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Abstract 
 

Physiological signals such as pulse and respiration strongly contribute to non-neuronal 

signal change of the blood oxygenation level-dependent (BOLD) contrast in functional 

magnetic resonance imaging (fMRI). This has been observed not only during task-

based but also during resting-state fMRI measurements, where the confounding 

influence of physiological signals is most pronounced. Over the last decades, a variety 

of techniques evolved, aiming at detecting and removing physiological artifacts in fMRI 

time series. These follow either a solely data-driven approach or rely on externally 

recorded physiological data. To record cardiac and respiratory signals, typically pulse 

oximetry or electrocardiography (ECG) and a respiration belt are used, respectively. 

New technologies allow to capture respiratory signal directly with a sensor placed 

within the spine coil in the patient table, eliminating the need of a respiration belt, which 

considerably increases participants’ comfort. However, little is known about the 

effectiveness of these new technologies and how they compare to the standard 

respiration belt recording. In the current study, we compared the two devices, 

respiration belt and spine coil sensor, in their suitability for physiological noise removal 

during a visual perception task and during rest. We did not find any differences in 

resting-state functional connectivity (RSFC) or stimulus-related activity between data 

corrected with the two recording devices. However, we did find reduced residual noise 

in the time series corrected with spine coil-derived respiration signals compared to 

belt-based corrected data in the task dataset. Our results show that spine coil- derived 

respiration recordings are slightly superior to belt respiration recordings for 

physiological noise removal in task-induced activity, with spine coil recordings having 

an additional advantage in terms of subject comfort.  
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1. Introduction 

The blood oxygenation level-dependent (BOLD) contrast is one of the most frequently 

used indicators of brain activity in human neuroimaging. Although it is an indirect 

measure of neuronal events, it nevertheless reflects changes in the oxygenation of the 

blood that are evoked by neuronal activity. This signal, however, doesn’t only indicate 

neuronal activity. It further contains several confounding noise components that 

obscure the main signal. Multiple noise sources have been identified over the last 

decades, such as background noise, thermal noise (system-related noise), 

instrumental drifts, instabilities of hardware, participant’s head motion as well as 

physiological signals, such as cardiac rate, respiratory rate and resultant changes in 

the level of CO2 (Caballero-Gaudes and Reynolds, 2017; Keilholz et al., 2017; Liu, 

2016). 

Participant motion and physiological noise have been found to contribute most to non-

neuronal signal change in the BOLD contrast (Caballero-Gaudes and Reynolds, 2017; 

Kasper et al., 2017; Keilholz et al., 2017). Studies suggest its contribution to the signal 

variance to be comparable to that of the BOLD signal fluctuations during a task and at 

rest (Caballero-Gaudes and Reynolds, 2017). Task-based fMRI is thought to be more 

robust to non-neuronal noise since the observed effects are usually a result of 

averaging over multiple trials. However, this view fails to consider the notion that 

changes in cardiac rate or breathing rate can correlate with the examined task, 

especially when it is emotionally arousing or cognitively challenging, and hence 

introduce additional noise in a task-locked fashion (Birn et al., 2009; Bright et al., 

2014a). In resting-state functional connectivity (RSFC) analysis, the influence of 

physiological noise is even more pronounced, as non-neuronal noise has been found 

to introduce spurious correlations between voxels’ time series (Birn, 2012; Murphy et 

al., 2013), which can even mimic functional brain networks (Bright et al., 2020; Chen 

et al., 2020). Although physiological noise is typically observed at frequencies higher 

than the usual BOLD signal fluctuations at rest (i.e., cardiac: ~1 Hz, respiratory: ~0.3 

Hz, BOLD: < 0.1 Hz), due to aliasing effects present at repetition times (TRs) of  ≥ 2 

s, the physiological signals can still appear in the low-frequency segment of the power 

spectrum, where they are hard to distinguish from low-frequency oscillations of neural 

origin (Bhattacharyya and Lowe, 2004; Murphy et al., 2013). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2023. ; https://doi.org/10.1101/2023.08.24.23294529doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.24.23294529
http://creativecommons.org/licenses/by-nd/4.0/


 

4 
 

Effects of cardiac and respiratory noise 

Cardiac pulsation activity is thought to have a substantial effect on the relative 

distribution of fluid components (e.g., cerebrospinal fluid, blood) and also more solid 

brain tissue within the skull (Bhattacharyya and Lowe, 2004; Dagli et al., 1999). 

Expectedly, its effects are most noticeable near major blood vessels, as an increase 

in blood pressure intensifies pulsation of the vessels and hence causes local 

movements (Dagli et al., 1999; Glover et al., 2000). Changes in the cardiac rate were 

also found to be related to variations in the BOLD signal amplitude, which is not 

surprising since both signals are dependent on cerebral blood flow (CBF), cerebral 

blood volume (CBV), and oxygenation. This close relationship, however, can introduce 

confounds not only around large vessels, but also within the gray matter tissue (Chang 

et al., 2009; Shmueli et al., 2007).  

Respiratory activity can affect the BOLD signal in various ways. First, abdominal 

motion can lead to perturbation of the magnetic field (by inducing changes in field 

strength and homogeneity), which can cause distortion of the acquired data (Raj et al., 

2001). Small head movements during breathing can further produce spin history 

effects, that can last for several volumes and are spatially dependent on the axis of 

the movement (Caballero-Gaudes and Reynolds, 2017; Friston et al., 1996; Muresan 

et al., 2005). In addition to effects related to motion, even small and ordinary variations 

in respiratory volume and rate can induce considerable changes in the low-frequency 

BOLD signal. This is due to the fact that changes in breathing are accompanied by 

shifts in the arterial level of carbon dioxide (CO2), which, as an important vasodilator, 

modulates local cerebral blood flow (Birn et al., 2006; Wise et al., 2004). This is 

especially relevant near locations with high blood volume, such as blood vessels and 

gray matter (Birn et al., 2008). Together, these findings highlight the complexity of 

distinguishing signal driven by neural activity from mere physiological noise, which can 

affect the BOLD signal in a broad variety of ways. 

 

Minimizing physiological noise 

Multiple techniques to determine and, most importantly, remove physiologically 

induced noise in BOLD time series have evolved over the last years (Agrawal et al., 

2020; Caballero-Gaudes and Reynolds, 2017; Murphy et al., 2013), mainly following 
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one of the following approaches or their combination. On the one hand, data-driven 

models aim to approximate the contribution of physiological fluctuations based on 

signals from regions which are not likely to be effectively influenced by neuronal 

activity, such as cerebrospinal fluid (CSF) and white matter. These estimations, 

however, only allow to remove the average signal of said regions, approximating 

physiological contribution to gray matter signal and fitting it to every gray matter voxel. 

Based on this principle, more advanced methods such as CompCor (component 

based noise correction method) have been developed, that enable modelling the 

physiological signal in gray matter as multiple principle components of the CSF and 

white matter time courses instead of using the average signal (Behzadi et al., 2007). 

Reference-based approaches, on the other hand, aim at estimating the physiological 

noise not from indirect sources but from data acquired using external measurement 

devices (such as pulse oximeter, respiration belt, or electrocardiogram), which directly 

record physiological signals throughout the fMRI session. These signals are then 

retrospectively synchronized with the functional data (Kasper et al., 2017) in order to 

estimate the influence of physiology on each voxel’s time series. One widely 

established example is the RETROICOR (retrospective image correction) algorithm, 

which aims to determine the phase of each cardiac and respiratory cycle whenever a 

slice is acquired. Subsequently, the periodic effects of the physiological noise are 

modelled using a Fourier expansion of the phases that is fit to the time series of each 

voxel (Glover et al., 2000). 

Despite the substantial effects of respiration on the BOLD signal (Birn et al., 2008; 

Caballero-Gaudes and Reynolds, 2017; Chang et al., 2009; Liu, 2016; Murphy et al., 

2013; Verstynen and Deshpande, 2011), little is known about the different means of 

physiological signal recording and their suitability for subsequent physiological signal 

modelling. Traditionally, respiratory activity is recorded using a respiration belt that is 

applied around an individual’s upper torso near the diaphragm and registers the shift 

in abdominal volume. The new BioMatrix technology implemented in more recent 

models of the Siemens MRI scanners, however, additionally allows the recording of 

respiration via a sensor embedded in the spine coil within the patient table (Runge et 

al., 2019). The sensor produces a local magnetic field that changes with respiration-

induced motion. This option is fully integrated into the scanner’s structure and hence 

eliminates the necessity for respiration belt usage, which increases subjects’ comfort. 
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However, it remains unclear whether the new technology reflects the respiratory signal 

in a comparable manner and is equally suitable for modelling physiological artifacts in 

fMRI experiments. To investigate this, we simultaneously recorded the two types of 

signals in one task-based and one resting-state fMRI dataset, and formally compared 

them in their suitability for minimizing physiological noise. We could show that both 

recording methods are similarly suitable for physiological noise removal. Importantly, 

we did not find any differences between data corrected with both denoising methods, 

for resting-state functional connectivity as well as stimulus-related activity. 

Examination of residual noise, however, revealed less remaining noise in the data 

denoised with the spine coil sensor recording compared to the data denoised using 

signal from the respiratory belt in the task dataset.  
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2. Material and Methods  

 

2.1 Participants 

The task-based dataset comprised 25 participants between 19 to 31 years (12 female, 

mean age = 23.61, SD = 3.40) and the resting-state dataset included 56 volunteers 

between 19 and 35 years (35 female, mean age= 24.22, SD= 3.15) after excluding 6 

and 4 participants, respectively, either due to insufficient physiological signal quality 

or technical issues during recording. Resting-state measurements were followed by 

several task runs, which are not discussed in this paper. Participants had no 

neurological, psychiatric, or cardiovascular diseases and were not taking any 

medication on a regular basis. Before data acquisition, they gave written informed 

consent and were instructed in a standardized manner. Both studies were conducted 

following the Declaration of Helsinki and were approved by the local ethics committee 

of the University of Graz. Detailed descriptions of the two datasets are provided in our 

previous studies (task: Wilding et al., 2022, rest: Wilding et al., 2023). 

 

2.2 Data acquisition 
 

fMRI data 

fMRI data for both datasets were acquired on a 3T Siemens Magnetom Vida scanner 

(Siemens Healthiness, Erlangen, Germany) using a 64-channel head coil. Functional 

images were obtained using the blood oxygenation level dependent (BOLD) contrast. 

For detailed acquisition parameters, see Table 1.  

Rest 

The resting-state dataset was acquired in an 8-minute scanning session. Participants 

were instructed to fixate a red dot in the center of the screen and avoid any directed 

cognition.  

Task 

Task-related data were acquired using a multiband echo planar imaging sequence 

(EPI). During the experiment, participants were repeatedly presented with a bistable 
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motion stimulus for a duration of 1 second, interleaved with long (25-50 s) baseline 

periods. Immediately after the stimulus presentation they had to report their 

spontaneously occurring percept via a button press. Each participant underwent six 

functional runs of around 13 minutes, the exact duration depending on the 

randomization of the inter-stimulus periods. This resulted in of a total measuring time 

of approximately 75 minutes.  

 

Table 1. fMRI acquisition parameters for both datasets.  

 
 

Rest Task 

TR  3.22 s 0.88 s 

TE  0.32 s 0.30 s 

multiband factor - 3 

acceleration factor - GRAPPA, 2 

voxel size 3 x 3 x 3 mm 3 x 3 x 3 mm 

flip angle 82° 65° 

FOV 228 mm 210 mm 

number of slices 46 45 

number of volumes 155 on avg. 5100 

  

Physiological data 

Physiological measures in both studies were recorded throughout the whole fMRI data 

acquisition period. Heart rate was recorded with a photoplethysmograph clip at the 

participants’ left index finger at a sampling rate of 400 Hz. This technique allows to 

monitor and record an individual's pulse by measuring the absorption of infrared light 

in body tissue, which is modulated by the cardiac cycle (Nilsson, 2013).  

The respiration signal was captured simultaneously by two devices, the respiration 

belt (belt) and the spine coil sensor (spine). The respiration belt is placed around the 

upper torso, and an air cushion placed between the belt and the torso that detects 

pressure changes induced by participants’ chest contraction and expansion (sampling 

rate: 400 Hz). The spine coil respiration sensor is embedded in the BioMatrix spine 

coil of the Siemens Magnetom Vida scanner (Runge et al., 2019). It applies a local 
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electromagnetic field near the torso, which differs from the Larmor frequency (i.e., 30 

MHz) and hence does not interfere with the main scanner signal. This electromagnetic 

field varies with motion produced by the different phases of the respiratory cycle. 

Surrounding coil elements detect these changes, which reflect the participant’s 

breathing pattern. The recording of physiological signals was performed using the 

command line tool ideacmdtool by logging pulse and respiration signals throughout 

the fMRI data acquisition. This resulted in two files, one containing pulse, and one 

containing respiration data, which were used for further processing. 
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2.3 Data analysis 

2.3.1 Processing of the physiological data 

Physiology regressors were obtained from the physiological log-files using the 

MATLAB-based PhysIO toolbox (Kasper et al., 2017). In the first step, respiratory data 

quality was checked by inspecting raw data (Fig. 1A) as well as the distribution of 

breathing amplitudes, allowing us to examine signal quality and detect potential issues 

with signal recording. Sufficient respiratory signal quality is reflected in a high number 

of low/intermediate amplitudes with a long tail towards higher amplitudes, which 

correspond to sporadic deep breaths (Fig. 1B). In the case of technical problems 

during recording, such as ceiling effects in the respiratory signal (e.g., belt was too 

tight) or prolonged signal loss (e.g., temporary detachment of belt, see Fig. 1C), there 

is a distribution peak at the maximum amplitude or around zero, respectively. Cardiac 

signal was examined for possible periods of detachment by visually inspecting the 

data. Next, the cardiac and respiratory signal was aligned with the fMRI time series 

using the system time stamps and an algorithm performing iterative peak detection 

was applied to identify repetitive signal features and discard compromised segments 

and noise. Problematic time series were excluded when artifactual signal segments 

were present in ≥ 40 % of the signal, which was the case in three participants of each 

dataset. The remaining datasets were processed with RETROICOR phase expansion 

algorithm (Glover et al., 2000), which allows to consider variation within the 

physiological signals by modelling the periodic effects of pulsatile motion and field 

fluctuations as Fourier expansion of the respiratory phase. The expansion orders were 

set following the parameters of Harvey et al. (2008), i.e.,3rd order cardiac model,  4th 

order respiratory model, and 1st order interaction model. This resulted in 6 cardiac 

phase regressors, 8 respiratory phase regressors, and 4 interaction terms; in total 18 

regressors per device (RETROICORbelt and RETROICORspine). Finally, regressors 

were downsampled to a respective acquisition TR and added to the GLM.  

Signal correspondence of the unprocessed respiratory signal recorded using belt and 

spine was quantified using Spearman’s rank correlation in MATLAB R2019b 

(MathWorks, Inc., Natick, MA). 
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Figure 1. Comparison of respiratory signal captured with a breathing belt (belt; blue) or spine coil sensor 

(spine; orange). A) Example raw signal for both recordings showing five breathing cycles. B) Typical 

distribution of amplitudes in the raw signal for both recordings, both following a right-skewed distribution. 

C) Example of typical problems during the respiratory signal recording (indicated by red arrows) 

reflecting ceiling effects (belt was too tight) and temporary detachment of the belt, which are visible only 

in the belt recording. 
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2.3.2 Preprocessing of fMRI data 

Structural and functional data of both datasets were preprocessed using fMRIPrep 

version 20.2.3 (Esteban et al., 2019), which is based on Nipype 1.6.1 (Gorgolewski et 

al., 2011). The description of preprocessing steps is based on the fMRIPrep boilerplate 

text. 

Anatomical data 

The T1-weighted image was corrected for intensity non-uniformity and used as T1w-

reference throughout the following steps. Next, the T1w-reference was skull-stripped 

and brain tissue segmentation into cerebrospinal fluid (CSF), white matter (WM) and 

gray matter (GM) was performed on the brain-extracted T1-weighted image.  

Functional data 

First, a reference volume and its skull-stripped version were generated. Next, a B0-

nonuniformity map was estimated based on echo-planar imaging (EPI) references with 

opposing phase-encoding directions. Based on the estimated susceptibility distortion, 

a corrected EPI reference was calculated for a more accurate co-registration with the 

anatomical reference. The BOLD reference was co-registered to the T1w reference by 

applying boundary-based registration (bbregister; (Greve and Fischl, 2009) with 6 

degrees of freedom. Head-motion parameters with respect to the BOLD reference 

(transformation matrices for the six rotation and translation parameters) were 

estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9). The BOLD time-

series were resampled onto MNI space by applying a single, composite transform to 

correct for head-motion, slice acquisition timing and susceptibility distortions.  

The preprocessed datasets were then imported into the CONN toolbox (Whitfield-

Gabrieli and Nieto-Castanon, 2012); version CONN21.a), which uses SPM 12 

(http://fil.ion.ucl.ac.uk/spm/), and analyzed separately. 
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2.3.3 Resting-state data analysis 

 

Resting-state data analysis was performed using CONN version CONN21.a), which 

uses SPM 12. Functional data were smoothed using spatial convolution with a 

Gaussian kernel of 6 mm full width half at maximum (FWHM). Potential outlier scans 

were identified using artifact detection software (ART) as volumes with framewise 

displacement above 0.9 mm or global BOLD signal changes above 5 standard 

deviations. Next, the functional time series were denoised using a standard denoising 

pipeline (Nieto-Castanon, 2020) including the regression of potential confounding 

effects characterized by 6 motion parameters (derived from fMRIPrep) and their first 

order derivatives (6), outlier scans (15 regressors or less, depending on the 

participant), and physiology regressors derived from the RETROICOR model (18). 

This was followed by bandpass filtering of the BOLD timeseries between 0.008 Hz and 

0.09 Hz. To compare the effect of the respiration recording method on the resting-

state data, functional runs of each subject were added as three separate sessions that 

only differed in the type of physiology regressors (RETROICORbelt, RETROICORspine 

or none).  

 

Functional connectivity analysis 

To characterize the patterns of functional connectivity, ROI-to-ROI connectivity 

matrices (RRC) were estimated using the 164 HPC-ICA network parcellation, which is 

implemented in CONN. These matrices reflect the strength of functional connectivity 

between each pair of ROIs. Functional connectivity strength was represented by 

bivariate Fischer-transformed Pearson’s correlation coefficients, defined separately 

for each pair of target areas. First, we compared resting-state functional connectivity 

from data that was not corrected for physiological noise to data corrected with either 

belt or spine. In the next step, we directly compared functional connections in data 

corrected with belt or spine. Results were thresholded using a connection-level 

threshold of p < 0.01, and a cluster-level FDR-corrected threshold of p < 0.05.  
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Residual noise analysis in the resting-state data 

To examine differences in remaining noise after physiology correction with either 

recording, we compared the standard deviation of residuals between both. The 

denoised signal files were automatically created by the CONN toolbox after denoising 

and the standard deviation of residual voxel time course over time was calculated for 

each 4-D volume using an fslmaths command in FSL version 6.0.4 (Smith et al., 2004). 

To evaluate the general effects of physiological noise modelling compared to no 

physiology correction, we performed paired t-tests between none and belt/spine using 

the respective standard deviation maps in SPM 12. The results were corrected for 

multiple comparisons using a threshold of p < 0.01, FWE corrected.  To directly 

compare residual noise in the belt- and spine-corrected data, a voxel-wise paired t-

test was calculated between belt and spine datasets. Since the effects of direct 

comparison are expected to be more subtle, statistical maps were thresholded using 

a more liberal voxel-level threshold of p < 0.01, uncorrected. 
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2.3.4 Task data analysis 
 

Task-based data analysis was performed using the CONN toolbox (version 21.a), 

which uses SPM 12. The task-based functional data were smoothed using spatial 

convolution with a Gaussian kernel of 8 mm full width at half maximum. The first four 

volumes of each run were discarded to allow for T1 equilibration effects.  

 

Activity analysis 

For the first-level analysis, stimulus onsets were modelled as events of 2 s duration as 

regressors of interest. In addition, motion parameters (6) and physiology regressors 

(18) were included into the GLM as nuisance regressors. The first- level GLM analysis 

was conducted twice, once with RETROICORbelt and once with RETROICORspine 

nuisance regressors. Beta values for the stimulus onset of each GLM and each 

participant were used for the subsequent second-level group analysis. First, we 

examined stimulus-related activity in both models separately. To test whether there is 

an overall activity difference between belt and spine, a whole-brain analysis using the 

t-contrast “belt - spine” was performed on the second level. Results were thresholded 

using a voxel-level threshold of p< 0.01 and a cluster-level FDR-corrected threshold 

of 0.05.  

 

Standard deviation of residuals analysis 

To confirm our findings for the resting-state fMRI, we performed a similar analysis of 

residuals for the task-based fMRI dataset. To account for fluctuations related to task, 

in addition to including the noise regressors we also included the effects of task in the 

GLM before examining the standard deviation of the residuals. To directly compare 

belt and spine, we performed a voxel-wise paired t-test on the standard deviation maps 

using a voxel-level threshold of p < 0.01, uncorrected.  

All figures depicting functional results were created using the MATLAB-based 

bspmview (v.20180918) program (Stund, 2016).  
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3. Results 

3.1. Correspondence of signals 
 

First, we examined the correspondence between the raw respiratory signal acquired 

with belt and spine for the resting-state dataset. A Spearman’s rank correlation 

revealed a high correspondence between the two signals, with a median correlation 

of R= 0.69 between both signals over all participants (min.: R= 0.36, max. R= 0.89; 

IQR= 0.11), see Figure 2.  

 

 

Figure 2. Correlation between the respiratory signal recorded with belt and spine devices. The median 

correlation across participants (R= 0.69) is depicted by the grey dotted line.  
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3.2. Effects of noise correction 
 

3.2.1 Functional connectivity 
 

We examined the general effect of physiological noise modelling on functional 

connectivity by comparing functional connectivity derived from data denoised without 

physiology regressors (none) with functional connectivity corrected with either 

RETROICORbelt or RETROICORspine. The comparison “none – belt” revealed 

significantly higher cortical ROI-to-ROI functional connectivity in the absence of 

physiological modelling, suggesting the presence of artifactual correlations produced 

by physiological noise (Fig. 3A). Similar results were found for the comparison “none 

– spine”. For the latter, we found a slightly higher number of significant functional 

connections than for “none – belt”. We then directly compared resting-state functional 

connectivity derived from data corrected with either RETROICORbelt or 

RETROICORspine. Our ROI-to-ROI functional connectivity analysis did not reveal any 

significant differences (even at a more liberal threshold of p < 0.01, uncorrected). 

 

3.2.2 Functional activity 
 

For the task-dataset, we examined stimulus-related activity for data corrected with 

signal from each type of device. Our GLM analysis revealed a highly similar activity 

pattern in response to the stimulus for models containing RETROICORbelt or 

RETROICORspine regressors. As illustrated in Figure 3B, we observed a widespread 

stimulus-related activity increase in areas overlapping the fronto-parietal network and 

the salience network, and an activity decrease in regions that are similar in location to 

the nodes of the default mode network. 

Next, we investigated differences in stimulus-related activity between both denoising 

types. We did not observe any significant differences in stimulus-related activity 

between belt and spine, even at a liberal threshold of p<0.01, uncorrected (Fig. 3B). 
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Figure 3. Effects of noise correction for both datasets. A) ROI-to-ROI functional connectivity differences 

between A) none and belt, and b) none and spine. Connection threshold: p < 0.01, cluster threshold: p 

< 0.05, FDR-corrected. B) Stimulus-evoked activity for both types of denoising; voxel-threshold: p< 

0.01, cluster-threshold: p<0.05, FDR-corrected. 
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3.3 Residual noise  
 

3.3.1 Residual noise resting-state 
 

We first confirmed that physiological noise modelling indeed reduces physiological 

noise in the data. To compare the amount of remaining noise after physiology 

correction (RETROICORbelt or RETROICORspine) with no physiology correction (none), 

the temporal standard deviation of the denoised signal which included physiology 

regressors was compared with the standard deviation of the denoised signal that did 

not include physiology regressors. As expected, residual noise was higher without 

physiological noise modelling. There was a statistically significant difference between 

none and belt as well as none and spine throughout the whole brain volume, with 

higher standard deviation values for denoising without physiology regressors (both T55 

6.18, p<0.01, FWE corrected; see Figure S1). 

To examine which device led to a more effective physiological noise removal in the 

resting-state data, we directly compared the standard deviation of residuals for the 

belt-denoised and spine-denoised data using a paired t-test. We found no significant 

differences between the standard deviation of the denoised signal of RETROICORbelt 

and RETROICORspine at a threshold of p < 0.01, FWE-corrected. At an uncorrected 

threshold of p <0.01, our paired t-test revealed several positive (16, average voxel 

size= 43) and negative (12, average voxel size= 32) clusters for the contrast “belt – 

spine” (T55>= 2. 396; see Figure 4A). 

 

 

3.3.2 Residual noise task 
 

Finally, we examined possible differences in the remaining noise for both denoising 

types in the task dataset, finding no significant differences. At the uncorrected level (p 

<0.01) our paired t-test revealed a clear distribution towards positive values (T24= 2.49; 

see Figure 4B), indicating more remaining noise in the belt-denoised data. 
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Figure 4. Comparison of residual noise in belt-denoised and spine-denoised data in the resting-state 

dataset (A) and in the task-based dataset (B). We observed higher noise values in the belt-denoised 

data, mainly in the task-dataset. Insets on the right show the distribution of contrast estimates for the 

contrast “belt vs. spine” within the brain mask for each dataset. The rest dataset resembles a normal 

distribution while in the task dataset a clear shift to positive values is visible. 
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4. Discussion 
 

Summary 
 

Physiological noise is one of the main sources of non-neuronal noise in the BOLD 

signal. Recording physiological signals such as pulse and respiration during fMRI 

acquisition can minimize their impact on functional data by removing the main 

components of noise retrospectively. In this article, we compared two different 

respiratory signal recording devices for their overall ability to reduce physiological 

noise in fMRI data. To evaluate the consistency of the effects, we assessed their 

impact in a resting-state dataset and a task-based dataset. Our results show that the 

new spine coil sensor technology is as good as the conventional respiratory belt 

recording as a source signal for physiology denoising, and potentially even superior 

for the task-based dataset. 

 

Results  
 

Our results emphasize the importance of including physiological noise correction in 

fMRI analyses, as they showed significantly more residual noise in data without any 

physiological correction compared to data denoised with either RETROICORbelt or 

RETROICORspine. This effect was consistent for denoising using signals from both 

devices and was present throughout the brain. At the same time, our results suggest 

a potential advantage of the spine coil sensor for fMRI signal denoising. 

Specifically,denoising with RETROICORspine led to smaller variance in denoised task-

induced signal compared to belt, although there was no clear trend in the resting-state 

data. Consistently, a slight trend towards superior spine-derived denoising was 

observable in the functional connectivity results. When comparing no correction (none) 

with belt- and spine-derived denoising, we found that data corrected with 

RETROICORspine revealed fewer connected network nodes compared to data 

denoised with RETROICORbelt. Since physiological noise is known to manifest itself 

as spurious correlations between voxels, correlation/connectivity reduction may 

indicate a more rigorous removal of physiological noise with RETROICORspine. 

However, these results must be interpreted with caution, as a direct comparison of belt 
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and spine functional connectivity and task-based activity did not reveal any significant 

differences, even at liberal statistical thresholds. 

 

Potential reasons for differences 
 

Our results imply a slight advantage of the spine coil sensor in correcting for 

physiological noise in task-based data. Reasons for this apparent discrepancy in the 

effectiveness of noise correction may be found at the raw signal level. The respiration 

belt needs to be applied at the correct position on the subject’s torso with an optimal 

degree of tightness before recording. However, if the strap deviates too much from the 

target position or if it is applied too loosely or too tightly, signal artifacts are likely to 

occur. For example, a strap that is too tight can result in ceiling effects, and incorrect 

positioning (also due to subject motion) can cause belt detachment or the air cushion 

slipping out from underneath the belt and consequent loss of signal (see Fig. 1 C and 

D). In contrast, spine sensors are implemented in the scanner table which not only 

increases acquisition comfort but also eliminates artifacts due to incorrect 

arrangement of device components. Here, we excluded the belt signal in six 

participants that exhibited severe artifacts. However, less severe cases were still 

included in the study and may have had an overall impact on signal quality between 

devices. This is also reflected in the signal correspondence between both devices, 

which is high (median R= 0.69), but not perfect and shows some variation across 

participants. It is noteworthy that no participant was excluded because of the low 

quality of the spine coil sensor signal, which again speaks in favor of this technology. 

But why were device-related effects mainly present in the task-induced dataset? As 

shown in Figure 4 (right), the distributions of contrast-specific weighted combinations 

of beta values for both datasets differ in their appearance. While the distribution of 

contrast estimates in the task-dataset showed a clear rightward shift, the resting-state 

data resembles a Gaussian distribution with a center around zero. We speculate, that 

the difference in the amount of data, which was clearly in favor of the task-dataset, 

may partly obscure similar effects in the resting-state dataset due to less statistical 

power. While the resting-state dataset contained only 8 minutes of data with 155 

volumes, due to its experimental nature and multiband acceleration the task-based 

dataset contained 75 minutes and 5100 volumes on average.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2023. ; https://doi.org/10.1101/2023.08.24.23294529doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.24.23294529
http://creativecommons.org/licenses/by-nd/4.0/


 

23 
 

Aside from that, we consider it possible that additional effects of physiology may have 

been time-locked to the stimulus or task, which can typically be the case in arousing 

or cognitive challenging tasks and introduce systemic confounds to the data. As shown 

in Wilding et al., 2022, arousal levels in the task-dataset clearly increased after 

stimulus onset, reflecting strong stimulus/task-related physiological modulations. 

Previous studies showed that accounting for these physiological modulations e.g., by 

adding regressors based on the recorded physiological signal, can drastically improve 

the detection of the real neural signal (Birn et al., 2009; Bright et al., 2014b; Hillenbrand 

et al., 2016; Lane et al., 2009). Based on these findings, we suggest that due to a 

more efficient correction of stimulus/task-correlated confounds, task-related data 

corrected with RETROICORspine may show less residual noise compared to belt-based 

data as well as resting-state data. 

 

Limitations and future implications 
 

In this article, we show that functional noise correction with spine coil sensor data 

appears to perform better in terms of residual noise than the belt signal, but mainly in 

task-induced activity. In the current study, we can’t completely rule out that this 

discrepancy between dataset is due to the amount of data in both datasets, as 

discussed above. Therefore, future studies that include longer resting-state 

measurements with multiple runs are needed to confirm that the advantages of the 

spine coil sensor are not evident in the resting-state data. 

Moreover, as it is common practice when correcting for physiological noise, we used 

the RETROICOR algorithm to create noise regressors that allow to account for 

periodic effects in physiological noise. Although being a highly recommended option, 

there are several other reference-based approaches that can be used for physiological 

noise correction, which focus on slightly different physiological parameters, e.g., the 

respiratory response function, which accounts for variations in cardiac and respiratory 

rate or the breathing depth and end-tidal CO2 changes (Birn et al., 2008, 2006b; 

Chang and Glover, 2009). Future studies could therefore implement different 

physiological noise models/parameters to support and complement present results. 

Moreover, additional devices that are becoming more common for respiratory 

recording, such as the pulse oximeter (Addison et al., 2012; Dehkordi et al., 2018), 
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should be compared with the breathing belt and/or spine sensors with respect to their 

suitability for respiration recording. 

 

Conclusion  

Our study confirms that both types of devices can be effectively used to reduce 

physiological noise in resting-state and task-based fMRI data. Moreover, it suggests 

that models derived from the spine coil sensor data perform slightly better in removing 

noise of physiological origin compared to a conventional breathing belt recording, 

especially in task-induced activity. 
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5. Important stuff 
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Figure S1. Standard deviation of model residuals for none versus belt (left) and none versus spine 

(right) in the rest dataset. 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2023. ; https://doi.org/10.1101/2023.08.24.23294529doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.24.23294529
http://creativecommons.org/licenses/by-nd/4.0/

