Rare CRHR2 and GRM8 variants identified as candidate factors associated with eating disorders in Japanese patients.

Akira Oka ${ }^{1,2^{*}}$, Shinji Hadano ${ }^{1,2,4}$, Mahoko Takahashi Ueda ${ }^{3}$, So Nakagawa ${ }^{1,2,4}$, Gen Komaki ${ }^{5}$, Tetsuya Ando ${ }^{6,7}$
${ }^{1}$ Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
${ }^{2}$ The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
${ }^{3}$ Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510 Japan
${ }^{4}$ Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan
5 Faculty of Medical Science, Fukuoka International University of Health and Welfare, Momochihama, Sawara-ku, Fukuoka 814-0001, Japan
${ }^{6}$ Department of Psychosomatic Medicine, Faculty of Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
${ }^{7}$ Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8553, Japan
* Corresponding author
Email: oka246@is.icc.u-tokai.ac.jp

Keywords. Eating disorder, CRHR2, GRM8, whole exome sequencing, affected sib-pair

Abstract

Eating disorders (EDs) are a type of psychiatric disorder characterized by pathological eating and related behavior and considered to be highly heritable. The purpose of this study was to explore rare variants expected to display biological functions associated with the etiology of EDs. We performed whole exome sequencing (WES) of affected sib-pairs corresponding to disease subtype through their lifetime and their parents. From those results, rare single nucleotide variants (SNVs) concordant with sib-pairs were extracted and estimated to be most deleterious in the examined families. Two non-synonymous SNVs located on corticotropin releasing hormone receptor 2 (CRHR2) and glutamate metabotropic receptor 8 (GRM8) were identified as candidate disease susceptibility factors. The SNV of CRHR2 was included within the cholesterol binding motif of the transmembrane helices region, while the SNV of GRM8 was found to contribute to hydrogen bonds for an α-helix structure. CRHR2 plays important roles in the serotoninergic system of dorsal raphe nuclei, which is involved with feeding and stress-coping behavior. Moreover, GRM8 modulates glutamatergic neurotransmission, and is also considered to have effects on dopaminergic and adrenergic neurotransmission. Further investigation regarding the biological function of these variants may provide an opportunity for elucidate the pathogenesis of EDs.

1. Introduction

Eating behavior can be severely affected by eating disorders (EDs), including anorexia nervosa (AN) and bulimia nervosa (BN). The main manifestations of AN are dietary restriction, fasting, excessive exercise, or other weight control or loss behaviors as resistance to maintenance of normal body weight. On the other hand, BN is characterized by repeated binge eating and inadequate compensatory behaviors to avoid weight gain. Manifestations shared by these disorders include aspiration for weight loss, fear of weight gain, and self-evaluation unduly influenced by body shape and weight. Moreover, twin and familial studies demonstrated that genetic predisposition to AN and BN is shared, at least in part [1-3]. The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) provides diagnostic criteria for a subgroup of AN defined as restricting type (AN-R), which include severe dietary restriction without regular binge eating and/or purging behaviors, as well as binge-eating/purging type (AN-BP) with regular binge eating and/or purging behaviors.

A recent GWAS for AN in European identified eight significant common variants [4]. However, that study captured only 1.7% of the phenotypic variance, thus additional subjects would be required for future replication studies [4]. On the other hand, a sequencing study with linkage analysis was performed using two large families with AN and BN, and those findings suggested that each rare missense variant in estrogen-related receptor α (ESRRA) and histone deacetylase 4 (HDAC4) is associated with EDs [3]. ESRRA null mice also display behavioral deficits relevant to EDs such as AN [5]. Moreover, $H D A C 4^{\mathrm{A} 778 \mathrm{~T}}$ mice carrying the missense variant demonstrate several ED-related feeding and behavioral deficits in a gender-dependent manner [6, 7].

Swedish twin study for EDs demonstrated that concordance rates in monozygotic twins were higher than dizygotic twins within the same disease subtype, on the other hand, the rates were similar in the different subtype [1]. Therefore, in the current study, to use subjects expected to be higher heritability we selected seven affected sib-pairs corresponding to disease subtype through their lifetime for whole exome sequencing (WES) for exploring rare variants functionally related to the pathogenesis of EDs. However, the statistical power was quite insufficient to perform genetic association and linkage analysis. Therefore, we explored the most deleterious coding variants shared
with sib-pairs in each family.

2. Materials and methods

2.1 Patients and families

Upon approval of the experimental procedures from the relevant ethical committees at the National Institute of Mental Health, National Center of Neurology and Psychiatry (number: A2013-054) and Tokai University (number: 14I-60), we obtained written informed consent in accordance with the Declaration of Helsinki from 30 sib pairs and their family members prior to collection of DNA samples. Among all subjects we selected 7 sib pairs corresponding to disease subtype through their lifetime for reduction of sample heterogeneity and elevation of likelihood of identification of susceptibility variants [8], though family P8 included a brother who displayed a different subtype (Fig. 1 and Supplementary Table 1). The IDs of the samples in this paper were reassigned for the experiment, therefore these IDs could not identify individuals. They are 15 individuals affected with EDs and 11 unaffected individuals, all of Japanese origin. They are also three ANR and three BN families, and one family displayed a diagnostic crossover from ANR to BN. Of the cases, each was diagnosed according to the DSM-IV criteria in Japan. DSV-IV eating disorder diagnosis was made by expert of psychosomatic doctors or psychiatrists expertized on eating disorders. DNA was extracted using a QIAamp DNA blood kit (QIAGEN, Hilden, Germany).

2.2 Genomic library construction and sequencing

For exon fragment capture and sequencing, an Agilent SureSelect Target Enrichment, v. 5 (50 Mbp), was used. Sequence analysis was performed using an Illumina Genome Analyzer IIx, HiSeq2000, or HiSeq2500 platform.

2.3 Sequencing data analysis

Reads that passed quality control were mapped to the reference genome (UCSC Genome Browser assembly GRCh37/hg19, http://genome.ucsc.edu/) with a Burrows-Wheeler Aligner, v. 0.5.9.

Potential PCR duplicates were flagged with Picard MarkDuplicates, v. 1.88 (http://picard.sourceforge.net/). Genome Analysis Toolkit v. 2.2-8, was used to perform map quality score recalibration and variant detection. Single nucleotide variants (SNVs) and indels were then annotated for functional consequences at the gene using the ANNOVAR. Predictions of variants with risk were also performed using ANNOVAR, with non-synonymous variants (LJB, v. 3.0) employed for the effects on protein function (SIFT, PolyPhen, MutationTaster, Muration Assesor, LRT, FATHMM) and evolutional conservation (GERP++, phyloP, Siphy). Criteria used for deleterious variants in each prediction are shown following:

SIFT (sift): D: deleterious, PolyPhen 2 HDIV: D: Probably damaging, LRT: D: Deleterious, MutationTaster: A (disease_causing_automatic) or D (disease_causing), MutationAssessor: H: high FATHMM: D: deleterious, GERP++ >5, phyloP >2.0, SiPhy >15

2.4 Confirmation of SNVs

For PCR and sequencing (Greiner Bio-one) of the SNV of CRHR2, forward (CCTGGCAGGGGGAGAAGAGC) and reverse (CCCCAAGCTGCCTCCTGACA) primers, and for the SNV of GRM8, forward (GCAACTCCAAGTCATCCATTTTCTTCA) and reverse (TGGAGCGAATTGCTCGGGATT) primers, were used. Sequencing reactions were carried out using a BigDye Terminator Cycle Sequencing kit, v. 3.1 (Thermo Fisher Scientific). Automated electrophoresis was performed with an ABI PRISM 3730 Genetic Analyzer (Thermo Fisher Scientific).

3. Results

3.1 WES

We obtained rare 4,032 SNVs, 113 splice site variants and 76 insertion/deletion variants (allele frequency <0.001) from a total of 633,030 variants (Fig. 2). Initially, we attempted to identify recessive and compound variants concordant with the affected sib-pairs, however none were found
among these rare variants. Next, heterozygote variants concordant with affected sib-pairs were extracted as dominant candidates. Finally, we estimated the most deleterious SNV in each family by use of six functional prediction (SIFT, PolyPhen, MutationTaster, Muration Assesor, LRT, FATHMM) and three conservation-based (GERP++, phyloP, Siphy) methods [9].

A previous large exome sequencing study indicated a strong inverse relationship between average SNV age and number of methods needed to predict a variant as deleterious, thus SNVs predicted to be deleterious by multiple methods probably undergo a more intense purifying selection and are very rare in populations [10], suggesting them as candidates for disease pathogenesis. Moreover, most very-rare variants arose within the past 5-10,000 years and are population-specific [11]. Therefore, 381 SNVs and 4 de novo SNVs were evaluated (Fig. 2, Supplementary Table 2) based on the number of methods that predicted a variant to be deleterious and a feature of the gene. Among those, only two were predicted to be deleterious by all nine methods, an SNV in corticotropin releasing hormone receptor $2(C R H R 2)$ noted in family P15 and an SNV in glutamate metabotropic receptor 8 (GRM8) noted in family P4 (Table 1 and Fig.1-2). These were considered likely to be specific for a Japanese population, though a single allele for CRHR2 was previously observed in Europeans (Table 1). In addition, SNVs supported by eight of the methods were observed in the P7, P8, and P11 families, while those supported by seven of the methods were observed in the P3 and P5 families. Among the 10 genes, CRHR2, GRM8, and glutamate ionotropic receptor α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) type subunit 2 (GRIA2) were indicated to have higher levels of expression in the brain and related tissues (Table. 1).

Table 1. Most deleterious variants in each family estimated by functional prediction

3 (https://gnomad.broadinstitute.org/), ${ }^{\mathrm{f}}$ Top two tissues showing highest expression level in GTEx (release V8, 54 non-diseased tissue sites across nearly 1000 individuals).

CRHR2 encodes a neuropeptide receptor for corticotropin-releasing factor (CRF), a critical coordinator of the hypothalamic-pituitary-adrenal axis [12] and for three urocortins (UCN1-UCN3) [13]. CRHR2 is also a specific receptor for UCN2 and 3, which are associated with regulation of stress, anxiety, and food intake [14-17]. GRM8 encodes a G-protein coupled metabotropic glutamate receptor that influences inhibition of the cyclic AMP cascade and regulates presynaptic glutamate release [18], and also has been found to have genetic associations with psychiatric phenotypes, including depression $[19,20$] and eating behavior [18]. The two variants were also confirmed by Sanger sequencing (Supplementary Figure 1). Thus, it is considered that CRHR2 and GRM8 are potent candidate genes due to the pathogenesis of EDs in individuals included in this study.

GRIA2 has a significant role in excitatory neurotransmission [21], and has been identified as a causative gene of intellectual disability and developmental epileptic encephalopathy. Therefore, we considered that GRIA2 was a weaker candidate gene for EDs in this study, as the phenotypes generated by mutations may not be concordant with EDs. Furthermore, among the 381 SNVs considered to be candidates for dominant, all other SNVs were thought to be unlikely as causative factors of EDs after considering the descriptions and locations of expression (Table 1).

Four de novo, five splice site SNVs, and five insertion and deletion variants concordant with affected sib-pairs were identified as heterogeneous (Supplementary Table 3-5). However, in consideration of their features, these fourteen genes are unlikely to be causative factors of EDs.

3.2 Evaluation of impact of SNVs on CRHR2 and GRM8

CRHR2 is classified as a secretin subfamily among class B G protein-coupled receptors (GPCRs). A GPCR features seven transmembrane helices (TM), three extracellular loops, and three intracellular loops. The rare SNV in family P15 (rs569607645) was found located within the TM4 region. Gly 231 , with a codon corresponding with the SNV conserved across species and among the class B GPCRs (Fig. 3), and located within a highly conserved sequence motif, GWGxP, in class B GPCRs [22]. Moreover, the substitution converts hydrophobic (glycine) into hydrophilic (arginine) amino
acid, implying that this SNV influences conformation and function of CRHR2.
Metabotropic glutamate (mGlu) receptors are members of the class C family of GPCRs that modulate cellular responses to the excitatory neurotransmitter L-glutamic acid (L-Glu) in many synapses in the CNS [23]. The amino terminal domain (ATD) of mGlu receptors contains an orthosteric glutamate recognition site, which is highly conserved across the eight mGlu receptor subtypes [24]. The rare SNV in family P4 was located within an α-helix structure of the ATD region. Tyrosine 441, with a codon corresponding with the SNV, was found to be conserved across species and hydrogen bonds to Asp 422 in an adjacent α-helix structure (Supplementary Figure 2) [23]. Therefore, the substitution of tryptophan to cysteine is likely to cancel the hydrogen bond. We also evaluated the effect of the SNV on protein stability using X-ray crystal structure data (PDB ID 6BSZ) and ENCoM, which are used to predict the effect of mutations on thermostability and dynamics, as well as to generate geometrically realistic conformational ensembles [25]. Those results indicated that the conformation of GRM8 was expected to be destabilized $(-0.822 \mathrm{kcal} / \mathrm{mol})$. Thus, the substitution may have an impact on the structure and functions of GRM8.

4. Discussion

4.1 CRHR2

Common SNVs in CRHR2 were not detected in a large genome-wide association study for anorexia nervosa and other psychiatric disorders [4]. On the other hand, WES with bipolar disorder families identified a rare and functionally relevant nonsense variant within the intracellular C-terminal region of CRHR2 [26]. Thus, it is suggested that a rare SNV in CRHR2 contributes to the pathogenesis of a psychiatric disorder.

A study that used Crhr2 knockout mice demonstrated that CRHR2 is essential for sustained feeding suppression induced by UCNs, members of the CRF family of peptides [27]. In another investigation, Crhr2-mutant mice showed decreased food intake following food deprivation [12]. Therefore, UCNs are potent for suppression of food intake by CRHR2-specific mediation [28]. Furthermore, Crhr2-mutant mice were also reported to have an anxiogenic phenotype and impaired
stress recovery [13]. These observations are related to serotoninergic neurons. Serotonin (5-HT) is produced by serotoninergic neurons of the dorsal raphe nucleus (DRN) located within the brain stem and regulates feeding behavior [29], while CRHR2 is specifically expressed in the DRN serotoninergic neuron of [30] and plays important roles in controlling serotonergic neuronal activity [31]. Hammack et al. performed experiments within the rat DRN using UCN2, an agonist for the highly selective CRHR2, as well as an antagonist for that and demonstrated that CRHR2 in the DRN mediates behavioral consequences of uncontrollable stress [32]. Additionally, anxiety-related stimuli by UCN2 were shown to lead to increased activation of serotonergic neurons within the DRN [33]. The DRN projects to the bed nucleus of the stria terminalis, which plays essential roles in threat processing, and is responsible for such emotional states as fear and anxiety [34, 35]. The tone of the DRN-5-HT system is regulated in a dynamic manner through CRHR2 activation, and either decreased or increased depending on the level of endogenous or exogenous ligands [36]. Indeed, in malnourished individuals suffering from AN the cerebrospinal fluid has reduced amounts of 5-hydroxyindoleacetic acid which is the major brain metabolite of 5-HT and is thought to reflect extracellular 5-HT concentrations, indicating that abnormal activity of 5-HT system is related to EDs pathogenesis. [37]. Thus, CRHR2 mediates not only food intake, but also passive coping behavior and depression-like responses triggered by uncontrollable stress [13] via the serotoninergic neuron in the DRN.

Structural analysis demonstrated that the motif included with rs569607645 is a cholesterol-binding site, and that artificial mutations in that site reduce the activation potency of UCN1 and CRF to CRHR2, suggesting that the site plays a role in stabilizing peptide binding [38]. Moreover, bound cholesterols in the structure of CRHR2 contribute to GPCR signaling, indicating that the GPCR signalosome carries out its function in the cholesterol-rich lipid raft [38]. Thus, the substitution of G231R provided by the rare SNV rs569607645 impairs the functions of CRHR2, which may decrease the coping mechanism in response to stress [13] and/or feed suppression [28] in patients with EDs.

ED patients have higher rates of anxiety disorders as compared with normal individuals,
suggesting that both disorders might share common etiological factors, which can increase the susceptibility of an individual to either [39]. Stress is prominently involved in the pathogenesis and development of EDs and anxiety disorders. Moreover, coping mechanisms such as a positive attitude, planning, and social support seem to be impaired in ED patients who often do not cope well with emotional distress, implicating that such mechanisms may be disrupted [40]. Therefore, a decay of CRHR2 functions may play a part in the pathogenesis of EDs.

4.2 GRM8

As mentioned above, associations between psychiatric disorders and GRM8 has been indicated with strong evidence in previous reports. On the other hand, a sequencing study for bipolar disorder identified enrichment of damaging mutations in GPCRs including CRHR2 and the GRM gene family, with increased numbers of deleterious variants [26].

The mGluRs modulate glutamatergic neurotransmission, and are considered to also have effects on dopaminergic and adrenergic neurotransmission, implicating their involvement in a number of neurological disorders [41]. An expression study using animals indicated that GRM8 may play a role in feeding behavior and metabolism via the hypothalamic pathway [18, 42].

5 Conclusions

We found two rare SNVs as candidates for predisposition to EDs in affected sib-pair families. One found located on CRHR2 plays important roles in the serotoninergic system in the DRN, and is involved with feeding and stress-coping behavior, while the other SNV is located on GRM8, which modulates cellular responses to the excitatory neurotransmitter in the CNS, and may play a role in feeding behavior and metabolism via the hypothalamic pathway. Moreover, the present findings indicated potential for both non-synonymous SNVs to have impact on conformation and functions of molecules. However, this study only observed the deleterious SNVs in one family for each gene and was not able to indicate that the SNVs explained how much of the genetic variance of EDs. Furthermore, it is impossible to rule out all candidate variants. Therefore, these genes must be
confirmed by genetic analysis for additional families and sporadic cases and by functional analysis in the future investigations.

Data accessibility

Data obtained in this study are available from the authors upon reasonable request.

Author contributions

AO conceived the studies, performed experiments, contributed to the data analysis, and drafted the manuscript. SH, MU and SN were contributed to the data analysis. GK and TA were involved in sample collection, editing the manuscript.

Funding

This work was supported by JSPS KAKENHI (16K09275 and 23390191).

References

[1] C.M. Bulik, L.M. Thornton, T.L. Root, et al., Understanding the relation between anorexia nervosa and bulimia nervosa in a Swedish national twin sample, Biol Psychiatry, 67 (2010) 71-77.
[2] M. Strober, R. Freeman, C. Lampert, et al., Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes, The American journal of psychiatry, 157 (2000) 393-401.
[3] H. Cui, J. Moore, S.S. Ashimi, et al., Eating disorder predisposition is associated with ESRRA and HDAC4 mutations, The Journal of clinical investigation, 123 (2013) 4706-4713.
[4] H.J. Watson, Z. Yilmaz, L.M. Thornton, et al., Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa, Nature genetics, 51 (2019) 1207-1214.
[5] H. Cui, Y. Lu, M.Z. Khan, et al., Behavioral disturbances in estrogen-related receptor alpha-null mice, Cell reports, 11 (2015) 344-350.
[6] M. Lutter, M.Z. Khan, K. Satio, et al., The Eating-Disorder Associated HDAC4(A778T) Mutation Alters Feeding Behaviors in Female Mice, Biol Psychiatry, 81 (2017) 770-777.
[7] K.C. Davis, K. Saito, S.R. Rodeghiero, et al., Behavioral Alterations in Mice Carrying Homozygous

HDAC4 (A778T) Missense Mutation Associated With Eating Disorder, Frontiers in neuroscience, 14 (2020) 139.
[8] D.E. Grice, K.A. Halmi, M.M. Fichter, et al., Evidence for a susceptibility gene for anorexia nervosa on chromosome 1, Am J Hum Genet, 70 (2002) 787-792.
[9] X. Liu, X. Jian, E. Boerwinkle, dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations, Human mutation, 34 (2013) E2393-2402.
[10] W. Fu, T.D. O'Connor, G. Jun, et al., Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants, Nature, 493 (2013) 216-220.
[11] M. Nagasaki, J. Yasuda, F. Katsuoka, et al., Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals, Nature communications, 6 (2015) 8018.
[12] T.L. Bale, A. Contarino, G.W. Smith, et al., Mice deficient for corticotropin-releasing hormone receptor- 2 display anxiety-like behaviour and are hypersensitive to stress, Nature genetics, 24 (2000) 410-414.
[13] M.J. Henckens, J.M. Deussing, A. Chen, Region-specific roles of the corticotropin-releasing factor-urocortin system in stress, Nature reviews. Neuroscience, 17 (2016) 636-651.
[14] C. Yeh, C.H. Ting, M.L. Doong, et al., Intracerebroventricular urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats, Drug design, development and therapy, 10 (2016) 3281-3290.
[15] P. Cottone, V. Sabino, T.R. Nagy, et al., Centrally administered urocortin 2 decreases gorging on high-fat diet in both diet-induced obesity-prone and -resistant rats, International journal of obesity (2005), 37 (2013) 1515-1523
[16] T.M. Reyes, K. Lewis, M.H. Perrin, et al., Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors, Proceedings of the National Academy of Sciences of the United States of America, 98 (2001) 2843-2848.
[17] K. Lewis, C. Li, M.H. Perrin, et al., Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor, Proceedings of the National Academy of Sciences of the United States of America, 98 (2001) 7570-7575.
[18] M.T. Gast, A. Tonjes, M. Keller, et al., The role of rs2237781 within GRM8 in eating behavior, Brain Behav, 3 (2013) 495-502.
[19] A. Terracciano, T. Tanaka, A.R. Sutin, et al., Genome-wide association scan of trait depression, Biol Psychiatry, 68 (2010) 811-817.
[20] W. Li, K. Ju, Z. Li, et al., Significant association of GRM7 and GRM8 genes with schizophrenia and major depressive disorder in the Han Chinese population, Eur Neuropsychopharmacol, 26 (2016) 136-146.
[21] D. Capauto, A. Colantoni, L. Lu, et al., A Regulatory Circuitry Between Gria2, miR-409, and miR-495 Is Affected by ALS FUS Mutation in ESC-Derived Motor Neurons, Molecular neurobiology, 55 (2018) 7635-7651.
[22] K. Hollenstein, J. Kean, A. Bortolato, et al., Structure of class B GPCR corticotropin-releasing factor receptor 1, Nature, 499 (2013) 438-443.
[23] Q. Chen, J.D. Ho, S. Ashok, et al., Structural Basis for (S)-3,4-Dicarboxyphenylglycine (DCPG) As a Potent and Subtype Selective Agonist of the mGlu(8) Receptor, Journal of medicinal chemistry, 61 (2018) 10040-10052.
[24] J. Hao, Q. Chen, Insights into the Structural Aspects of the mGlu Receptor Orthosteric Binding Site, Current topics in medicinal chemistry, 19 (2019) 2421-2446.
[25] V. Frappier, M. Chartier, R.J. Najmanovich, ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability, Nucleic acids research, 43 (2015) W395-400.
[26] C. Cruceanu, J.F. Schmouth, S.G. Torres-Platas, et al., Rare susceptibility variants for bipolar disorder suggest a role for G protein-coupled receptors, Mol Psychiatry, 23 (2018) 2050-2056.
[27] S.C. Coste, R.A. Kesterson, K.A. Heldwein, et al., Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2, Nature genetics, 24 (2000) 403-409.
[28] W. Pan, A.J. Kastin, Urocortin and the brain, Progress in neurobiology, 84 (2008) 148-156.
[29] C.P. Magalhães, M.F. de Freitas, M.I. Nogueira, et al., Modulatory role of serotonin on feeding behavior, Nutritional neuroscience, 13 (2010) 246-255.
[30] J. Ren, A. Isakova, D. Friedmann, et al., Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei, eLife, 8 (2019).
[31] M.W. Lieb, M. Weidner, M.R. Arnold, et al., Effects of maternal separation on serotonergic systems in the dorsal and median raphe nuclei of adult male Tph2-deficient mice, Behavioural brain research, 373 (2019) 112086.
[32] S.E. Hammack, M.J. Schmid, M.L. LoPresti, et al., Corticotropin releasing hormone type 2 receptors in the dorsal raphe nucleus mediate the behavioral consequences of uncontrollable stress, The Journal of neuroscience : the official journal of the Society for Neuroscience, 23 (2003) 1019-1025.
[33] J.H. Fox, C.A. Lowry, Corticotropin-releasing factor-related peptides, serotonergic systems, and emotional behavior, Frontiers in neuroscience, 7 (2013) 169.
[34] S. Ueda, M. Hosokawa, K. Arikawa, et al., Distinctive Regulation of Emotional Behaviors and Fear-Related Gene Expression Responses in Two Extended Amygdala Subnuclei With Similar Molecular Profiles, Frontiers in molecular neuroscience, 14 (2021) 741895.
[35] C.A. Marcinkiewcz, G. Bierlein-De La Rosa, C.E. Dorrier, et al., Sex-Dependent Modulation of Anxiety and Fear by $5-\mathrm{HT}(1 \mathrm{~A})$ Receptors in the Bed Nucleus of the Stria Terminalis, ACS chemical neuroscience, 10 (2019) 3154-3166.
[36] L. Pernar, A.L. Curtis, W.W. Vale, et al., Selective activation of corticotropin-releasing factor-2 receptors on neurochemically identified neurons in the rat dorsal raphe nucleus reveals dual actions, The Journal of neuroscience : the official journal of the Society for Neuroscience, 24 (2004) 1305-1311.
[37] W.H. Kaye, J.L. Fudge, M. Paulus, New insights into symptoms and neurocircuit function of
anorexia nervosa, Nature reviews. Neuroscience, 10 (2009) 573-584.
[38] S. Ma, Q. Shen, L.H. Zhao, et al., Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors, Molecular cell, 77 (2020) 669-680.e664.
[39] E. Pallister, G. Waller, Anxiety in the eating disorders: understanding the overlap, Clinical psychology review, 28 (2008) 366-386.
[40] N.T. Burkert, K. Koschutnig, F. Ebner, et al., Structural hippocampal alterations, perceived stress, and coping deficiencies in patients with anorexia nervosa, The International journal of eating disorders, 48 (2015) 670-676.
[41] J.-Q. Wang, A.-L. Brownell, Development of Metabotropic Glutamate Receptor Ligands for Neuroimaging, Current Medical Imaging Reviews, 3 (2007) 186-205.
[42] S.E. Higgins, L.E. Ellestad, N. Trakooljul, et al., Transcriptional and pathway analysis in the hypothalamus of newly hatched chicks during fasting and delayed feeding, BMC genomics, 11 (2010) 162.

FIGURE LEGENDS

FIGURE 1 Sib-pair families affected by EDs were examined using whole exome sequencing. Individuals labeled with an ID number were sequenced. The disease phenotype of affected sib-pairs in the P15 family was transferred from ANR to BN. The rare variants GRM8 and CRHR2 were observed in the P4 and P15 families, respectively.

Abbreviations: ANR, anorexia nervosa restricting type BN, bulimia nervosa

FIGURE 2 Scheme for screening variants with whole exome sequencing.

FIGURE 3 Multiple amino acid sequence alignments of TM4 helix of human class B GPCRs and CRHR2 in various species. Upper alignment indicates TM4 of a selected set of human class B GPCRs included with the GWG x P motif involved in cholesterol binding. Lower alignment indicates evolutionarily conserved amino acids. The level of blue shading is shown according to sequence conservation. Black square indicates amino acid position corresponding to human G231.
medRxiv preprint doi: https://doi.org/10.1101/2023.08.24.23294455; this version posted August 25, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license

1

GRM8

Figure 1

Figure 2

Figure 3

Supplementary Figure 1

Confirmation by Sanger sequencing for SNVs. Red squares indicate codons providing amino acid substitutions. Upper panel shows SNV of CRHR2 in P15 family.
Lower panel shows SNV of GRM8 in P4 family.

Homo sapiens

 Anolis carolinensis ATIDGKELLSYIIRAVNFNGSAGT
Nanorana parkeri KTI DGKELLSYIIRAVNFNGSAGT
Haplochromis burtoni A NI DGKELLNHI RAVNFNGSAGT

Supplementary Figure 2

Multiple amino acid sequence alignment of GRM8 showing evolutionarily conserved amino acids and ATD structure of GRM8. Upper alignment indicates evolutionarily conserved amino acids. Black square indicates amino acid position corresponding to human Y445. Middle panel indicates ribbon diagram around Y445 (light green). Hydrogen bonds are depicted as blue dotted lines. Lower panel indicates ribbon representation for all ATDs including Y445 (light green). These ribbon diagram images were created using Mol* Viewer [1] with the PROTEIN DATA BANK (https://www.rcsb.org/) for PDB ID 6BSZ [2].
[1] D. Sehnal, S. Bittrich, M. Deshpande, et al., Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures, Nucleic acids research, 49 (2021) W431-w437.
[2] Q. Chen, J.D. Ho, S. Ashok, et al., Structural Basis for (S)-3,4-Dicarboxyphenylglycine (DCPG) As a Potent and Subtype Selective Agonist of the mGlu(8) Receptor, Journal of medicinal chemistry, 61 (2018) 10040-10052.

Family ID	Individual ID	Gender	Subtype through lifetime	Height (cm)	Weight (kg)	
					Min.	Max.
P3	P3-1	F	ANR	158	NA	NA
	P3-2	F	ANR	151	NA	NA
P4	P4-1	F	BN	156	NA	NA
	P4-2	F	BN	161	NA	NA
P5	P5-1	F	ANR	156	28	NA
	P5-2	F	ANR	167	44	58
P7	P7-1	F	BN	162	NA	NA
	P7-2	F	BN	158	43	60
P8	P8-1	F	BN	152	NA	NA
	P8-2	F	BN	160	39	53
	P8-3	M	ANR	169	42	53
P11	P11-1	F	ANR	162	26	64
	P11-2	F	ANR	168	33	52
P15	P15-1	F	ANR \rightarrow BN	162	33	57
	P15-2	F	ANR \rightarrow BN	168	40	47

Supplemenflad frydikpreprint doi: https://doi.org/10.1101/2023.08.24.23294455; this version posted August 25, 2023. The copyright holder for this preprint
 Gene symbol

ARHGAP31	3	119134525			c.	-D. 250 A	rnation	licens ${ }^{\text {a }}$	NA	0.000826	4
GPR156	3	119885889	G	A	c.C2423T	p.T808M	exon9	NM 001168271	rs200926939	0.000413	5
SEMA5B	3	122634697	C	T	c.G1555A	p.G519R	exon12	NM_001256348	rs183425023	0.000000	0
UMPS	3	124456826	C	T	c.C722T	p.S241L	exon3	NM_000373	NA	0.000000	2
COL6A5	3	130190716	G	A	c.G7765A	p.A2589T	exon40	NM_001278298	rs73868680	0.000000	1
HLTF	3	148778571	A	T	c.T1235A	p.M412K	exon11	NM_003071	rs201653124	0.000000	1
ERICH6	3	150387158	G	A	c.C986T	p.P329L	exon12	NM_001308234	rs200581445	0.000413	1
GMPS	3	155633905	T	G	c.T1136G	p.L379R	exon9	NM_003875	NA	0.000000	5
SLC7A14	3	170198612	G	C	c.C1459G	p.P487A	exon7	NM_020949	NA	0.000000	7
USP13	3	179399676	G	C	c.G179C	p.G60A	exon2	NM_003940	NA	0.000000	5
C3orf70	3	184800841	G	A	c.C707T	p.S236L	exon2	NM_001025266	rs201783027	0.000413	7
SLC26A1	4	985463	T	C	c.A29G	p.Q10R	exon2	NM_022042	NA	0.000439	1
FAM53A	4	1646051	C	T	c. G901A	p.E301K	exon5	NM_001297435	NA	0.000000	0
HTT	4	3240332	A	G	c.A9050G	p.Y3017C	exon65	NM_002111	NA	0.000000	3
TMEM128	4	4249884	G	T	c. C46A	p.L16I	exon1	NM_001297551	rs6854167	0.000000	0
WFS1	4	6302786	G	T	c.G1264T	p.A422S	exon8	NM_001145853	NA	0.000413	4
LOC389199	4	7940903	A	G	c.A11G	p.Q4R	exon1	NM_203423	rs7695170	0.000000	1
LOC389199	4	7940915	C	T	c.C23T	p.P8L	exon1	NM_203423	rs7669645	0.000000	1
GPR78	4	8582821	A	C	c.A112C	p.T38P	exon1	NM_080819	NA	0.000000	1
BMP2K	4	79747277	C	A	c.C265A	p.L891	exon2	NM_017593	NA	0.000414	6
HNRNPDL	4	83347711	C	G	c.G1097C	p.G366A	exon6	NM_031372	rs200123403	0.000826	6
SPARCL1	4	88403697	G	A	c.C1172T	p.T391M	exon6	NM_001291977	rs199501739	0.000000	4
ANK2	4	114288871	G	A	c.G4927A	p.V1643I	exon41	NM_020977	NA	0.000826	0
MAML3	4	140811296	G	A	c.C1294T	p.P432S	exon2	NM 018717	NA	0.000000	1
ELMOD2	4	141446643	C	G	c.C61G	p.L21V	exon2	NM_153702	rs201497167	0.000000	1
HHIP	4	145627795	A	G	c.A944G	p.H315R	exon5	NM_022475	NA	0.000000	6
PRMT9	4	148575205	G	C	c.C1504G	p.H502D	exon8	NM_001304458	NA	0.000000	5
PRMT9	4	148605066	C	G	c. G73C	p.V25L	exon1	NM_138364	NA	0.000000	4
LRBA	4	151788842	A	G	c.T2747C	p.L916S	exon22	NM_001199282	NA	0.000000	7
TMEM154	4	153601028	C	A	c.G58T	p.G20C	exon1	NM_152680	NA	0.000000	,
GRIA2	4	158253975	C	T	c.C887T	p.T296\|	exon7	NM 000826	NA	0.000000	7
SH3RF1	4	170189972	C	G	c. G392C	p.R131T	exon2	NM_020870	rs200790356	0.000000	4
NEK1	4	170483332	C	A	c.G1036T	p.E346X	exon12	NM_001199400	NA	0.000000	1
SCRG1	4	174312559	G	C	c.C7G	p.L3V	exon2	NM_007281	NA	0.000829	0
CFAP97	4	186111851	C	T	c. G500A	p.C167Y	exon2	NM_001292033	rs182552516	0.000413	0
LRP2BP	4	186295608	C	T	c. G338A	p.G113E	exon4	NM_018409	NA	0.000413	7
AHRR	5	434456	A	G	c.A1613G	p.K538R	exon11	NM_001242412	NA	0.000000	4
ICE1	5	5462961	A	T	c.A3514T	p.T1172S	exon13	NM_015325	NA	0.000000	0
TRIO	5	14143940	G	C	c.G106C	p.A36P	exon1	NM_007118	NA	0.000911	0
C5orf42	5	37167291	G	A	c.C7258T	p.L2420F	exon35	NM_023073	NA	0.000000	4
ZSWIM6	5	60840041	C	T	c.C3545T	p.A1182V	exon14	NM_020928	NA	0.000000	6
MAST4	5	65892790	G	A	c.G307A	p.A103T	exon1	NM_001164664	NA	0.000000	0
ANKRD31	5	74491679	G	C	c.C794G	p.P265R	exon7	NM_001164443	rs185973227	0.000000	0
POLK	5	74886182	A	G	c.A1273G	p.1425V	exon11	NM_016218	NA	0.000000	2
SLF1	5	94014564	A	G	c.A1879G	p.1627V	exon15	NM_032290	NA	0.000000	0
PPIC	5	122359668	T	G	c.A541C	p.T181P	exon5	NM_000943	rs149059275	0.000826	7
FBN2	5	127624229	C	T	c. G6658A	p.G2220S	exon53	NM_001999	NA	0.000000	2
FNIP1	5	131008060	C	G	c.G1993C	p.A665P	exon13	NM_001008738	NA	0.000000	1
P4HA2	5	131528750	G	A	c.C1555T	p.R519X	exon15	NM_001017973	rs200583507	0.000414	4
PCDHGB2	5	140740144	C	T	c.C442T	p.P148S	exon1	NM_018923	NA	0.000000	1
DPYSL3	5	146777371	C	T	c.G1661A	p.R554H	exon12	NM_001197294	rs188735247	0.000000	5
RANBP17	5	170380604	G	A	c.G1472A	p.R491H	exon13	NM_022897	rs139638431	0.000000	6
VARS2	6	30892159	C	T	c.C2075T	p.S692L	exon25	NM_001167733	rs138341222	0.000000	0
BTBD9	6	38256214	T	C	c.A1084G	p.1362V	exon7	NM_152733	NA	0.000000	3
DNAH8	6	38957803	A	G	c.A13069G	p.K4357E	exon88	NM_001206927	rs139250593	0.000828	2
CUL9	6	43167698	G	A	c.G3188A	p.R1063H	exon14	NM_015089	NA	0.000000	2
RRAGD	6	90121613	C	G	c.G100C	p.G34R	exon1	NM_021244	NA	0.000000	3
SLC22A16	6	110746218	C	T	c.G1592A	p.R531Q	exon8	NM_033125	NA	0.000000	2
RSPH4A	6	116953437	C	T	c.C1984T	p.P662S	exon6	NM_001010892	NA	0.000000	6
STXBP5	6	147599259	A	G	c.A757G	p.1253V	exon8	NM_001127715	NA	0.000826	2
SYNE1	6	152674804	C	T	c.G10957A	p.E3653K	exon68	NM_033071	NA	0.000000	6
TULP4	6	158850898	C	T	c.C512T	p.T171M	exon3	NM_001007466	NA	0.000419	4
C7orf50	7	1040177	T	C	c.A334G	p.K112E	exon4	NM_001134395	NA	0.000837	1
USP42	7	6194357	A	T	c.A3172T	p.R1058W	exon15	NM_032172	NA	0.000000	2
ABCB5	7	20739694	G	A	c.G938A	p.G313D	exon10	NM_178559	NA	0.000414	8
CRHR2	7	30702316	C	T	c.G688A	p.G230R	exon6	NM_001202482	rs569607645	0.000414	9
AMPH	7	38670924	C	A	c.G28T	p.A10S	exon1	NM_001635	NA	0.000000	2
PKD1L1	7	47886553	A	G	c.T5077C	p.F1693L	exon32	NM_138295	NA	0.000000	0
ZNF117	7	64439432	C	T	c.G517A	p.A173T	exon4	NM_015852	NA	0.000000	0
ZSCAN21	7	99655438	G	A	c.G517A	p.E173K	exon3	NM_145914	NA	0.000000	3
AP4M1	7	99703902	G	C	c.G1013C	p.R338P	exon13	NM_004722	NA	0.000000	2
ORAI2	7	102087451	G	C	c.G486C	p.K162N	exon3	NM_001271819	NA	0.000000	2
GRM8	7	126409942	T	C	c.A1334G	p.Y445C	exon6	NM_000845	NA	0.000000	9
AOC1	7	150554973	A	G	c.A1415G	p.N472S	exon2	NM_001091	NA	0.000000	3
ABCB8	7	150737585	G	A	c.G988A	p.V330M	exon10	NM_001282293	NA	0.000000	4
CHPF2	7	150929872	C	T	c.C22T	p.P8S	exon1	NM_001284295	rs374377569	0.000000	1
ADAM28	8	24178758	G	A	c.G676A	p.E226K	exon8	NM_001304351	NA	0.000000	0
ADAM7	8	24349579	G	A	c.G1520A	p.R507H	exon14	NM_003817	NA	0.000000	4
PBK	8	27678103	G	T	c.C574A	p.P192T	exon6	NM_001278945	rs200662690	0.000826	1
ZFHX4	8	77762550	C	T	c.C3916T	p.R1306W	exon9	NM_024721	NA	0.000414	1
ZFAND1	8	82626176	C	T	c.G457A	p.D153N	exon6	NM_001170796	NA	0.000000	0

Mad 											
KANK1	9	731164			under ${ }^{\text {a }}$ 9	p. $480 \mathrm{~d}^{\text {nt }}$	exoh4	c砍S ${ }^{\text {d53186 }}$	rs114209322	0.000826	4
RIC1	9	5756326	G	A	c.G1696A	p.A566T	exon15	NM_001206557	rs145216888	0.000827	5
UHRF2	9	6421108	C	A	c.C350A	p.A117D	exon2	NM_152896	NA	0.000000	0
MPDZ	9	13222290	C	T	c.G689A	p.S230N	exon6	NM_001261406	NA	0.000000	5
PSIP1	9	15486844	T	C	c.A374G	p.E125G	exon4	NM_021144	NA	0.000000	2
BNC2	9	16436081	T	C	c.A2111G	p.E704G	exon6	NM_017637	NA	0.000000	2
HAUS6	9	19063095	T	G	c.A1435C	p.K479Q	exon14	NM_001270890	rs147787866	0.000000	4
C9orf72	9	27562432	C	T	c.G547A	p.V183I	exon4	NM_001256054	NA	0.000422	2
TMEM8B	9	35842551	G	A	c.G116A	p.R39H	exon6	NM_001042590	NA	0.000000	6
SHB	9	38068006	T	C	c.A637G	p.T213A	exon1	NM_003028	NA	0.000880	0
PRUNE2	9	79323007	C	T	c.G4183A	p.E1395K	exon8	NM_001308047	NA	0.000000	0
NOL8	9	95085735	C	T	c.G190A	p.D64N	exon3	NM_017948	rs151033269	0.000827	1
FBP2	9	97355952	C	T	c.G57A	p.M191	exon1	NM_003837	NA	0.000000	5
ERCC6L2	9	98684666	C	T	c.C1412T	p.A471V	exon8	NM_001010895	rs201546231	0.000829	5
TBC1D2	9	100962538	C	T	c.G1196A	p.S399N	exon6	NM_001267572	NA	0.000000	,
GALNT12	9	101570348	C	A	c.C368A	p.P123Q	exon1	NM_024642	NA	0.000000	4
ARPC5L	9	127639182	C	G	c.C425G	p.S142C	exon4	NM_030978	rs150162831	0.000828	6
FAM102A	9	130707095	C	T	c.G574A	p.V192M	exon6	NM_203305	NA	0.000000	1
SLC27A4	9	131117979	T	C	c.T1678C	p.C560R	exon12	NM_005094	NA	0.000827	2
PHYHD1	9	131702696	G	A	c.G443A	p.R148Q	exon7	NM_001100877	rs200845438	0.000413	6
TTF1	9	135277447	C	G	c.G762C	p.Q254H	exon2	NM_007344	NA	0.000000	0
DPH7	9	140449957	C	T	c.G1093A	p.A365T	exon9	NM_138778	NA	0.000000	0
SFMBT2	10	7423832	A	G	c.T29C	p.M10T	exon2	NM_001018039	rs141352828	0.000000	0
RBP3	10	48388554	G	A	c.C2324T	p.T775M	exon1	NM_002900	rs201724324	0.000415	7
PPA1	10	71977620	G	T	c.C245A	p.A82E	exon4	NM_021129	NA	0.000000	6
TBATA	10	72541674	G	A	c.C160T	p.R54W	exon4	NM_152710	NA	0.000414	1
CDH23	10	73538046	G	A	c.G5168A	p.R1723H	exon38	NM_022124	rs189361642	0.000000	6
FBXW4	10	103384550	G	A	c.C788T	p.T263M	exon6	NM_022039	NA	0.000000	6
KNDC1	10	135020716	G	A	c.G3655A	p.D1219N	exon20	NM_152643	NA	0.000000	1
SIGIRR	11	406932	G	C	c.C790G	p.Q264E	exon8	NM_001135053	NA	0.000434	2
RASSF7	11	562229	C	T	c.C275T	p.A92V	exon3	NM_001143993	NA	0.000000	1
TMEM80	11	704536	G	A	c.G742A	p.A248T	exon6	NM_001276274	rs140750324	0.000000	1
OTOG	11	17593709	T	C	c.T2074C	p.S692P	exon17	NM_001277269	rs7106548	0.000000	0
OTOG	11	17667439	G	C	c.G8726C	p.W2909S	exon55	NM_001277269	rs11024357	0.000000	3
LGR4	11	27390603	T	C	c.A1667G	p.N556S	exon18	NM_018490	NA	0.000000	8
DCDC1	11	31327261	C	T	c.G655A	p.D219N	exon6	NM_181807	NA	0.000000	7
ELP4	11	31703564	C	T	c.C1373T	p.T4581	exon10	NM_001288726	NA	0.000000	1
PAX6	11	31814879	G	A	c.C1139T	p.S380L	exon9	NM_001310159	rs3026384	0.000000	0
ACCS	11	44104752	A	G	c.A1145G	p.H382R	exon13	NM_001127219	rs201202479	0.000833	2
МYBPC3	11	47360898	C	T	c.G2125A	p.D709N	exon21	NM_000256	NA	0.000000	0
OR5D18	11	55587892	C	T	c.C787T	p.P263S	exon1	NM_001001952	NA	0.000000	1
OR5W2	11	55682040	A	G	c.T19C	p.S7P	exon1	NM_001001960	NA	0.000000	2
OR9Q2	11	57958338	G	A	c.G376A	p.V126M	exon1	NM_001005283	NA	0.000413	1
BEST1	11	61727452	C	A	c.C776A	p.P259H	exon7	NM_001300786	NA	0.000416	8
ATG2A	11	64669448	C	T	c.G4105A	p.G1369S	exon29	NM_015104	rs143404952	0.000000	5
PCNXL3	11	65403904	C	T	c.C5636T	p.P1879L	exon34	NM_032223	NA	0.000000	0
SART1	11	65744148	C	T	c.C1768T	p.R590C	exon14	NM_005146	NA	0.000538	4
LRP5	11	68207302	G	C	c.G2663C	p.G888A	exon21	NM_001291902	NA	0.000000	3
TPCN2	11	68848873	C	T	c.C1595T	p.P532L	exon18	NM_139075	NA	0.000000	5
PLEKHB1	11	73362899	G	A	c.G257A	p.R86H	exon3	NM_001130036	rs184116184	0.000426	1
FAT3	11	92086054	T	G	c.T776G	p.1259R	exon1	NM_001008781	NA	0.000000	2
KDM4E	11	94758987	A	G	c.A266G	p.K89R	exon1	NM_001161630	NA	0.000000	0
PGR	11	100933406	C	T	c.G1984A	p.V662l	exon4	NM_000926	rs150584881	0.000413	2
MMP13	11	102816478	T	G	c.A1212C	p.R404S	exon9	NM_002427	NA	0.000414	0
OR10S1	11	123847636	A	G	c.T763C	p.C255R	exon1	NM_001004474	NA	0.000000	5
OR10G7	11	123908916	C	A	c.G793T	p.D265Y	exon1	NM_001004463	NA	0.000000	0
KLRC3	12	10568304	A	G	c.T677C	p.1226T	exon6	NM_002261	NA	0.000000	1
TAS2R20	12	11149658	A	G	c.T817C	p.S273P	exon1	NM_176889	rs150448607	0.000413	2
PDE3A	12	20522343	G	C	c.G125C	p.G42A	exon1	NM_000921	NA	0.000424	1
HDAC7	12	48189043	C	G	c.G1097C	p.S366T	exon10	NM_001098416	NA	0.000000	3
ASIC1	12	50468007	G	A	c.G640A	p.G214S	exon1	NM_001256830	NA	0.000000	0
MARS	12	57894189	G	A	c.G1177A	p.A393T	exon10	NM_004990	rs141340466	0.000827	2
ARHGEF25	12	58010651	G	T	c.G1717T	p.A573S	exon15	NM_182947	NA	0.000000	5
SRGAP1	12	64437300	C	T	c.C746T	p.A249V	exon6	NM_020762	NA	0.000000	5
SRGAP1	12	64536271	G	A	c.G3077A	p.R1026H	exon22	NM_020762	NA	0.000000	5
GNS	12	65110525	A	G	c.T1655C	p.L552P	exon14	NM_002076	NA	0.000000	5
TBC1D30	12	65237176	G	C	c.G949C	p.E317Q	exon8	NM_015279	NA	0.000430	2
OSBPL8	12	76763472	A	C	c.T2059G	p.C687G	exon19	NM_001003712	rs199664136	0.000000	5
POC1B	12	89866042	C	T	c.G337A	p.D113N	exon4	NM_001199777	NA	0.000826	8
UHRF1BP1L	12	100452762	G	A	c.C2293T	p.R765W	exon14	NM $\bar{M}^{\text {_ }} 015054$	rs369358032	0.000826	4
ACACB	12	109577466	G	A	c.G256A	p.G86S	exon1	NM_001093	rs371386144	0.000000	0
OAS1	12	113346391	C	G	c.C231G	p.D77E	exon2	NM_001032409	NA	0.000000	4
MED13L	12	116457747	G	A	c.C656T	p.T219M	exon6	NM_015335	rs191743300	0.000000	7
ACADS	12	121176662	C	T	c.C973T	p.R325W	exon8	NM_000017	rs121908006	0.000000	8
LRRC63	13	46840996	A	C	c.A1439C	p.Y480S	exon9	NM_001282460	rs41284167	0.000000	0
BIVM-ERCC5,ERCC5	13	103515408	G	T	c.G1909T	p.A637S	exon8	NM_000123	NA	0.000000	0
PARP2	14	20820490	A	G	c.A584G	p.Y195C	exon7	NM_001042618	rs369902077	0.000826	5
RNASE11	14	21052549	C	A	c.G85T	p.E29X	exon3	NM_145250	NA	0.000826	2
TTC6	14	38091460	G	C	c.G239C	p.R80P	exon3	NM_001310135	NA	0.000000	0
TTC6	14	38256794	T	C	c.T3436C	p.F1146L	exon17	NM_001310135	rs75245849	0.000000	1
KLHL28	14	45414389	C	T	c. $\mathrm{G785} \mathrm{~A}$	p.R262H	exon2	NM_001308112	rs199672203	0.000826	3

 CHURC1,CHURC1-FNTB

BDKRB1
PPL
PPL
ERCC4
GGA2
ATXN2L
RABEP2
ITGAL
SRCAP
ITFG1
ADCY7
FAM65A
ZNF821
GLG1
C16orf95
JPH3
BHLHA9
METTL16

									- 190769534	0.0000	
FFAR2	19	35941491				p.R292Q	exant	ICRNS_005306	rs143092631	0.000000	0
WDR62	19	36595720	G	T	c.G4362T	p.E1454D	exon32	NM_001083961	NA	0.000000	2
NFKBIB	19	39397878	G	T	c.G379T	p.V127L	exon4	NM_001243116	NA	0.000000	2
SARS2	19	39406709	T	A	c.A1315T	p.T439S	exon14	NM_017827	rs200202461	0.000416	1
PAK4	19	39664500	C	A	c.C489A	p.D163E	exon3	NM_001014834	NA	0.000000	2
CEACAM5	19	42219668	A	G	c.A803G	p.Q268R	exon4	NM_001291484	NA	0.000413	1
SIX5	19	46269328	C	T	c.G1651A	p.V551M	exon3	NM_175875	NA	0.000000	3
CCDC8	19	46915205	C	T	c.G863A	p.G288E	exon1	NM_032040	rs201827579	0.000000	0
CRX	19	48342884	C	T	c.C560T	p.T1871	exon4	NM_000554	NA	0.000414	1
HAS1	19	52217119	C	G	c.G1295C	p.W432S	exon5	NM_001297436	NA	0.000855	2
ZNF468	19	53348534	A	G	c.T158C	p.153T	exon4	NM_001277120	rs73069429	0.000000	0
LAIR1	19	54866948	G	A	c.C739T	p.R247W	exon9	NM_001289023	rs200218727	0.000000	2
RDH13	19	55568152	C	T	c.G209A	p.R70Q	exon3	NM_001145971	NA	0.000000	5
ZNF628	19	55994880	G	A	c.G2320A	p.V774	exon3	NM_033113	NA	0.000426	1
ZNF154	19	58213953	C	T	c.G364A	p.G122S	exon3	NM_001085384	rs202082426	0.000000	1
STK35	20	2082672	G	A	c.G145A	p.A49T	exon1	NM_080836	NA	0.000618	0
SIGLEC1	20	3687141	C	A	c.G262T	p.E88X	exon2	NM_023068	rs150358287	0.000826	1
HSPA12B	20	3729935	G	A	c.G904A	p.V302l	exon9	NM_001197327	NA	0.000000	3
SLX4IP	20	10579389	C	G	c.C305G	p.T102R	exon5	NM_001009608	rs199963485	0.000568	1
RRBP1	20	17640746	G	T	c.C407A	p.P136H	exon2	NM_004587	rs200124781	0.000000	3
BCL2L1	20	30309628	G	C	c.C394G	p.R132G	exon2	NM_138578	NA	0.000000	2
NECAB3	20	32247379	C	T	c.G803A	p.G268D	exon8	NM_031232	NA	0.000836	1
MYH7B	20	33583163	G	A	c.G2851A	p.E951K	exon28	NM_020884	rs370896124	0.000535	8
BPI	20	36938936	A	G	c.A430G	p.I144V	exon4	NM_001725	rs144469725	0.000826	1
SNX21	20	44462562	C	T	c.C4T	p.H2Y	exon1	NM_001042632	NA	0.000000	3
SULF2	20	46305861	T	A	c.A1211T	p.K404M	exon9	NM_001161841	NA	0.000000	5
SPATA2	20	48524990	T	C	c.A38G	p.D13G	exon2	NM_001135773	NA	0.000413	5
NRIP1	21	16338385	C	T	c.G2129A	p.R710H	exon4	NM_003489	NA	0.000000	7
PFKL	21	45725785	C	T	c.C202T	p.P68S	exon4	NM_001002021	rs138883373	0.000000	0
TRPM2	21	45821691	C	T	c.C2449T	p.L817F	exon16	NM_003307	NA	0.000413	5
C21orf58	21	47734824	C	T	c.G97A	p.V33M	exon4	NM_001286463	rs75798864	0.000000	1
IL17RA	22	17584415	A	G	c.A794G	p.N265S	exon8	NM_001289905	rs201250724	0.000000	0
CECR2	22	17983890	C	G	c.C223G	p.P75A	exon7	NM_001290046	NA	0.000413	6
SLC25A18	22	18070827	G	A	c.G712A	p.A238T	exon8	NM_001303484	NA	0.000000	0
CABIN1	22	24561553	A	T	c.A4816T	p.T1606S	exon30	NM_001201429	NA	0.000000	3
TFIP11	22	26894893	C	G	c.G1378C	p.E460Q	exon10	NM_012143	NA	0.000000	5
RHBDD3	22	29656346	A	G	c.T952C	p.W318R	exon6	NM_012265	NA	0.000000	0
SLC5A4	22	32650193	A	G	c.T143C	p.L48P	exon2	NM_014227	NA	0.000000	4
MYH9	22	36688118	G	C	c.C4258G	p.Q1420E	exon31	NM_002473	rs200510675	0.000000	5
IL2RB	22	37524507	G	A	c.C1285T	p.L429F	exon10	NM_000878	NA	0.000434	4
SLC16A8	22	38477353	T	C	c.A692G	p.E231G	exon4	NM_013356	NA	0.000480	0
BAIAP2L2	22	38484968	G	A	c.C905T	p.S302L	exon10	NM_025045	NA	0.000430	1
GTSE1	22	46712073	G	A	c.G1196A	p.R399Q	exon7	NM_016426	NA	0.000000	0
CELSR1	22	46931599	T	C	c.A1469G	p.Q490R	exon1	NM_014246	rs200630932	0.000000	0
OFD1	X	13779315	C	T	c.C2372T	p.P791L	exon17	NM_003611	NA	0.000826	1
DMD	X	31697509	T	C	c.A475G	p.K159E	exon10	NM_004013	NA	0.000000	2
CXorf67	X	51151176	C	G	c.C1308G	p.N436K	exon1	NM_203407	NA	0.000000	0
WDR44	X	117532396	C	A	c.C1162A	p.P388T	exon7	NM_001184966	NA	0.000827	0
DCAF12L1	X	125685729	A	T	c.T863A	p.L288Q	exon1	NM_178470	NA	0.000000	3
UBL4A	X	153713967	G	C	c.C385G	p.R129G	exon4	NM_014235	NA	0.000852	3
UBL4A	X	153713969	C	A	c.G383T	p.S128I	exon4	NM_014235	NA	0.000000	2

${ }^{\text {a }}$ Physical position in UCSC Genome Browser in Human Feb. 2009 Human GRCh37/hg19 Assembly.
${ }^{\mathrm{b}}$ Reference allele in UCSC Genome Browser.
${ }^{\text {c }}$ Allele observed in this study.
${ }^{d}$ Allele frequency in Japanese in Human Genetic Variation Database (https://www.hgvd.genome.med.kyoto-u.ac.jp/).
${ }^{e}$ Number of methods for predicting variant as deleterious.
Supplementary Table3. De novo variants in each family

Gene symbol	Family	No. of predictions ${ }^{\text {a }}$	Chr	Position ${ }^{\text {b }}$	Ref ${ }^{\text {c }}$	Alt ${ }^{\text {d }}$	Substitution				SNV	Frequency		Gene description	Gene
							cDNA	Amino acid	Exon	Transcript ID		Japanese ${ }^{\text {e }}$	European ${ }^{\text {f }}$ (non-Finnish)		
MYO18B	P5	4	22	26177721	C	G	c.C2232G	c.C2232G	exon10	NM_032608	rs371844616	0.000507	0.000000	Myosin XVIIIB	Skeletal m
BTAF1	P7	4	10	93748956	C	G	c.C2473G	p.P825A	exon20	NM_003972	rs774232595	0.000000	0.000000	BTAF1 RNA polymerase II, B-TFIID transcription factor-associated	Lymphocy
EED	P11	1	11	85981134	G	A	c. G976A	p.A326T	exon10	NM_001308007	rs1023860960	0.000000	0.000000	Embryonic ectoderm development	Lymphocy
MUC3A	P15	0	7	100550974	A	G	c.A1555G	p.T519A	exon2	NM_005960	NA	0.000000	0.000000	Mucin-3A	Small inte

Abbreviations: NA, not applicable
${ }^{\text {a }}$ Number of methods for predicting deleterious variant.
${ }^{\text {b }}$ Physical position in UCSC Genome Browser in Human Feb. 2009 Human GRCh37/hg19 Assembly.
${ }^{\text {c }}$ Reference allele in UCSC Genome Browser.
${ }^{d}$ Allele observed in this study.
${ }^{e}$ Allele frequency in Japanese in Human Genetic Variation Database (https://www.hgvd.genome.med.kyoto-u.ac.jp/).
${ }^{\dagger}$ Allele frequency in European gnomAD (https://gnomad.broadinstitute.org/).
${ }^{9}$ Top two tissues showing highest expression level in GTEx (release V8, 54 non-diseased tissue sites across nearly 1000 individuals)

俍 (whic米 was eqt gertified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

Supplementary Table5. Insertion and deletion variants in each family														
Gene symbol	Family		Position ${ }^{\text {a }}$	$R e f^{\text {b }}$	Alt ${ }^{\text {c }}$	Exonic function	Substitution				Frequency		Gene description	
							cDNA	Amino acid	Exon	Transcript ID	Japanese ${ }^{\text {d }}$	European ${ }^{\text {e }}$ (non-Finnish)		
TEX44	P8	2	232458458	-	GTACATGT	frameshift insertion	c.796_797insGTACATGT	p.A266fs	exon1	NM_152614	0.000000	0.000000	testis expressed 44	Testis, Foglipian Tube
CRIP3	P11	6	43275414	-	GT	frameshift insertion	c.263_264insAC	p.T88fs	exon4	NM_206922	0.000416	0.000000	cysteine-rich protein 3	
AQP1	P4	7	30951718 - 30951719	AG	-	frameshift deletion	c.194_195del	p.Q65fs	exon1	NM_198098	0.000000	0.000000	aquaporin 1	Aor 䅹需ung
TEX15	P7	8	30703471 - 30703475	TACTT	-	frameshift deletion	c.3059_3063del	p.K1020fs	exon1	NM_031271	0.000000	0.000000	testis expressed 15	Testers, Eiterus
CEACAM2O	P8	19	45026932 - 45026938	TCAGGAC	-	frameshift deletion	c.476_482del	p.G159fs	exon4	NM_001102597	0.000000	0.000000	carcinoembryonic antigen-related cell adhesion molecule 20	Small intecitine, Testis
Abbreviations: ${ }^{\text {a }}$ Physical posit ${ }^{\mathrm{b}}$ Reference all ${ }^{c}$ Allele observed ${ }^{d}$ Allele frequen ${ }^{e}$ Allele frequen ${ }^{\text {f }}$ Top two tissue	NA, not on in UC e in UC in this y in Jap y in Eur showin	aplica SC G SC tudy. anese apean high	ble nome Browser in Human nome Browser. in Human Genetic Variatio gnomAD (https://gnomad.b st expression level in GTEx	eb. 2009 Hu Database roadinstitute x (release	man GRCh37 https://www.h org/). , 54 non-dise	g19 Assembly. d.genome.med.kyot sed tissue sites acro	u.ac.jp/). nearly 1000 individuals)							

