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Abstract 

Background: Heart rate variability (HRV) is a common measure of autonomic and 

cardiovascular system function assessed via electrocardiography (ECG). Consumer wearables, 

commonly employed in epidemiological research, use photoplethysmography (PPG) to report 

HRV metrics (PRV), although these may not be equivalent. One potential cause of dissociation 

between HRV and PRV is the variability in pulse transit time (PTT). This study sought to 

determine if PPG-derived HRV (i.e., PRV) is equivalent to ECG-derived HRV and ascertain if 

PRV measurement error is sufficient for a biomarker separate from HRV.  

Methods: The ECG data from 1,084 subjects were obtained from the PhysioNet Autonomic 

Aging dataset, and individual PTT variances for both the wrist (n=42) and finger (n=49) were 

derived from Mol et al. A Bayesian simulation was constructed whereby the individual arrival 

times of the PPG wave were calculated by placing a Gaussian prior on the individual QRS-wave 

timings of each ECG series. The standard deviation of the prior corresponds to the PTT 

variances. This was simulated 10,000 times for each PTT variance. The root mean square of 

successive differences (RMSSD) and standard deviation of N-N intervals (SDNN) were 

calculated for both HRV and PRV. The Region of Practical Equivalence bounds (ROPE) were 

set a priori at ±0.2% of true HRV. The Highest Density Interval (HDI) width, encompassing 95% 

of the posterior distribution, was calculated for each PTT variance. 

Results: The lowest PTT variance (2.0 SD) corresponded to 88.4% within ROPE for SDNN and 

21.4% for RMSSD. As the SD of PTT increases, the equivalence of PRV and HRV decreases for 

both SDNN and RMSSD. Thus, between PRV and HRV, RMSSD is nearly never equivalent and 

SDNN is only somewhat equivalent under very strict circumstances.  The HDI interval width 

increases with increasing PTT variance, with the HDI width increasing at a higher rate for 

RMSSD than SDNN. 

Conclusions: For individuals with greater PTT variability, PRV is not a surrogate for HRV. 

When considering PRV as a unique biometric measure, our findings reveal that SDNN has more 

favorable measurement properties than RMSSD, though both exhibit a non-uniform 

measurement error.  
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Introduction 

Heart rate variability (HRV) is commonly used as an index of autonomic function (1, 2) 

and is often extrapolated to whole-body health or all-cause mortality risk (3–5).  HRV is 

classically defined by beat-to-beat fluctuations in the time between QRS complexes (i.e., 

ventricular excitation) in the electrocardiogram (ECG), also called the R-R interval (6).  From 

the R-R interval, both time- and frequency-domain variables can be derived, and researchers 

often ascribe characteristics to these measures such as sympathetic function, parasympathetic 

function or vagal tone (2, 6, 7).  Most commonly, HRV has been used as a biomarker to 

determine cardiovascular disease risks, responses to stress, and training modulations (4, 8–11). 

HRV has become an attractive measure within the health and fitness industries because of 

its claims to monitor training adaptations and “physiological readiness.”  Many wearable health 

monitoring devices (e.g., watches, rings) advertise their capability to measure “heart rate 

variability.”  These devices, in nature, are located peripherally and most commonly use 

photoplethysmography (PPG) to determine pulse rate intervals at the finger or wrist (12–14).  

PPG assesses changes in blood volume in the peripheral tissues via infrared light, which is a 

functional product of cardiac electrical activity after a short mechanical delay, from cardiac 

excitation to blood ejection to arrival at the distal tissue.  Therefore, the outcome of this PPG 

detection method is more appropriately termed pulse rate variability (PRV), rather than HRV 

(15, 16).  Although the calculations for the variability indices are similar (e.g., root mean square 

of successive differences, standard deviation of N-N intervals), the outcomes of PRV (i.e., 

mechanical outcome) may not truly reflect HRV (i.e., electrical outcome).   
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Previous studies have 

suggested that a number of factors 

can influence pulse rate 

independent of heart rate, such as 

postural, physiological, 

environmental, and technical 

considerations (17–19).  For 

example, Yuda and colleagues (16) 

outlined the steps between the 

electrical impulse within the heart 

to the mechanical pulse at 

peripheral site, suggesting that 

there is room for error between the two signals.  More specifically, the authors, as well as others 

(1, 20, 21), have indicated that pulse transit time (PTT) is one measurable factor that can, in part, 

explain the differences between HRV and PRV.  The PTT, defined as the time from the electrical 

R wave to the foot of the PPG-derived pulse wave (see Figure 1), can vary beat-by-beat due to 

autonomic, respiratory, or other modulations (e.g., vascular branching, aging), introducing 

meaningful heterogeneity to the HRV-PRV relationship.   

Due to the influence of PTT on PRV, the relationship between ECG-derived HRV and 

PPG-derived PRV has been critically examined with inconsistent results.  For example, Selvaraj 

et al. (1) found a high correlation (r = 0.998) between the R-R interval and P-P interval at the 

finger and minimal error (~0.1 ms) between variability measures (e.g., mean NN interval).  

Further, Gil and colleagues (21) stated that the strong correlation (r ≥ 0.970) between HRV and 

Figure 1. A representative example depicting the R-R intervals 

from an electrocardiogram (ECG) and the P-P intervals from 

finger photoplethysmography (PPG). Pulse transit time (PTT) is 

demonstrated as the time difference between the R peak and first 

derivative peak of the PPG signal. 
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PRV measures in their study indicates that PRV could be a surrogate of HRV in stationary 

conditions.  However, the authors do note that the PTT variability can cause slight differences 

between these two metrics, such that greater PTT variance would contribute to greater 

discrepancies.  In support of this, Wong et al. found differences between both frequency- and 

time-domain HRV and PRV indices but also between the left and right PRV values, further 

highlighting that these methods are not interchangeable (15).  It also seems plausible that 

positive publication bias may make it more likely for high correlations between PRV and HRV 

to be published as opposed to studies finding low or non-significant relationships (22–24). 

Previous studies have provided preliminary insight on the issue of using HRV and PRV 

interchangeably, revealing some limitations.  For example, the bulk of the literature has 

investigated HRV within healthy young adults, primarily males, which limits the generalizability 

to older (≥ 60 years) or younger (<18 years) individuals who may have altered PTT regulation.  

Additionally, the position of the PPG sensor differs across studies, including the finger, wrist or 

earlobe, as well as the ECG being conducted either centrally (traditional thorax setup) or 

peripherally (at forearm) (25).  Further, each study has presented various HRV outcomes within 

the frequency or time domains, which contributes to inconsistent findings and reproducibility 

issues.  With these research design inconsistencies and small sample sizes, more research is 

needed to understand the HRV-PRV relationship. When empirical data is scarce or of low 

quality but there is a known fundamental relationship between events (i.e., there is a causal 

relationship between electrical contraction of cardiac tissue and blood flow in the 

microvasculature), it is often helpful to use mathematical or statistical simulations to show how 

these events play out under various perturbations.  
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Thus, the purpose of this study was to use two large and publicly available datasets and 

Bayesian simulation principles to 1) determine if PPG-derived HRV (i.e., PRV) is equivalent to 

ECG-derived HRV and 2) if HRV and PRV are not equivalent, determine if the measurement 

characteristics of PRV are sufficiently viable for it to be a biomarker separate from HRV.  

Methods 

Raw ECG Data 

Raw ECG data were downloaded from Physionet within the Autonomic Aging data set 

(26).  The Waveform Database Software Package (WFDB) within MATLAB (MATLAB 

version: 9.13.0 (R2022b), Natick, Massachusetts: The MathWorks Inc.; 2022) was used to 

determine the correct channel and threshold for the ECG interbeat intervals (IBIs) for each 

participant.  The histogram feature was used to ensure normal distribution of the R-R intervals 

with no outliers. If there were significant outliers or a non-normally distributed curve with the 

default settings (signal=1, threshold=1), a different signal (e.g., 2, 3) or threshold (e.g., 0.5, 2) 

was applied to obtain the best signal.  The final output including all the IBIs was saved as a new 

text file for further analysis. 

The annotated IBIs for the 1,084 patients were then exported at the millisecond resolution 

level (sampling rate = 1000 Hz) to the R programming language and analyzed using the RHRV 

package (27).  Invalid IBIs were removed using an adaptive thresholding technique which has 

been previously described (28).  A cleaned version of the QRS timings were then recovered for 

each participant for use in the planned simulation. 

Raw Pulse Transit Time Variability Data 
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 Raw PTT data was extracted from open-source physiological data from the work of Mol 

et al. (29).  In brief, supine rested PTT was collected in younger and older adults at the left wrist 

and index finger.  The PTT was calculated as the time interval between the ECG derived R-wave 

and the peak of the first derivative PPG signal for both the wrist and finger.  Individual PTT 

cycles were extracted for young adults (finger PTT n=30, wrist PTT n=28) and older adults 

(finger PTT n=19, wrist PTT n=14).  Mean and standard deviation for 60s clips within each 

individual and measurement site were determined. 

Bayesian Simulation of PPG-based PRV Measures 

The PTT variability was used to place a Bayesian prior on the arrival time of each QRS 

timing to convert it into the distal arrival of the PPG waveform at the location corresponding to 

the PTT variation.  The magnitude of the PTT itself was not meaningful, just as the magnitude of 

absolute timing for the QRS is not meaningful, but rather the interval between these waveforms.  

Essentially, a Gaussian probability density function was centered at the QRS time and the 

standard deviation of that probability density function corresponded to the PTT variability from a 

participant in the Mol et al study (See Figure 2).  After constructing these probability density 

functions for each QRS time, that participant’s ECG series was then sampled 10,000 times, 

creating 10,000 simulated ECG series for each patient for each PTT variance at each distal 

location (finger or wrist).  The root mean square of successive differences (RMSSD) and the 

standard deviation of N-N intervals (SDNN) were then calculated for each simulated time series. 

The primary goal of this work was to ascertain if HRV measured with ECG was 

equivalent to PRV measured by consumer wearables in the periphery.  As such the Region of 

Practical Equivalence (ROPE) analysis was performed (30, 31).  In the current work, the “real 

HRV” was a known quantity, so we simply needed to define what interval around the known 
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quantity is acceptable to call HRV and PRV 

equivalent.  To do this, we revisited 

previously obtained ECG measurements and 

determine how much variation one would 

expect to see between HRV metrics from 

ECG Lead II and Lead III recorded at the 

exact same time from the individuals within 

the Mol et al. study (29).  This variation was 

slightly less than 0.1% between leads and so 

we empirically decided that it was generous 

to call any metric ±0.2% of the real HRV as 

“equivalent.”  For each patient’s simulated 

PRV time series, we determined if it fell 

within the ROPE bounds.  The percent of 

readings falling within ROPE can then be calculated and stratified by PTT variance to 

understand if PRV can ever be considered as equivalent to HRV and if it can, under what sort of 

peripheral cardiovascular constraints this is a valid assumption.  

For each patient’s simulated time series at each PTT variance, the highest density interval 

(HDI) of the posterior was calculated for both RMSSD and SDNN.  The HDI is an interval 

which encompasses 95% of the posterior distribution, is a measure of uncertainty and sometimes 

called the “credible interval” (32).  This allows us to determine the most likely ranges of SDNN 

or RMSSD measures that would be obtained under ideal circumstances from a PPG sensor at a 

given location for a singular person.  The width of the HDI is calculated for each patient within a 

Figure 2. An example of the standard distribution 

of pulse rate values based on pulse transit time 

standard deviation (SD), with A representing a 

large SD and C representing a very small SD. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.24.23294449doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.24.23294449
http://creativecommons.org/licenses/by-nc-nd/4.0/


given PTT variance and the median HDI for the PTT variance is reported.  This allows us to 

know, for a standard ‘true HRV’, how much variance we would see in PRV if only peripheral 

cardiovascular variance is considered. 

Results 

For the same PTT variance, SDNN had more HRV-PRV equivalent observations than 

RMSSD.  For example, the lowest PTT variance observed was at the wrist and was 2.0 standard 

deviations, corresponding to 88.4% within ROPE for SDNN and 21.4% within ROPE for 

RMSSD.  There is a clear relationship where lower PTT variance leads to higher ROPE, until 

ROPE becomes zero (Figure 3).  For SDNN, ROPE becomes zero (zero equivalence between 

PRV and HRV) at 7.6 PTT standard deviations and at 5.5 PTT standard deviations for RMSSD.  

This demonstrates 

that SDNN has a 

very narrow band of 

PTT variance where 

PRV and HRV are 

broadly equivalent 

and RMSSD has 

nearly no likely 

real-world 

equivalence 

between PRV and 

HRV. 
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For both SDNN and RMSSD, the HDI interval width increases with increasing PTT 

variance.  However, the dynamics of this change appear different between SDNN (Figure 4A) 

and RMSSD (Figure 4B).  The rate of HDI width, a measure of uncertainty, increases at a far 

higher rate for 

RMSSD than it 

does for SDNN.  

For example, the 

HDI width of 

SDNN does not 

reach 1 unit until 

PTT variance is 10 

standard deviations, 

whereas RMSSD 

HDI width is 1 unit 

at 3.5 standard 

deviations.  

Discussion 

 Our study found that greater PTT variance not only decreased the equivalence of PRV to 

HRV, but also increased the measurement error of PRV itself.  More specifically, PTT variance 

should be less than two standard deviations for SDNN to be deemed equivalent (i.e., within 80% 

ROPE); however, HRV-PRV RMSSD showed no equivalence with any amount of PTT variance.  

Ultimately, this indicates that ECG-derived HRV and PPG-derived PRV should not be used 

interchangeably when defining “HRV” as a general metric.  When considering PRV as a unique 
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biometric measure, our findings reveal that SDNN has more favorable measurement properties 

than RMSSD, though both exhibit a non-uniform measurement error.  

 Recently, both peripherally located PPG and centrally located ECG have been utilized to 

measure “HRV”.  A review by Mejia-Mejia et al. (19) indicated that even if pulse rate and heart 

rate can be used interchangeably, PRV and HRV refer to the variability around the mean and 

may not be similar estimates of each other.  As outlined by Yuda and colleagues (16), there are 

several physiological steps between the electrical wave (QRS complex) at the heart and the 

mechanical pulse wave at the periphery, which may contribute to a discrepancy between the two.  

One specific factor that the authors mentioned is defined as PTT, with the speed of the pulse 

wave influenced by arterial radius, wall thickness and elasticity, and blood density (16).  Further, 

these factors may be subject to change within various populations and situations (e.g., age, sex, 

activity, posture), thereby creating disconnect between heart rate and pulse rate (19, 20, 33).  In 

support of this, the present study confirms that PRV and HRV may not be equivalent with 

greater PTT variance.   

 Previous studies have identified particular influences on PTT, which contribute to the 

dissociation of PRV from HRV.  For example, aging is associated with decreased vascular 

elasticity, which may reduce PTT variance and enhance the relationship between HRV and PRV 

(21).  Healthy and active (versus sedentary) individuals can exhibit improved vascular elasticity 

(34, 35), which may indicate that PRV is less reliable in these individuals.  Furthermore, 

respiration (spontaneous vs. paced) (36), position (supine vs. head-up) (21), and exercise (37, 38) 

can also influence the relationship between HRV and PRV through alterations in PTT.  Previous 

work has also found interindividual variability within the pre-ejection period, defined as the time 
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between the Q-wave and the actual blood ejection from the heart, that can occur in response to 

stress conditions or the location of the peripheral sensor (39, 40). 

 This study chose to examine SDNN and RMSSD, as these are the most common time-

domain variables assessed with wearable health monitoring devices (e.g., Oura, Apple Watch).  

Previous research has shown that RMSSD evaluates short-term dynamics, while SDNN may 

reflect more long-term properties (2).  Our results indicate that SDNN may be a more stable and 

less error-prone measure of PRV than RMSSD, with little equivalence between ECG-derived 

and PPG-derived RMSSD regardless of PTT variance.  One factor may be that RMSSD is more 

sensitive to artifacts than other HRV metrics, as suggested by Bourdillon and colleagues (41).  

Wearable technology or research studies utilizing PPG-derived variability metrics may consider 

using variables less influenced by short-term changes or artifact, such as SDNN.  Further work is 

needed to explore this relationship within frequency-domain variables. 

 The outcome of our simulation is valid because the two causal events, heart electrical 

waveform (QRS complex) and peripheral pulse wave arrival, can be directly linked and 

simulated with physiologically-based data (PTT variance).  Regarding the statistical analyses, it 

is important to note that a ROPE value of ±0.2% was chosen based on previous data.  We would 

expect up to approximately ±0.1% discrepancy in HRV within the same individual during the 

same time window, as explained above, and equivalence should be characterized by a narrow 

range set a priori and not adjusted to ‘fit the data’ post hoc.  Additionally, a measure must be 

considered consistent to be clinically meaningful or utilized to detect significant changes.  Our 

HDI analyses held the “real HRV” constant and varied only the PTT variance, showing that both 

SDNN and RMSSD have systematically varying measurement error, but that this error is most 

profound in RMSSD.  Certainly, there are other potential physiological processes which affect 
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the measurement of PRV, but until the impacts of those processes can be effectively modeled, 

RMSSD PRV should be avoided and SDNN PRV should be viewed skeptically if PTT variance 

cannot be assumed to be constant.  Although PPG-derived PRV metrics are widely used and may 

offer practical utility, our findings emphasize the need for clarification on terminology within 

HRV research to limit the interchangeability of HRV and PRV.  Further, it should not be 

assumed that the inferences made by previous HRV research will translate to PRV findings. 
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