plasma samples from a cohort of 52 
acutely febrile patients presenting to the Service de Lutte Anti Parasitaire (SLAP) clinic and 53 
healthy controls from the surrounding neighborhoods during the dry and rainy seasons of 2018 54 
and 2019. We aimed to provide insights on clinical presentations of NMFI that can guide 55 
providers at the point of care and genomic characterization to inform design of new detection 56 
tools for clinical diagnosis and public health surveillance.  57 

 58 
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Results 59 
Broad characterization of NMFI reveals viral, bacterial, and eukaryotic pathogens  60 

We first comprehensively characterized the pathogens in plasma samples collected from 61 
acutely febrile patients suspected of malaria and healthy controls across the dry (febrile: n = 62 
100, healthy: n = 54) and rainy (febrile: n = 104, healthy: n = 50) seasons in 2019 (Fig. 1A, 63 
Supplementary Fig. 1B). All febrile patients received a malaria RDT; 39.4% (41/104) of patients 64 
tested positive for malaria in the wet season and no cases were detected in the dry season. 65 
Febrile cases were roughly equally split between children and adults (50.4% >= 18yrs). Age 66 
distribution was similar (p = 0.98, Mann-Whitney, two-sided) across case and control groups, 67 
but there were more male febrile cases (Male: n = 110, Female: n = 91) and more female 68 
controls (Male: n= 47, Female: n = 57, p = 0.15 Fisher exact two-sided, Supplementary Fig. 1A).  69 

We performed broad detection of viral, bacterial, and eukaryotic pathogens by 70 
sequencing. To detect viral pathogens, we performed RNA-mNGS. We also evaluated the 71 
ability of RNA-mNGS to detect non-viral pathogens, including malaria and fungi. To detect 72 
bacterial infections, we sequenced the v1-2 region of the 16S rRNA gene, which permitted us to 73 
classify the bacterial taxa present in samples with high bacterial load [see methods]. We 74 
detected at least one pathogen in 24% (39/163) of RDT-negative acutely febrile patients and co-75 
infections in 7% (3/41) of RDT-positive acutely febrile patients (Fig. 1B). The most common 76 
febrile pathogen was Borrelia, which was found across the dry (n = 8) and rainy (n = 10) 77 
seasons and in both RDT-negative (n = 17) and RDT-positive (n = 1) patients. We also detected 78 
bacterial infections with Rickettsia, Arcobacter, Actinomyces and Brevibacterium (Fig. 1D). 79 
Bacterial pathogens found as co-infections included three Borrelia/Rickettsia co-infections, two 80 
Borrelia/Plasmodium co-infections, and three Plasmodium/Rickettsia co-infections (Fig. 1E).  81 

We identified four known vertebrate viruses, Dengue virus (DENV, n = 2), Hepatitis B 82 
virus (HBV, n = 2), Parvovirus B19 (n = 2), and Human immunodeficiency virus 1 (HIV-1, n = 1) 83 
as well as a human virus not currently believed to cause disease, Pegivirus C (GBV-C, n  = 4) 84 
(Fig. 1C). Four febrile patients and one healthy control exhibited a high proportion of fungal RNA 85 
reads in the plasma, as compared to healthy controls (> 99th percentile reads/million raw reads 86 
(rpm) for healthy controls), but these reads did not map to any specific fungal pathogen 87 
(Supplementary Fig. 8A). We did not detect any vertebrate viruses in healthy controls, but we 88 
did detect Borrelia (n = 1/35 samples sequenced) and Rickettsia (n = 1/35).  89 

  90 
RNA-mNGS identifies viral pathogens known to circulate in Senegal 91 

We next considered the genetic diversity of detected viral pathogens to determine their 92 
relationship to other circulating strains in West Africa. Phylogenetic analysis of complete DENV, 93 
HBV and Parvovirus B-19 genomes indicated that in all three cases, the two isolates were 94 
different genotypes, and thus not closely related (Supplementary Table 1). Notably, there was a 95 
DENV outbreak across Senegal, including Thiès, in 2018. Whole genome phylogenetic analysis 96 
revealed the closest relatives to the 2019 DENV3 isolate from this study were DENV3 genomes 97 
from patients presenting to the SLAP clinic during that outbreak4 (Supplementary Fig. 2A). 98 
Conversely, the DENV1 genome in this study was more closely related to other isolates from 99 
West Africa than to the DENV1 isolates from the 2018 outbreak (Supplementary Fig. 2A). The 100 
HIV-1 isolate genome could not be assembled and genotyped due to low read count (mean 101 
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coverage 0.2), but reads mapped across the reference genome including in the gag, pol, and 102 
env genes.  103 

While GBV-C is known to infect asymptomatic individuals across the world, we only 104 
detected GBV-C in febrile patients. The prevalence of GBV-C has not been well studied in 105 
Senegal; we found infection in only 1.3% (4/307) of plasma samples sequenced, lower than the 106 
4-11% reported in blood-donor surveys from Sub-Saharan Africa21,22. All four isolates were 107 
clustered with previously sequenced human isolates from Sierra Leone, Uganda and Cameroon 108 
and belonged to Genotype I (Supplementary Fig. 2B), the most commonly circulating GBV-C 109 
genotype in West Africa23. 110 

In order to identify divergent viral species missed at the read level, we performed a 111 
translated nucleic acid search of de novo contigs which identified RNA-dependent RNA 112 
Polymerase (RdRp) sequences for two candidate novel viruses, one in the Naranviridae family 113 
and one in the Reoviridae family. We detected a Reoviridae RdRp sequence across 18 febrile 114 
patients, 12 healthy controls, and 4 non-template controls, suggesting a likely contaminant 115 
(Supplementary Fig. 3). However, given that Reoviruses have been isolated from ill patients, we 116 
further investigated these sequences24. The Reovirus RdRp sequences from this study 117 
clustered together, but were distant from mammalian Orthoreoviruses. Given the distance from 118 
mammalian Orthoreovirus species and presence in non-template controls, these sequences 119 
were likely from a contaminated reagent rather than true human infections. We also identified a 120 
Narnaviridae RdRp sequence across 5 febrile patients and 1 healthy control (Supplementary 121 
Fig. 4), none of whom had any other identifiable pathogen. Because viruses in the Narnaviridae 122 
family, which infect plants and fungi, have not been reported as human pathogens and we 123 
detected this novel Narnavirus species in both febrile cases and a healthy control, the role of 124 
this virus in disease, if any, is unclear.   125 
 126 
Unbiased RNA sequencing detects Plasmodium cases missed by RDT 127 

If RNA-mNGS is to be employed as a tool for diagnosis of febrile illness in malaria 128 
endemic regions, we also need to understand the ability of RNA-mNGS to detect malaria as 129 
compared to clinical diagnostics. We know that RDTs have limited sensitivity, detect only certain 130 
Plasmodium species, and are susceptible to false negatives in genetically diverse parasites, so 131 
we evaluated our RNA-mNGS reads for evidence of Plasmodium infections.  132 

RNA-mNGS detected abundant Plasmodium nucleic acids (>550 rpm) in 6.8% (11/160) 133 
of RDT negative acutely febrile patients, suggesting these were false negatives. Among RDT 134 
positive patients, there was a wide range in the abundance of Plasmodium reads (mean 135 
1.7x10^4 rpm, range 1.5x10^2 - 2.6x10^5 rpm) (Supplementary Fig. 5A). Overall, 63% of RDT 136 
positive patients (26/41) and 77% of smear positive patients (17/22) were also positive by 137 
unbiased RNA sequencing (>550 rpm) (Supplementary Fig. 5C). In patients with detectable 138 
parasitemia by blood smear examination, Plasmodium reads did not correlate strongly with 139 
parasite density (Pearson’s R = 0.49, Supplementary Fig. 5B).  140 

In order to determine why 11 samples were negative by RDT but positive by RNA-141 
mNGS, we first determined whether any samples belonged to species other than Plasmodium 142 
falciparum, the target species of the RDTs (Bioline Malaria Ag P.f., Abbot). As previous work 143 
has demonstrated Kraken2 is inaccurate for species-level classification of parasites25, we used 144 
DIAMOND to identify one sample with a contig (771 bp) that matched perfectly (100% 145 
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nucleotide identity, 100% coverage) to Plasmodium ovale cytochrome oxidase subunit 1 146 
(Accession: KP050416.1), suggesting a likely P. ovale infection. Additionally, we assessed 147 
expression levels of histidine-rich protein 2 (HRP-2), the target antigen of the RDTs used in this 148 
study. Deletions in pfhrp2 gene have been detected in Senegal and demonstrated to cause 149 
decreased antigen expression and consequently false negative RDT results26,27. The number of 150 
RNA-mNGS rpm aligned to pfhrp2 was significantly different between patients who were RDT 151 
positive and mNGS positive (RDT+/mNGS+) and patients who were RDT negative but 152 
Plasmodium RNA-mNGS positive (RDT-/mNGS+) (Supplementary Fig. 5D, Mann Whitney two-153 
sided, p = 0.038). However, given the overlap in expression levels between the two groups and 154 
the low frequency of pfhrp2 deletion in Senegal, previously estimated at 2.4%27, pfhrp2 deletion 155 
likely explains only some of the false negative RDTs.  156 

 157 
16S sequencing confirms a high burden of Relapsing Fever Borrelia and Spotted Fever 158 
Rickettsia  159 

As bacteria were the most common cause of NMFI in our 2019 cohort, we extended our 160 
16S sequencing to detect bacterial infections across the complete cohort from 2018-2019, and 161 
further investigated the species causing disease. Among all high bacterial load samples that 162 
underwent 16S sequencing [see methods], we detected Borrelia in 15.5% (33/213) and 163 
Rickettsia in 5.1% (9/213) of febrile patients. These arthropod-borne bacterial pathogens are 164 
known to circulate in Senegal and cause febrile illness (Fig. 1D, Supplementary Fig. 6C)8. 16S 165 
sequencing also identified other bacterial genera containing known pathogens, including 166 
Bacteroides, Actinomyces, Brevibacterium, Arcobacter and Veillonella across both years 167 
(Supplementary Fig. 6C). However, given the limited taxonomic resolution of v1-2 16S 168 
sequencing, we were unable to determine whether these sequences represented pathogenic 169 
species or harmless commensals. 170 

Phylogenetic clustering of Borrelia v1-2 16S sequences showed that all Borrelia 171 
sequences from this study were similar to each other and fell within the Relapsing Fever (RF) 172 
group (Supplementary Fig. 7A). RF Borrelia circulate worldwide and are known to cause febrile 173 
illness in Senegal28. All the Rickettsial v1-2 16S rRNA gene sequences clustered within the 174 
Spotted Fever group (Supplementary Fig. 7B). Spotted fever Rickettsia, including R. felis29 and 175 
R. africae8 have been previously detected in febrile Senegalese patients. We did not detect any 176 
Typhus group Rickettsia in our cohort, though R. typhi has been reported in an immigrant 177 
traveling from Senegal30. 178 

A subset of 6 Borrelia isolates were typed by amplicon sequencing of the 16S-23S 179 
intergenic spacer (IGS)31. All typed isolates were Borrelia crocidurae (Fig. 2C). Isolates from this 180 
study were more similar to previously characterized isolates from humans and Orthnithodoros 181 
sonrai in Southern Senegal (unpublished) and Orthnithodoros sonrai ticks in Mali32 than isolates 182 
from Orthnithodoros erraticus in Tunisia33 and Morocco34 (Fig. 2C).  183 

 184 
16S sequencing enables detection of low-titer infections 185 

We assessed the ability of RNA-mNGS to detect bacterial infections, based on samples 186 
that underwent both sequencing methods. Borrelia RNA-mNGS reads were detected in 68% 187 
(13/19) of 16S positive samples. Conversely, Rickettsia RNA-mNGS reads were not detected in 188 
any Rickettsia positive samples. Acute RF Borrelia infection is known to cause high titers of 189 
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bacteria in the blood during febrile episodes, while Rickettsia is an obligate intraerythrocytic 190 
pathogen and therefore has low titers in the plasma. To assess the extent to which plasma titers 191 
impacted the sensitivity of RNA-mNGS to tick-borne bacterial pathogens, we quantified bacterial 192 
abundance by the percent of total v1-2 16S sequences from a given sample classified as 193 
Borrelia or Rickettsia, respectively19. We observed Borrelia abundances ranging from 5-98%, 194 
while Rickettsia abundances were lower, ranging from 5% to 16%. RNA-mNGS only detected 195 
Borrelia in samples with abundance >20% (Supplementary Fig. 7F). Taken together, these data 196 
suggest that RNA-mNGS can detect high titer bacterial pathogens but will miss less abundant 197 
species. 198 
‘ We compared the sensitivity of our 16S sequencing to qPCR and Giemsa stained blood 199 
smear examination, the current gold standard for clinical diagnosis of RF Borrelia35. We 200 
examined smears from a subset of RF Borrelia patients. 28.6% (4/14) of examined smears were 201 
positive; all 4 positive patients had a high RF Borrelia load (>= 90%, Mann-Whitney two-sided p 202 
= 0.002 compared to 16S positive/smear negative) (Supplementary Fig. 6B, D). Although blood 203 
smear examination is the most widely used diagnostic, qPCR diagnostics are known to have 204 
higher sensitivity35,36. Using a pan-Borrelia qPCR assay previously used for detection of Borrelia 205 
in patient blood samples37 79% (27/34) of Borrelia samples were confirmed by qPCR, while 6 206 
samples that were negative by 16S sequencing were positive by qPCR. Bacterial load 207 
measured by qPCR and 16S abundance correlated well (Pearson’s R = 0.72, Supplementary 208 
Fig. 6G). While 16S sequencing was done only on a subset of samples, pan-Borrelia qPCR was 209 
performed on all febrile cases and healthy controls in 2019 and all febrile cases in 2018. An 210 
additional 5 cases of Borrelia were identified in febrile patients by qPCR in samples that did not 211 
undergo 16S sequencing (Supplementary Fig. 7E).  212 
 213 
Borrelia infection presents similarly to other febrile illness but can be distinguished by 214 
key features 215 

Given the limited sensitivity of available smear-based diagnostics compared to molecular 216 
methods, we sought to assess the clinical syndrome associated with qPCR-confirmed Borrelia 217 
infections, compared to RDT-confirmed malaria and non-Borrelia NMFI (“other febrile”), to guide 218 
differential diagnosis at the point of care. Borrelia infections occurred in a consistent proportion 219 
of the study population in the two years (Fisher exact p = 0.61) and in both seasons (Fisher 220 
exact p = 0.24). Borrelia infections occurred across all ages (t-test compared to all other febrile 221 
p = 0.45) (Fig. 2B) and at similar rates in male and female patients (Fisher exact p = 0.87), while 222 
male patients were more likely to test positive for malaria (Fisher exact p = 1.6e-7).  223 

A high proportion of Borrelia positive patients reported generalized symptoms that were 224 
common across all febrile patients, including headache (100%), body aches (59%), and 225 
dizziness (46%), as reported in previous studies of RF Borrelia (Fig. 3A)36. Borrelia infection 226 
was distinguished by vomiting (49%), vomiting was observed more often in Borrelia-positive 227 
patients (stat = 2.8, p = 0.0026, Fisher Exact two-sided). Borrelia-positive patients were less 228 
likely than other febrile patients to report sore throat (7.7%, stat = 0.21, p = 0.0039, Fisher Exact 229 
two-sided). Notably, RF Borrelia can invade the central nervous system in severe cases; while 230 
we did not observe neurological symptoms such as seizures or loss of consciousness, one 231 
Borrelia positive patient reported eye pain, a potential symptom of neuroinvasive infection not 232 
observed in any other febrile patients36,38. A high proportion of Borrelia-positive patients reported 233 
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contact with a febrile person (38%), contact with rats (57%), and prior travel (32%), but these 234 
exposures were common across malaria and other febrile patients and were not associated with 235 
Borrelia infection in particular (Fig. 3B).  236 

Borrelia patients showed significant differences in temperature and blood glucose. On 237 
average, Borrelia positive patients had a higher fever (mean = 38.6ºC, SD = 1.1ºC ) than other 238 
febrile patients  (mean = 38.0ºC, SD = 1.0ºC, Mann-Whiteny two-sided p = 0.0011). Borrelia 239 
patients (mean = 1.07 g/L, sd = 0.19) were also hypoglycemic compared to other febrile patients 240 
(Other febrile: mean = 1.22 g/L, sd = 3.97, Mann-Whiteny two-sided p = 1.204e-02) (Fig. 3C).  241 

We assessed whether the addition of a complete blood cell count with differential could 242 
help distinguish RF Borrelia from other febrile diseases. Borrelia positive patients exhibited 243 
abnormal blood counts, including lymphopenia (mean 1.5 x 10^9 cells/L, std 1.04), 244 
granulocytosis (mean 7.47  x 10^9 cells/L, std 4.23), and thrombocytopenia (148 x 10^9 cells/L 245 
std 66) (Fig. 3D). However, this hematologic response was not significantly different from the 246 
response observed in other febrile patients. On a subset of patients, we measured 23 cytokines 247 
and chemokines to further distinguish Borrelia from other infections (Fig. 3E). Borrelia positive 248 
patients were distinct from viral infections in elevated CRP (Mann-Whitney two-sided, p = 249 
0.030), IL-10 (p = 0.00038), and MIP-1Beta (p = 0.0049) and decreased IP-10 (p = 0.00070), 250 
IFN-alpha (p = 0.0022), and MCP-1 (p = 0.00038) (Fig. 3E). 251 

Given the highly overlapping presentation of disease, we developed a weighted logistic 252 
regression model to distinguish Borrelia infection from other NMFI based on clinical symptoms, 253 
vital signs, and key demographic information. We evaluated the performance of the model with 254 
bootstrapping and found the model was able to predict Borrelia infection with high performance 255 
(recall:  0.861, 95% CI [ 0.837 - 0.910], precision: 0.792, 95% CI [ 0.696 - 0.892], and F1-score: 256 
0.823, 95% CI  [0.766 - 0.900]) (Fig. 4A). The model identified features that were significant in 257 
univariate analysis, including vomiting, temperature, blood glucose, and sore throat. 258 
Interestingly, common symptoms that were observed across all febrile patients, such as 259 
headache, body ache, and dizziness were not useful predictors on their own but were 260 
associated with increased risk of Borrelia when evaluated in the context of other symptoms and 261 
exposures. To test whether additional laboratory tests might further increase performance of the 262 
model, we incorporated complete blood count with differential (CBC) values. The addition of 263 
CBC values moderately increased model performance (Supplementary Fig. 9), but the 264 
difference was not significant and the test dataset was small (n = 163). When blood biomarkers 265 
were incorporated, decreased platelet count was an important predictor of Borrelia.  266 

 267 
Discussion 268 

In this study, we employed untargeted RNA-mNGS and targeted 16S sequencing to 269 
understand the causes of acute febrile illness at an ambulatory clinic in Thiès, Senegal. As the 270 
first unbiased investigation of causes of fever in Senegal, our findings highlight the importance 271 
of looking across many pathogen types simultaneously to understand their contributions—both 272 
individually and as co-infections—to disease, and enable comparison of the strengths of 273 
genomic tools as well as clinical and epidemiological data to support disease characterization. 274 

Arthropod-borne bacterial pathogens, Borrelia and Rickettsia, are the major identifiable 275 
causes of NMFI, but remain underdiagnosed. The frequency of these pathogens is broadly 276 
consistent with previous findings in targeted studies from other regions of Senegal8,39. Borrelia 277 
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spp. associated with human and zoonotic infection have been identified in ticks across West 278 
Africa28,36,40,41 but human surveillance has not been done.  279 

Our unbiased approaches and broad sampling illuminated co-infections and missed 280 
diagnoses that may be clinically relevant. Both Borrelia and Rickettsia occurred frequently as 281 
co-infections in our study. Rickettsia was detected more often as a co-infection with 282 
Plasmodium (n = 3) or Borrelia (n = 2) than as a stand-alone infection (n = 3). 283 
Borrelia/Plasmodium co-infections have been previously detected in Senegal42 and in vitro 284 
evidence suggests co-infection increases the risk of severe malarial illness43. Plasmodium/R. 285 
felis co-infections have been previously identified in Senegal44 and Anopheles gambaie, the 286 
primary malaria vector in Senegal, may be able to transmit Rickettsia45. Whether Rickettsia is 287 
contributing to pathogenesis or simply co-transmitting in these cases remains an open question. 288 
More research is needed to understand the interaction between the parasite and Rickettsia 289 
species. Given the common occurrence of co-infections and potential for negative outcomes 290 
without proper treatment of both pathogens, it is important that both surveillance and diagnostic 291 
approaches do not stop at detection of the first pathogen.  292 

Despite using multiple methods and searching across kingdoms, we did not find any 293 
pathogen in over 70% of NMFI cases in this study. Although our enrollment criteria focused on 294 
suspicion of malaria, many of these patients reported sore throat and difficulty breathing (2019: 295 
35%, 40/113) or abdominal pain (4.4%, 5/113). Given that only plasma samples were collected 296 
and sequenced, our approach may have missed infections limited to other body compartments, 297 
including the respiratory tract and digestive tract. Our results also demonstrate the difficulty of 298 
using RNA-mNGS to detect DNA pathogens and pathogens with different cellular compositions. 299 
Several of the bacterial infections in this cohort, particularly those with low abundance in the 300 
blood, were detected by 16S but missed by RNA-mNGS. Similarly, we were not able to resolve 301 
putative fungal hits to a suitable level of taxonomic resolution; to capture fungal pathogens, 302 
extraction methods should be optimized for lysis of fungal cells and more targeted methods 303 
such as ITS sequencing could be used. We observed wide variations in the number of 304 
Plasmodium reads among RDT positive patients and weak correlation with parasite density, 305 
suggesting that factors beyond parasite burden affect the number of reads recovered. There are 306 
also still many challenges in interpreting the RNA-mNGS data. In particular, RNA-mNGS is 307 
highly susceptible to contamination, such as the novel Reoviridae RdRp sequences we detected 308 
across febrile cases, healthy controls and non-template controls. Negative controls should be 309 
included alongside samples throughout processing to measure the “contaminome,” which likely 310 
differs between sample types and labs15.  311 

We find that combinations of clinical signs and symptoms can increase suspicion for 312 
Borrelia and support targeting clinical care. Due to the lack of available point-of-care tests, many 313 
clinics in LMICs rely on malaria RDTs as the primary diagnostic for febrile illness and may give 314 
blanket antibiotic treatment to RDT-negative patients46. Concerns have been raised about this 315 
practice47, including driving antibiotic resistance and exposing patients to unnecessary risks or 316 
side effects. For example, tetracycline antibiotic treatment—the recommended therapeutic for 317 
Borrelia and Rickettsial infections—poses the risk of Jarich-Herxheimer reaction (JHR), a 318 
severe inflammatory response to spirochete lysis that often requires close patient monitoring48. 319 
We identify a number of clinical and immunological features that could bolster support for a 320 
Borrelia diagnosis. Our weighted logistic regression model indicates that when larger cohorts 321 
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and diverse data types are aggregated, Borrelia can be differentiated from other NMFI with 322 
reasonable accuracy. The addition of laboratory measures, such as CBC, did not substantially 323 
improve differential diagnosis. Further, data from a subset of our cohort supports the hypothesis 324 
that a chemokine panel including TRAIL, IP-10 and CRP, previously employed for detection of 325 
bacterial infections in hospitalized children49, could apply more broadly and help distinguish 326 
bacterial infections such as Borrelia from other causes of febrile illness in the ambulatory 327 
setting. However, none of these approaches are currently actionable as point-of-care tests and 328 
their lower precision would still necessitate confirmatory diagnostic testing.  329 

The challenge of quickly and accurately differentiating Borrelia infections underscores 330 
the need for improved diagnostics. The diagnostic gold standard for Borrelia remains 331 
microscopic examination of blood smears, which has low sensitivity in our study and others35. 332 
Further, smear cannot distinguish species, and is highly dependent on a trained practitioner. 333 
Our study showed that molecular methods, including 16S sequencing and mNGS, can detect 334 
Borrelia infections, but are not practical in the clinical setting. Increased availability of qPCR 335 
assays and improved point of care nucleic acid diagnostics could enable detection and 336 
treatment of Borrelia across differently resourced clinical settings and improve our 337 
understanding of the geographic range and diversity of this pathogens 338 

An increasingly heterogeneous pathogen landscape will require the integration of 339 
targeted diagnostics and broad surveillance to effectively combat acute febrile infections moving 340 
forward. Decreased malaria transmission coupled with changes in the range and incidence of 341 
other pathogens—influenced in part by global climatic shifts—is broadening the array of 342 
pathogens accounting for the majority of febrile disease50. Fully understanding this landscape 343 
will require surveillance systems utilizing unbiased approaches that have been validated for 344 
viral, bacterial and eukaryotic pathogens and diverse sample types. In tandem, for Borrelia and 345 
other pathogens known to frequently cause NMFI, the development and availability of diagnostic 346 
tests that are cheap, rapid and sensitive will be key to enable appropriate clinical treatment at 347 
the point of care and support deeper investigations of the pathophysiology of disease. 348 
 349 
Methods 350 
Sample collection 351 

Febrile cases were selected from patients presenting to the SLAP outpatient clinic in 352 
Thies, Senegal during the collection period under local IRB (SEN15/46) and Harvard IRB 353 
(IRB19-0023). Informed consent was obtained for all enrollees; for minors under 18 years of age 354 
or individuals unable to provide their own consent, the consent of a parent or legal guardian was 355 
obtained. The study team explained to potential participants that their participation was strictly 356 
voluntary and that they could withdraw from the study at any time without any penalties or 357 
consequences and translations were made for potential participants (or their parent / legal 358 
guardian) that do not understand or cannot read the language in which the consent form was 359 
produced. 360 

Patients who met the following inclusion criteria and gave consent were enrolled: (1) 361 
Febrile symptoms within the 3 days up to and including the day of presentation, (2) Age 2-75 362 
years, and (3) Ambulatory with no signs of severe malarial (glucose < 2.2mM, hemoglobin < 5 363 
gms/dL). A subset of DENV positive samples from 2018 were previously sequenced and 364 
published4 and were excluded from this study other than being used as a viral outgroup in the 365 
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chemokine/cytokine analyses. At the time of enrollment, a structured interview including 366 
personal information, demographics, and self-reported symptoms was completed, vital signs 367 
were measured and blood was drawn by a trained practitioner. Plasmodium falciparum RDT 368 
(Bioline Malaria Ag P.f., Abbott), thick blood smear, and thin blood smear was performed and 369 
blood glucose (HemoCue 201/301) and hemoglobin (HemoCue Glucose 201) were measured. 370 
  371 
Sample processing 372 

Blood samples were stored on ice upon collection (maximum 8 hours). In the lab, blood 373 
samples were split into two aliquots. 200 ul of the first aliquot was used for an automated blood 374 
count with differential (Mindray BC 20s) and 200uL was used for a blood spot (Whatman filter 375 
paper) The remaining aliquot was centrifuged at 2300 rpm for 10 min to separate plasma, buffy 376 
coat and red blood cells. 140 uL of plasma was transferred to a tube containing 760uL of 377 
inactivation buffer (AVL, Qiagen). The remaining plasma was stored without inactivation. Red 378 
blood cells, buffy coat, plasma, and inactivated plasma were flash frozen and stored at -80ºC 379 
until further processing. Total nucleic acids were extracted with Qiagen QIAmp Viral Mini RNA 380 
according to the manufacturer’s protocol. Total nucleic acids were split into two aliquots and 381 
treated with Lucigen RNAse I or Ambion TURBO DNase to obtain purified DNA and RNA, 382 
respectively. 383 
  384 
Unbiased RNA sequencing 385 
Library preparation and sequencing 386 

Unbiased RNA sequencing libraries were prepared as described previously51. Briefly, 387 
cDNA synthesis was performed from DNAse-treated RNA using random hexamers (Illumina) 388 
and SSIV. Libraries were prepared from cDNA using Nextera XT (Illumina) and UD index 389 
primers (IDT/Illumina) with the following modifications to account for low cDNA input: the volume 390 
of ATM was decreased from 1uL to 0.5uL per 10uL reaction and PCR cycles were increased to 391 
17 cycles. Libraries were purified using AMPure XP (Agilent), quantified using KAPA 392 
Biosystems Universal Library Quantification, and pooled equally for 75bp paired end 393 
sequencing on NovaSeq SP to obtain at least 2 million reads per sample.  394 
  395 
Taxonomic classification of RNA-mNGS reads 396 

Unbiased RNA sequencing reads were processed using viral-ngs52. Briefly, reads were 397 
demultiplexed, adapter sequences were trimmed, and sliding-window quality filtering was 398 
performed. Human reads were filtered out using BMTAGGER and BLASTN. Cleaned reads 399 
were uploaded to NCBI SRA under BioProject PRJNA662334 (Accession numbers: 400 
SRR24622550-SRR24622641, SRR24995052-SRR24995258). Samples with insufficient reads 401 
(<2 million) were removed from further analysis (n = 1, SHC1064, Accession: SRR24995248).  402 
 403 

Taxonomic classification of human-depleted reads was performed using Kraken253 with 404 
the JHU PlusPF database (JHU, downloaded 12-13-2022). Kraken2 results were thresholded to 405 
consider only viral genera with at least 5 reads/million raw reads. Results were filtered to 406 
remove viral taxa detected in non-template controls (at least one non-template control) and 407 
healthy patients (at least 2 healthy patients). Further, viral genera with non-vertebrate hosts 408 
were filtered out. 409 
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To verify Kraken2 classifications, we performed a protein-sequence similarity search 410 
using DIAMOND-blastx54.  Cleaned, de-duplicated reads were used for de novo contig 411 
assembly with SPAdes and DIAMOND-blastx was run on all de novo contigs > 100 bp long with 412 
the complete nr database (downloaded December 2022). The least common ancestor of the top 413 
e-value hits was identified using a custom script (lakras/bio-helper-414 
scripts/blast/retrieve_top_blast_hits_LCA_for_each_sequence.pl). A classification was 415 
considered verified by DIAMOND if the cumulative length of contigs with a high identity match 416 
(mean identity of top e-value hits >= 95%) to the expected viral genus was at least 1kb. After 417 
DIAMOND-blastx verification, raw reads were aligned to the NCBI Virus RefSeq and assessed 418 
for evenness and depth of coverage.  419 

To assess for presence of divergent viral taxa that are not well represented in the 420 
database and may be missed by Kraken2, DIAMOND-blastx results were filtered for viral hits 421 
with low identity (20-80% amino acid identity). Results were filtered for viral families with a per-422 
sample cumulative de novo contig length >= 500 bp. Narnaviridae and Reoviridae sequences 423 
were aligned with all available RdRp sequences for each family in nr using MAFFT and trimmed 424 
with trimAl. Maximum likelihood phylogenetic trees were generated in IQ-TREE55 with a GTR-425 
gamma substitution model and bootstrapping (n = 1000) and visualized in FigTree v1.4.456.  426 
 427 
Viral genome assembly and phylogenetic analysis 428 

For virus-positive samples, reference-guided de novo assembly was performed using 429 
viral-ngs (assembly with SPAdes, reference-assisted improvements with MUMMER and 430 
MUSCLE/MAFFT and gap sealing with Gap2Seq). The NCBI Virus RefSeq as well as any 431 
>80% complete genomes available from Senegal were provided as references. For samples 432 
with near-complete or complete (>80%) genomes, genotype was determined with 433 
GenomeDetective (DENV, HBV) or by phylogenetic tree (Parvovirus B-19, GBV-C). 434 
Phylogenetic trees were generated with all >80% complete references from Africa downloaded 435 
from NCBI viruses (DENV1, DENV3, HBV), or all global >80% complete genomes available in 436 
NCBI virus (Parvovirus B-19, GBV-C). Sample sequences and reference sequences were 437 
aligned using MAFFT v757 and alignments were trimmed with trimAl v1.4.rev1558 to remove any 438 
bases with coverage in <80% of sequences. Maximum likelihood phylogenetic trees were 439 
generated in IQ-TREE55 with a GTR-gamma substitution model and bootstrapping (n = 1000). 440 
Visualizations were generated with FigTree v1.4.456. 441 
 442 
Plasmodium RNA-mNGS analysis 443 

In order to quantify Plasmodium rpm, the number of reads classified as Plasmodium at 444 
the genus level by Kraken2 was divided by the raw read count in millions. The cut-off for 445 
considering a sample positive for Plasmodium by mNGS was determined by calculating the 99th 446 
percentile for healthy control samples, 550 Plasmodium rpm. Cleaned deduplicated reads were 447 
aligned to the P. falciparum pfhrp2 (PlasmoDB PF3D7_0831800) with NovoAlign.  448 
 449 
Fungal RNA-mNGS analysis 450 

In order to detect possible fungal infections, we calculated the rpm classified as Fungi by 451 
Kraken253 at the kingdom level and determined the 99th percentile for healthy controls, 3399 452 
rpm. We identified 5 samples (4 febrile, 1 control) with high fungal reads. We attempted 453 
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taxonomic classification of these reads with Kraken2 at the genus level and saw hits across 454 
multiple genera for many samples (Supplementary Fig. 8B). To try to improve fungal 455 
classification, we performed a nucleic acid search of all de novo contigs from these 5 samples 456 
with megablast against nt (Supplementary Fig. 8C) and a translated nucleic acid search with 457 
DIAMOND-blastx54 (as described above). For both searches, we found the least common 458 
ancestor of the top hits (as described above), and filtered hits in the kingdom Fungi (taxid: 4751) 459 
with >90% identity and >30% coverage.    460 
  461 
qPCR  462 

Total bacterial load was quantified from extracted plasma DNA with primers targeting the 463 
V1-2 region (see Supplementary Table 2 for primer sequences) with Power SYBR Green PCR 464 
MasterMix (Thermo Fisher) under the following conditions: 300nM each F/R primer, 95°C hold 465 
for 10 min, 40 cycles of 95°C for 15 sec, 50°C for 1 min, 75°C for 30s. Pan-Borrelia qPCR was 466 
performed with Power SYBR Green PCR MasterMix (Thermo Fisher) under the following 467 
conditions: 400 nM each F/R primer, 95°C hold for 10 min, 40 cycles of 95°C for 15 sec, 60°C 468 
for 1 min.  469 
 470 
16S sequencing 471 
Library preparation and sequencing 472 

Samples with high bacterial load (V1-2 qPCR CT < 31.5) were selected for 16S 473 
sequencing (2019: febrile n = 129, healthy n = 35, 2018: febrile n = 84). Libraries were 474 
generated by amplification with tailed universal primers Tail-V1-2F and Tail-V1-2R 475 
(Supplementary Table 2) targeting variable regions 1-2. Amplification was performed on 5ul of 476 
RNAse-treated DNA using Q5 high fidelity polymerase (NEB) with forward and reverse primers 477 
at 100nM each with the following cycling conditions: 98°C for 30 sec; 35 cycles of 95°C for 15 478 
sec and 63°C for 2 min, 4°C hold. PCR products were cleaned using Ampure XP (Agilent) with 479 
0.7X ratio to remove primer dimers. Adapters and barcodes (BroadDuplex Seq) were added 480 
with a second PCR reaction using Q5 polymerase and the following cycling conditions: 98°C for 481 
30 sec; 18 cycles of 95°C for 15 sec, 60°C for 15S, 72°C for 30S, followed by  72°C for 5min, 482 
4°C hold. A subset of libraries were visualized with hsDNA BioAnalyzer (Agilent) and all libraries 483 
were quantified with KAPA Biosystems Universal Library Quantification Kit before pooling 484 
equally across samples and 250 bp paired-end sequencing on Illumina MiSeq v2 with 40% 485 
PhiX, given the low diversity of the single-amplicon library. 486 
  487 
Analysis 488 

Sequencing reads were demultiplexed using viral-ngs and demultiplexed FASTQ files 489 
were imported into qiime259 for further analysis. Briefly, after sliding window quality filtering and 490 
adapter trimming with cut-adapt (minimum-length 20), paired reads were joined with vsearch 491 
(tuncqual 15, minlen 35, minovlen 10, maxdiffs 3), and ASVs were generated with Deblur (trim-492 
length 280). ASVs were taxonomically classified by blastn search of ASV sequences against the 493 
NCBI 16S rRNA db (downloaded June 2023). The least common ancestor of the top e-value 494 
hits was determined using a custom script (lakras/bio-helper-495 
scripts/blast/retrieve_top_blast_hits_LCA_for_each_sequence.pl). Abundance was calculated 496 
by dividing the number of ASVs in each genus by the total number of ASVs in each sample. 497 
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Abundance data was filtered to show only taxa accounting for greater than 5% of ASVs. Taxa 498 
detected in non-template controls (n >= 1) and healthy controls (n >= 2) were filtered out.  499 

For Borrelia and Rickettsia positive samples, sample ASVs were aligned with MAFFT57 500 
(Geneious) with curated high-quality 16S sequencing from the NCBI 16S rRNA BioProject 501 
(BioProject: 33175) from each genus respectively. Alignments were trimmed with trimAl to 502 
remove positions with gaps in >90% of sequences and a maximum-likelihood phylogenetic tree 503 
was generated using IQ-TREE55 with bootstrapping (n = 1000) and annotated with FigTree 504 
v1.4.456.  505 
 506 
IGS Sequencing 507 

The intergenic spacer (IGS) region was amplified using a nested-PCR. First, the region 508 
was amplified from 5uL of extracted DNA with primers targeting the IGS region (IGS-outer F/R, 509 
see Supplementary Table 2) using Q5 polymerase and the following cycling conditions: 98°C for 510 
30 sec; 35 cycles of 94°C for 30 sec, 66°C for 30S, 74°C for 60s, followed by  74°C for 2 min, 511 
10°C hold. After a 0.75X AMPure XP cleanup to remove excess primer, a nested PCR was 512 
performed (IGS-inner F/R, see Supplementary Table 2) using Q5 polymerase and the following 513 
cycling conditions: 98°C for 30 sec; 30 cycles of 94°C for 30 sec, 67°C for 30S, 74°C for 60s, 514 
followed by  74°C for 2 min, 10°C hold. Amplified product was cleaned with AMPure XP (0.75X), 515 
visualized with BioAnalyzer TapeStation and bi-directional Sanger sequencing was performed 516 
(Azenta). Paired Sanger sequencing traces were analyzed in Geneious to generate a 517 
consensus sequenced and aligned with all available reference sequences for B. crocidurae, B. 518 
duttonii, and B. recurrentis using MAFFT57. A maximum-likelihood phylogenetic tree was 519 
generated using IQ-TREE55 and annotated with FigTree v1.4.456.   520 
 521 
Blood smear examination  522 

Thick and thin blood smears were fixed with methanol and stained with 3mL 10% 523 
Giemsa for 10 minutes. Stained smears were examined under a brightfield microscope for 524 
evidence of Borrelia. Slides were first scanned at low (40X) magnification and then at high 525 
(100X) magnification with oil immersion to quantify organisms per field (representative image, 526 
Supplementary Fig. 6B).  527 
 528 
Serology 529 

We assessed levels of common cytokines and chemokines using the Luminex platform 530 
on plasma from a subset of patients and controls. Specifically, we selected 10 healthy controls 531 
and 30 cases representing 10 each with a confirmed diagnosis of; malaria (based on malaria 532 
RDT administered at enrollment), Borrelia (based on pan-Borrelia qPCR37), or viral infection. 533 
Samples with a viral infection were all confirmed to have Dengue virus and are a subset of 534 
those cases previously described elsewhere4. Cases were selected randomly within those 535 
meeting each criteria. All samples were collected in 2018. We used the Inflammation 20-Plex 536 
Human ProcartaPlex™ Panel (Invitrogen), according to the manufacturer's instructions. We 537 
additionally performed a 2-plex assay for Human IP-10 and TRAIL (using IP-10 and TRAIL 538 
ProcartaPlex™ simplex kits from Invitrogen); two markers previously found to differentiate 539 
bacterial infections in hospitalized children49, as these were not included on the predefined 540 
panel. All samples were run in duplicate on a Luminex MAGPIX® instrument in Senegal. We 541 
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confirmed that standards showed the expected values and calculated the average across 542 
duplicates, which we report in the text. 543 
 544 
Multivariate model 545 

We developed a weighted logistic regression model that considered 46 candidate 546 
predictors based on clinical symptoms, vital signs, and key demographic information to predict 547 
Borrelia infection. Before modeling, the dataset underwent the following preprocessing steps: 548 
imputation of missing values with the Multivariate Imputation by Chained Equations (MICE) 549 
algorithm from the fancyimpute Python library60, one hot-encoding of categorical features, and 550 
standardization of continuous features using the StandardScaler from the scikit-learn library. 551 
Given that normal heart rate varies significantly with age, heart rates were binned and treated 552 
as a categorical variable. Heart rate categories were high, low, or normal based on the Pediatric 553 
Advanced Life Support guidelines as follows: for age 3-5, normal range 80-120, age 6-11 554 
normal range 75-118, age 12+ normal range 60-10061.  555 

The sample size was relatively small, with 526 patients and only 38 q-PCR confirmed 556 
cases of Borrelia infection. Given this inherent class imbalance in the dataset, a combination of 557 
techniques was employed to address this challenge. The Synthetic Minority Oversampling 558 
Technique (SMOTE) was applied to generate synthetic samples for the minority class (q-PCR 559 
confirmed Borrelia case)62. This technique mitigates class imbalance by interpolating between 560 
existing samples and creating synthetic instances of the minority class. During model training, 561 
class weights were also applied to adjust the influence of each class. The class weights were 562 
inversely proportional to the class frequencies, with higher weights assigned to the minority 563 
class.  564 

A logistic regression model was chosen for its interpretability and ability to estimate the 565 
probabilities of class membership. After a univariate screening for statistically significant 566 
predictors using chi-squared test (p-value < 0.05), several Feature Selection techniques were 567 
applied to construct the final set of predictors in the model. Before training the model, feature 568 
importance was assessed using a combination of three different feature selection methods; 569 
mutual information classification63, Recursive Feature Elimination64, and Lasso L1 570 
regularization65,66 to ensure consistent elimination of redundant variables. The selected features 571 
were used in the final weighted logistic regression model to analyze the performance of Borrelia 572 
prediction. The regularization parameter from Lasso was tuned using cross-validation of 573 
different alpha values and the best alpha value was used to train the final model and evaluate 574 
its performance on the test set.  575 

Model performance was evaluated with bootstrapping and 5-fold cross validation to 576 
quantify optimism and generalizability. The optimism-corrected metrics include F1-score, 577 
precision, recall, area under the ROC curve (AUC-ROC), and area under the precision-recall 578 
curve (AUC-PR). Odds ratios and their corresponding confidence intervals for all the model 579 
coefficients were calculated to  assess the impact of predictor variables on the odds of the 580 
outcome. All predictive analyses were conducted using the Python programming language. The 581 
scikit-learn library was utilized for preprocessing, model training, and evaluation. Statistical 582 
analyses and visualization of odds ratios and confidence intervals were done using the R 583 
statistical package.  584 
 585 
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