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Abstract 
 
Purpose 
Diffuse gliomas present a significant challenge for healthcare systems globally. While brain MRI 
plays a vital role in diagnosis, prognosis, and treatment monitoring, accurately characterizing gliomas 
using conventional MRI techniques alone is challenging. In this study, we explored the potential of 
utilizing the amide proton transfer (APT) technique alone or in combination with other quantitative 
MRI sequences to predict tumor grade and type based on the WHO 2021 Classification of CNS 
Tumors. 
 
Methods 
Forty-two adult patients with histopathologically confirmed brain gliomas were included in the study. 
They underwent 3T MRI imaging, which involved APT, arterial spin labeling (ASL), and diffusion-
weighted imaging sequences. Multinomial and binary logistic regression models were employed to 
classify patients into clinically relevant groups based on MRI findings and demographic variables. 
 
Results 
We found that the best model for tumor grade classification included patient age along with APT 
values. The highest sensitivity (88%) was observed for Grade 4 tumors, while Grade 3 tumors showed 
the highest specificity (79%). For tumor type classification, our model incorporated four predictors: 
APT values, necrosis, and the presence of hemorrhage. The glioblastoma group had the highest 
sensitivity and specificity (87%), whereas balanced accuracy was the lowest for astrocytomas, 
indicating that the model performs better at detecting patients with glioblastoma rather than 
astrocytomas. 
 
Conclusion 
The APT technique shows great potential for noninvasive evaluation of diffuse gliomas. The changes 
in the classification of gliomas as per the WHO 2021 version of the CNS Tumor Classification did not 
affect its usefulness in predicting tumor grade or type. 
 
Keywords: brain glioma, amide proton transfer imaging, arterial spin labeling, apparent diffusion 
coefficient, qualitative MRI features 
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Introduction 
 
Diffuse glioma is the most common primary brain tumor, accounting for approximately 80% 
of all primary malignant brain tumors in adults [1]. Overall survival and prognosis for 
relapse, as well as the provision of adjuvant therapeutic regimens, depend dramatically on 
both tumor grade and morphological subtype [2]. In addition, it is believed that the molecular 
profile of the tumor can predict the response to treatment [3], [4]. Thus, an accurate 
evaluation of the malignant potential of diffuse gliomas is absolutely necessary. 
The last release of the WHO Classification of CNS Tumors (2021) is focused primarily on 
molecular diagnostics, where the main factors for grading and tumor type are the combination 
of IDH mutation and 1p19q codeletion statuses [5]. However, tumor grading is still carried 
out through visual analysis [6], which is subjective and not always accurate due to tumor 
heterogeneity [7]. The evaluation of the Ki-67 proliferation index has been recognized as 
highly beneficial in achieving this objective [8]. However, it necessitates additional 
immunohistochemical staining. Consequently, despite morphological analysis being regarded 
as the definitive method for diagnosing diffuse gliomas, there is variability among observers, 
including experts [9]. Furthermore, detailed histological analysis with tumor molecular 
profile evaluation is expensive and requires advanced laboratory techniques, which could be 
a significant problem in middle- and low-income countries [10]. 
Brain magnetic resonance imaging (MRI) plays a key role in the diagnosis, presurgical 
planning, surveillance, and treatment monitoring of gliomas [11]. In recent decades, many 
attempts have been made to accurately determine the type of diffuse brain glioma based on 
MRI features [11]–[13] or a combination of MRI and demographic characteristics [14]. In 
several studies, conventional MRI has been shown to predict both the pathological subtype 
[15] and even the molecular profile [16] of diffuse gliomas. To unify radiological reports and 
create a common vocabulary, the VASARI scoring system has been developed for a detailed 
description of brain gliomas 
(https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project), and its 
use has already shown promising results [13], [17]. On the other hand, in recent years, there 
have been significant advancements in image postprocessing techniques that offer a wealth of 
additional information extracted from conventional T2-weighted, FLAIR, pre- and 
postcontrast T1-weighted sequences [18]. These radiomic-based methods showed high 
precision for the prediction of tumor grade, IDH mutation, and 1p19q codeletion status in 
adults [12], [13] as well as tumor grade [19] and BRAF mutation status [20] in children. 
However, the signal changes on most conventional MRI sequences lack biological 
specificity, which limits the accuracy of noninvasive glioma characterization. Therefore, 
although conventional MRI is readily accessible and provides crucial anatomical details, 
accurately distinguishing the type and grade of a tumor solely based on conventional 
techniques appears to be challenging [11], [12]. 
The apparent diffusion coefficient (ADC) map is an essential conventional quantitative 
magnetic resonance sequence that is particularly valuable for analysing diffuse gliomas. It is 
believed that the restriction of diffusion in this map reflects the level of cellularity within the 
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tumor [21]–[23], and a negative correlation between ADC values and glioma grade has been 
shown in many previous studies [21], [24]–[26]. 
The advancements and widespread adoption of advanced MRI sequences in recent decades 
have enabled clinicians and researchers to gather extensive information about tumor structure 
and physiology, facilitating noninvasive glioma diagnosis and evaluation of treatment 
effectiveness. Specifically, perfusion techniques can offer valuable noninvasive insights into 
the microvasculature of tumors. Several perfusion methods are available and utilized in 
clinical practice, showing promising results [27], [28]. One of the most popular techniques 
among them is dynamic susceptibility contrast imaging (DSC), which involves measuring the 
relative cerebral blood volume (rCBV) [12]. A recently published meta-analysis revealed that 
this technique can accurately predict tumor grade [28]. Another meta-analysis demonstrated 
the high accuracy of DSC perfusion in determining both the IDH mutation and 1p19q 
codeletion statuses in patients with diffuse brain glioma [29]. However, it is worth noting that 
data acquisition protocols for DSC can be relatively complex and vary significantly across 
different institutions [30]. Furthermore, this technique is unable to provide definitive values 
for perfusion parameters, which limits the practical applicability of the acquired data. For 
example, it becomes challenging to establish a universal threshold in such circumstances. 
Additionally, this procedure is invasive and necessitates the administration of a contrast 
agent. 
The arterial spin labeling (ASL) technique is another promising alternative to invasive 
perfusion methods, and its utility has been extensively studied in different fields, including 
neurooncology [31]. ASL has been shown to be useful in the prediction of glioma grade [32] 
but much less useful in defining the molecular profiles of gliomas [33]. Moreover, studies 
suggest a strong correlation between the data obtained from ASL and DSC perfusion 
techniques [34], [35]. However, it is important to note that ASL can only provide 
measurements of cerebral blood flow (CBF), whereas CBV values are known to better reflect 
the microvasculature of the tumor [12]. 
An additional encouraging MRI technique used for imaging diffuse brain gliomas is amide 
proton transfer (APT), known for its remarkable biological specificity. It is well known that 
gliomas have higher protein/peptide contents than normal brain tissue [36]. Therefore, 
information at the protein level could potentially contribute to earlier diagnosis, more 
accurate delineation of boundaries, and enhanced tumor characterization [37]. The 
biophysical basis of APT imaging is the ability to detect mobile proteins [38]. The chemical 
exchange rate of amide protons with water hydrogens is a crucial parameter in this context, as 
it enhances the clinical utility of APT [39]. In addition, it is a noninvasive procedure that does 
not require the administration of any contrast agents. 
APT showed better diagnostic performance than conventional MRI [40]. Moreover, it has 
been discovered that it is just as effective as DSC perfusion [41]. A recently published meta-
analysis confirmed the effectiveness of the APT technique in distinguishing between low- 
and high-grade gliomas, as well as its potential for predicting histopathology noninvasively 
[38]. However, some authors have reported improved accuracy in grade prediction when 
combining APT with ADC and ASL values [42]. In addition, several studies [43], [44] have 
found a correlation between APT values within the glioma and tumor cellularity. 
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Furthermore, these studies have also shown a relationship between APT values and the extent 
of diffusion restriction as measured by both ADC and DKI techniques [43], [45]. 
Beyond that, APT seems to be a predictive factor for IDH mutation status as well [39], [46], 
[47]. It is important to note that the application of APT is not limited to presurgical glioma 
diagnosis and can also have implications for predicting overall survival, prognosis of 
recurrence, and assessing treatment outcomes. This has been demonstrated in multiple 
recently published articles [47]–[49]. 
As a reflection of its advantages and benefits for clinical applications, numerous articles 
focusing on the radiological characteristics of diffuse gliomas have been published over the 
past years. However, it is worth noting that most of these studies were conducted using the 
WHO 2016 Classification of CNS Tumors, whereas the recently released WHO 2021 update 
introduces significant revisions to glioma grading. Interestingly, only a few authors have 
made an effort to determine the subtype of glioma, despite its clear correlation with patient 
prognosis. Furthermore, there have been only a limited number of research papers published 
on the practicality of combining conventional MRI with APT data, as well as on the 
effectiveness of utilizing different quantitative techniques (such as APT, ADC, and ASL) for 
assessing diffuse gliomas [42], [50]. Moreover, many studies examining the effectiveness of 
advanced brain MRI techniques, specifically APT and ASL, in patients with diffuse gliomas 
have been limited by small sample sizes. 
Thus, the main objective of this study was to investigate the usefulness of the APT technique, 
both alone and in combination with other quantitative MRI sequences (specifically ADC and 
ASL), in predicting the grade and tumor type according to the WHO 2021 Classification of 
CNS Tumors for diffuse gliomas. Additionally, we aimed to determine whether incorporating 
descriptive tumor characteristics could enhance the predictive model based on APT. 
Furthermore, we sought to assess the ability of APT (alone or combined with other variables) 
to determine the status of IDH mutations, which greatly influences prognosis. Finally, we 
were interested in examining the relationship between quantitative MRI data and tumor 
cellularity measured by Ki-67 levels. 
 
 
Methods 
 
Patients 
The subjects in this study were patients with first identified brain gliomas who were 
surgically treated at our hospital in 2023. Forty-two patients (20 males and 22 females, 22 – 
76 years of age) with morphologically proven gliomas (according to WHO 2021 criteria) 
participated in the study. All patients underwent high-resolution brain MRI before surgery. 
Detailed information on the patients is provided in Supplementary Table 1. Each patient 
signed a written informed consent form to participate in the study. The study was carried out 
according to the Declaration of Helsinki and was approved by the local Ethics Committee of 
the Federal Center for Neurosurgery, Novosibirsk, Russia (protocol No. 4 dated 02-08-2022). 
 
 
Morphology 
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The surgical samples were assessed using the 2021 WHO classification of CNS tumors [5]. 
Immunohistochemical staining was conducted to evaluate the IDH1 status in each case. 
Additionally, FISH analysis was performed to detect 1p19q codeletion. Ki-67 levels were 
assessed using immunohistochemistry. 
 
MRI acquisition 
MR imaging data were acquired using a 3T system (Ingenia, Philips Healthcare, The 
Netherlands) equipped with a 16-channel receiver head coil. The MRI protocol included 
high-resolution T1-WI (before and after contrast injection), T2-WI, FLAIR, SWI, DWI, ASL 
and APT sequences. Details regarding the acquisition parameters used are shown in Table 1. 
 
 
MRI data processing 
The quantitative maps of APT, CBF (ASL), and ADC were calculated automatically by the 
MRI system. In each case, the entire tumor was segmented with ITK-Snap software (version 
4.0.0, http://www.itksnap.org) using a semiautomatic classification algorithm. Segmentation 
was performed based on FLAIR and T2-WI (referring to T1-WI and CE-T1WI) for contrast-
negative cases and postcontrast T1-WI (referring to FLAIR, T2-WI, and T1-WI) for contrast-
positive cases. The segmentation results were saved as binary masks in NifTI format. The 
ADC, CBF and APT maps were registered and resampled referring to T1-WI using SPM12 
with a normalized mutual information cost function and 4th Degree B-Spline interpolation 
(http://www.fil.ion.ucl.ac.uk/spm/). Subsequently, the tumor binary mask was moved to the 
APT, CBF, and CBV maps, and quantitative analysis was performed using Pyradiomics tool 
(https://aim.hms.harvard.edu/pyradiomics). 
The following signal intensity characteristics were extracted from the tumor on the APT, 
CBF and ADC maps: (1) mean, (2) median, (3) 10th percentile (for ADC), and (4) 90th 
percentile (for APT and CBF). Absolute values of all quantitative MR parameters were used. 
An illustration of data processing is shown in Figure 1. 
Two neuroradiologists qualitatively evaluated the MRI data independently (with 5 and 2 
years of neuroradiology experience, respectively). Magnetic resonance features were defined 
according to Visually Accessible Rembrandt Images (VASARI) imaging criteria 
(https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project), and full 
results are provided in Supplementary Table 2. Subsequently, qualitative features such as 
enhancement quality (f4), necrosis proportion (f7), and hemorrhage presence (f16) were 
evaluated between groups. 
 
 
Statistical analysis 
Descriptive statistics are presented as the median (interquartile range, IQR), given the 
relatively small sample size and nonnormal distribution of the data (normality of the 
distribution was checked with the Shapiro�Wilk test). The relationship between measured 
variables was assessed with the Spearman correlation coefficient and FDR correction for 
multiple comparisons. Ninety-five percent confidence intervals are provided in square 
brackets following the correlation coefficient magnitude. The chi-squared test was used for 
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categorical data analysis. The Mann�Whitney test was utilized for comparison of metric 
variables grouped by one categorical variable, such as sex, IDH1 mutation and 1p19q 
codeletion (two levels). Alternatively, in the case of categorical variables such as grade or 
tumor type, both having three levels, the Kruskal�Wallis test was used instead. A post hoc 
Dunn test was implemented to estimate the statistical significance between the studied groups 
in a pairwise manner. To assess the ability of the measured variables to classify patients into 
the abovementioned clinically meaningful groups (grade, tumor type, IDH1 mutation and 
1p19q codeletion), we ran a number of binomial and multinomial logistic regression models. 
For each model reported in the paper, we provided cross-validated (training/test sample - 
70/30) values of accuracy, sensitivity, specificity and area under the curve (AUC). In the case 
of tumor grade prediction, second grade was used as a reference category. For the tumor type 
prediction, we chose astrocytoma as a reference. In addition, we used a likelihood ratio (LR) 
test to assess the difference between distinct versions of nested models, each containing a 
different number of predictors. Odds ratios and associated 95% confidence intervals were 
additionally calculated for all predictors included in the final versions of the models. Feature 
selection was conducted in accordance with the principles of hierarchical regression, where 
variables that were more likely to be relevant for prediction were initially included in the 
model based on previous scientific studies, specific investigation objectives, and their 
interpretability within the overall framework of the study. Before interpreting the resultant 
models, we sought to ensure that all the logistic regression assumptions held true (i.e., there 
were no extreme values, outliers or multicollinearity issues in continuous predictors). The 
values for factors f4, f7, and f16 were obtained through their independent assessment by two 
neuroradiologists and subsequent calculation of the intraclass correlation coefficient based on 
a mean-rating (k = 2), absolute-agreement, 2-way mixed-effects model. A p value of 0.05 was 
considered a threshold for evaluating statistically significant associations. All statistical 
analyses were run in R (v. 4.3.1, 2023). 
 
 
Results 
 
Patient characteristics 
A total of 42 patients (20 males, 22 females) with brain gliomas participated in the study. The 
median age of the recruited patients was 54.5 years (IQR = 22.75). Male and female patients 

did not differ in age (U = 267.5, p = 0.24), grade (χ2 = 3.29, df = 2, p = 0.19) or 1p19q 

codeletion presence (χ2 = 0.84, df = 1, p = 0.36). However, they differed in tumor type (χ2 = 

7.21, df = 2, p = 0.027) and IDH1 mutation variables (χ2 = 5.52, df = 1, p = 0.019). There 
were 15 patients with glioblastomas, 18 patients with astrocytomas, and 9 patients with 
oligodendrogliomas. Detailed information on demographic, morphology, and molecular data 
for each patient is provided in Supplementary Table 1. 
 
 
Qualitative MRI features 
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The full results of the qualitative MRI analysis according to VASARI are demonstrated in 
Supplementary Table 2. Three characteristics, quality of enhancement (f4), necrosis (f7), and 
presence of hemorrhage (f16), were chosen for the following analysis. When evaluating the 
agreement of results obtained from comparing the levels of factors f4, f7 and f16 between 
two neuroradiologists, we observed intraclass correlation coefficient values of 1 for factors f4 
and f7, while factor f16 yielded a value of 0.7, indicating a high degree of consistency in 
estimates between the raters. As a next step, a chi-square goodness of fit test was performed 
to determine whether the proportions of these variables were equal between groups of 
patients with different tumor types and grades. There were significant relations between 
tumor types and the presence of hemorrhage (χ2 = 7.1, df = 2, p = 0.029), necrosis (χ2 = 21.4, 

df = 6, p = 0.0016) and quality of enhancement (χ2 = 23.28, df = 4, p = 0.0001). Along the 

same lines, these variables also differed between patients with different tumor grades (χ2 = 

8.18, df = 2, p = 0.017 for hemorrhage; χ2 = 19.38, df = 6, p = 0.0036 for necrosis; χ2 = 21.9, 
df = 4, p = 0.0002 for enhancement). 
 
 
Quantitative MRI features 
A Kruskal�Wallis test was performed on the median APT values of the three groups (grades 
2, 3 and 4) and revealed that there was a statistically significant difference in these values 

among the tested groups (χ2 = 11.25, df = 2, p = 0.0036). A post hoc Dunn test was further 
conducted to determine the differences in measured values between each pair of groups. We 
found the abovementioned differences in grade 2-grade 4 and grade 3-grade 4 pairs (p = 0.03 
and p = 0.01, respectively; Figure 2A). 
In a similar vein, median APT values were compared between patients belonging to groups 

with different tumor types, resulting in a rejection of the null hypothesis (χ2 = 17.33, df = 2, p 
= 0.0002). Patients with glioblastoma showed increased median APT values in comparison to 
those with astrocytoma and oligodendroglioma (p = 0.002 and p = 0.0004, respectively; 
Figure 2B). 
When comparing APT median levels between patients with IDH1 mutant and wild types, the 
latter group demonstrated increased median values, which were statistically significant (U = 

51, p = 7.37*10-5; Figure 2C). Similarly, when applied to groups with and without 1p19q 
codeletion, the Mann�Whitney test indicated the presence of noticeable differences in 
median APT levels (U = 236, p = 0.0077; Figure 2D). Differences in the mean and 90th 
percentile APT values were also statistically significant between groups, but these differences 
were less pronounced than those of median APT. We report these results in detail in 
Supplementary Table 3. 
We did not find any differences in median CBF values between patients with different tumor 
grades (χ2 = 2.6, p = 0.27) or types (χ2 = 3.96, p = 0.14). Similarly, these values were not 
significantly different for patients within the IDH1 mutation (mutant/wild types) and 1p19q 
codeletion (yes/no) groups (U = 127, p = 0.09 and U = 134.5, p = 0.78, respectively). 
Comparison of the mean and 90th percentile CBF values showed the same trend and were not 
reported in the main text of the article. 
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Likewise, we did not observe any significant differences in median or mean and 10th 
percentile ADC levels among different grades, tumor types and IDH1 status. Here, we briefly 
presented only results regarding median ADC values with corresponding data for mean and 
10th percentile values provided in Supplementary Table 3. Notably, the Kruskal�Wallis test 
returned statistically significant differences between tumor grade groups, showing that the 

null hypothesis about equality of group’s median values can be rejected (χ2 = 6.86, df = 2, p = 
0.03). However, post hoc Dunn test results revealed no significant differences upon pairwise 
comparison (p = 0.47 for the grade 2-grade 3 pair; p = 0.09 for the grade 2-grade 4 pair and p 
= 0.07 for the grade 3-grade 4 pair). Median values for tumor type groups did not differ from 
each other (χ2 = 2.28, df = 2, p = 0.32). The Mann�Whitney test applied to ADC data also 
did not result in any discrepancies between mutant and wild types (U = 260, p = 0.135). 
 
 
Tumor grade and type prediction 
To predict a patient's tumor grade based on a linear combination of MRI parameters as well 
as clinical and demographic variables, we ran several multinomial logistic regression models, 
characterized by different numbers of predictors or independent variables. The LR test 
showed that comparison of the null model and the updated version with the addition of APT 

values returned statistically significant differences between models (χ2 = 13.17, df = 2, p = 
0.0014). Including the age variable in the model resulted in further improvement in its 
performance and led to differences from the model that used APT values as a single predictor 

(χ2 = 8.7, df = 2, p = 0.012). Entering additional variables, such as necrosis, hemorrhage or 
quality of enhancement, into the model did not result in any significant model improvement, 
so we did not report them in the article. The best model containing APT and age as the main 
predictors had a multiclass AUC of 0.82 and an accuracy of 0.71. The balanced accuracy 
values were 0.5 for grade 2, 0.74 for grade 3 and 0.77 for grade 4. Notably, grade 2 showed a 
sensitivity of 0% but a specificity of 100%, most likely resulting from the small group size (n 
= 5). Grade 4 demonstrated the highest sensitivity (88%) among all groups tested while 
having a moderate magnitude of specificity (67%). Finally, the model was able to correctly 
classify patients as belonging to grade 3 in 69% of cases, with a specificity value reaching 
79%. Table 2 shows the logs of the odds ratio for each predictor included in the model, 95% 
confidence interval and corresponding p value. In this case, it is evident that the sole 
significant predictor for this model is the median APT value in the fourth-grade group, which 
reflects the change in the odds of membership in the target group for a one-unit increase in 
the predictor. It is also important to highlight that the choice of the second grade as a 
reference category in our study significantly influences the results presented in the table in 
such a way that selecting either the third or fourth grade as a reference would yield different 
sets of model parameters. 
Similarly, with the objective of classifying patients into distinct tumor types, we constructed 
multiple multinomial logistic regression models with varying numbers of predictors. Initially, 
we included APT median values as a single predictor, following prior grade prediction 
models, and found that this model exhibited superior performance compared to the null 
model (χ2 = 19.5, df = 2, p = 5.77*10-5). Subsequently, incorporating age as a second 
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predictor further improved the model's performance significantly when compared to the 

single-predictor model (χ2 = 12.85, df = 2, p = 0.0016). Adding the variables "hemorrhage" 
or "enhancement" as predictors did not result in statistically significant differences from the 
model with two predictors but demonstrated results trending towards statistical significance 
(χ2 = 5.46, df = 2, p = 0.065 and χ2 = 9.3, df = 4, p = 0.054, respectively). The same results 

were obtained for the necrosis variable (χ2 = 9.53, df = 6, p = 0.15). However, it should be 
noted that a four-predictor model (APT, age, hemorrhage, and necrosis) significantly differed 
from the two-predictor model (APT and age) and led to improvement in classification 
performance (χ2 = 22, df = 8, p = 0.005; accuracy = 0.74, mcAUC = 0.93). Therefore, it was 
decided to proceed with this four-predictor model including necrosis and hemorrhage as third 
and fourth predictors. This final version of the model achieved sensitivity values ranging 
from 67% for the oligodendroglioma and astrocytoma groups to 87% for the glioblastoma 
group. The highest specificity score was observed in glioblastoma patients (93%), whereas 
the lowest specificity score was found in the astrocytoma class (79%) (the oligodendroglioma 
group had a value of 88%). The balanced accuracy magnitudes were 0.73 for astrocytoma, 
0.77 for oligodendroglioma and 0.9 for glioblastoma. The odds ratio for each predictor in the 
model can be found in Table 3. 
 
 
IDH1 status prediction 
We further sought to predict the patient's IDH1 class, that is, whether the patient had mutant 
or wild-type IDH1. For this end, several binary logistic regression models were developed. 
As were the cases with tumor grade and type classification, we started with APT median 
values being the only predictor in the model and found that this model was significantly 
different from the null model (χ2 = 17.62, df = 1, p = 2.7*10-5). The inclusion of the age 

variable resulted in a substantial enhancement in the performance of the model (χ2 = 12.56, df 
= 1, p = 0.0004). In total, these two variables provided a model with an accuracy of 0.79 [0.4, 
0.97] and an area under the curve of 0.95; however, this model exhibited a low specificity 
rate of 30%. The likelihood ratio test indicated that further addition of variables to the model 
did not result in statistically significant differences compared to the model with only two 
variables. However, the inclusion of the predictor "necrosis" led to an increase in model 
accuracy up to 1 [0.66, 1], while there was minimal change in the area under the curve, which 
reached a value of 0.96 (χ2 = 5.16, df = 3, p = 0.16). In Figure 4, we present the ROC curves 
for each of the aforementioned models. In addition, an increase in the median APT and age 
values by one unit led to the elevation of the odds ratio of membership in the wild-type group 
(see Table 4 for specific values). 
 
 
Correlations among APT, ADC and CBF values within tumor 
We observed a negative correlation between the 90th percentile APT and 10th percentile ADC 
values (r = - 0.44 [-0.66, -0.15], adjusted p = 0.008; Figure 5). Similarly, there was a weak 
negative correlation between the mean/median APT values and the 10th percentile ADC 
values (r = - 0.39 [-0.63, -0.09], adjusted p = 0.016; not shown). No associations were 
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revealed between CBF values (mean, median, 90th percentile) and APT values (mean, 
median, 90th percentile), as well as ADC values (mean, median, 10th percentile) - p > 0.1 in 
all comparisons, not shown. 
 
 
Correlation between Ki-67 levels and MRI parameters 
We found a moderate positive correlation between Ki-67 and the 90th percentile APT values 
(r = 0.53 [0.26, 0.72], p = 0.003; Figure 6A) and a moderate negative association between Ki-
67 and the 10th percentile ADC values (r = - 0.5 [-0.70, -0.22], p = 0.004; Figure 6B). 
Additionally, mean and median APT values also exhibited significant correlations with Ki-67 
levels, although to a lesser extent than the 90th percentile values (r = 0.47 [0.18, 0.68], p = 
0.004 for both variables, not shown). Likewise, the mean and median ADC values showed a 
significant correlation with Ki-67 levels (r = - 0.33 [-0.59, -0.02], p = 0.046 and r = - 0.39 [-
0.63, -0.09], p = 0.019, respectively; not shown). No significant correlations were observed 
between Ki-67 levels and mean, median, or 90th percentile CBF values (p > 0.1, not shown). 
 
 
Discussion 
 
Diffuse gliomas present a major challenge to the modern healthcare system worldwide, 
leading to a substantial reduction in patients' quality of life, posing an immediate threat to 
their lives, and requiring significant direct and indirect financial expenses associated with the 
prevention, diagnosis, and treatment of such tumors. Brain MRI is essential for diagnosing, 
planning surgery, monitoring progress, and treating gliomas. However, accurately 
distinguishing the type and grade of a tumor solely based on conventional MRI techniques 
seems challenging due to the lack of biological specificity in signal changes, limiting 
noninvasive glioma characterization. In this study, we explored the potential of using the 
APT technique, both on its own and in conjunction with other quantitative MRI sequences 
(specifically ADC and ASL), to predict the grade and tumor type based on the WHO 2021 
Classification of CNS Tumors for diffuse gliomas. We discovered that incorporating APT 
values into the models resulted in a substantial enhancement of their performance. Grade 
prediction metrics based on median APT values and patient age were the highest for grade 4, 
with grade 3 and grade 2 demonstrating moderate classification accuracy (all AUC values 
exceeded 0.75). These findings align well with the literature, which demonstrates the 
predictive potential of APT levels in distinguishing between low- and high-grade gliomas 
[38]. Furthermore, we expanded upon these findings by demonstrating the capability of APT 
to distinguish patients within the high-grade class, specifically those categorized as grade 3 
and grade 4. It is crucial to consider this aspect, as there are significant disparities in both 
overall and median survival rates observed among patients diagnosed with grade 3 and grade 
4 diffuse brain gliomas [51]–[53]. Similar results have been reported previously by Guo and 
colleagues in their study involving 62 patients, further validating our findings [46]. However, 
the most notable contrast between their findings and ours was the existence of statistically 
significant differences between grade 2 and grade 3 patients in their study, a pattern that was 
absent in our data. This discrepancy could be attributed to the relatively small number of 
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patients included in the grade 2 group within our study. We were also able to identify the 
differences in APT levels among distinct tumor type groups. The most pronounced 
differences were found between the glioblastoma and oligodendroglioma groups, followed by 
astrocytoma and glioblastoma. In contrast, there were no statistically significant differences 
observed between the astrocytoma and oligodendroglioma groups. To our knowledge, these 
results have not been showcased in earlier studies and provide definitive clinical relevance. 
IDH mutation and 1p19q codeletion statuses in patients with diffuse gliomas are well-
established prognostic markers [5]. We discovered that patients with wild-type IDH1 had 
higher APT levels than those with mutant IDH1. Consistent with our current findings, several 
previously published studies have also shown a similar trend, indicating that elevated APT 
values can serve as a significant predictor of poor overall survival [47], [54]. In the same 
vein, it has also been revealed that APT imaging exhibited superior performance over DKI in 
IDH mutation status prediction [45]. 
The two 1p19q codeletion groups in our study were also different from each other in terms of 
APT levels. Specifically, patients without codeletion were characterized by higher APT 
median values in comparison to patients with codeletion. However, contrary to what we have 
observed, Su and colleagues in their recent paper failed to identify differences between the 
groups in a sample of 113 patients with diffuse glioma [55]. Further research is required to 
address this question, as the presence of 1p19q codeletion classifies the tumor as an 
oligodendroglioma [5], which significantly improves prognosis for the patient. 
Taken together, our findings clearly demonstrate the significant utility of the APT technique 
in predicting tumor grade and type, as well as identifying IDH mutation and 1p19q codeletion 
statuses, in patients with diffuse brain gliomas. 
Hereafter, a number of multinomial logistic regression models were developed to predict 
patient tumor types and grades based on APT values complemented by additional parameters 
used as predictors. The model with the best classification performance for tumor grade, in 
addition to APT values, included the variable of patient age. This model demonstrated an 
accuracy of 0.71 and an area under the curve of 0.82, which is considered good classifier 
performance. The highest sensitivity values (88%) were obtained for Grade 4, while 
specificity was highest for Grade 3 (79%). Age is a known predictive factor for tumor 
malignancy and clearly impacts prognosis in patients with diffuse gliomas [56]–[58]. 
Therefore, entering the age of the patients in the APT-based prediction model looks logical, 
especially considering that this information is easy to obtain. However, we hypothesize that 
classification accuracy could be further improved by incorporating parameters not considered 
in this study. 
In the case of tumor type classification, we settled on a model that includes four predictors. In 
addition to APT values, factors such as necrosis and the presence of hemorrhage were added. 
This allowed us to achieve an accuracy of 0.74 and an area under the curve of 0.93. 
Sensitivity and specificity reached their highest values for the glioblastoma group (87%). The 
balanced accuracy was lowest for the astrocytoma group, which collectively demonstrates the 
model's ability to correctly detect patients with glioblastoma most effectively, while 
performing less accurately for astrocytomas. Conventional MRI is the diagnostic standard for 
patients with diffuse glioma and provides a detailed anatomical picture, as well as important 
qualitative tumor characteristics, such as contrast enhancement quality and the presence of 
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necrosis or hemorrhage. Conventional brain MRI has been shown to be useful in predicting 
the pathological subtype [15] and even the molecular profile [16] of diffuse gliomas. The 
VASARI scoring system enables the quantification of tumor characteristics, making it easier 
to compare them between different groups [13]. 
In general, we found that including additional parameters (specifically the patient's age, 
proportion of tumor necrosis, and presence of hemorrhage) into the regression model 
significantly enhanced the accuracy of predicting type, grade, and IDH mutation status 
beyond just APT values. 
Surprisingly, we did not find differences in ADC values between tumor grades and 
histological subtypes. Furthermore, there were no significant differences between the IDH 
mutant and the IDH wild-type groups. These findings are generally inconsistent with 
previously published articles that revealed the high utility of ADC in the evaluation of 
gliomas [21], [24]–[26]. The reason could be that the primary purpose of applying ADC is to 
distinguish between low-grade and high-grade gliomas [24], [25], whereas our sample 
consisted mainly of high-grade tumors (grades 3 and 4). Another potential explanation lies in 
our chosen analysis method, wherein we employed an entire tumor binary mask for value 
extraction. This approach may have inadvertently obscured differences attributable to the 
inherent tissue heterogeneity of gliomas. Furthermore, it is widely acknowledged that ADC 
maps derived from higher b-factors offer enhanced diagnostic utility [21], whereas our study 
utilized the conventional acquisition method with a b-value of 1000 s/mm2. It should be 
emphasized that certain published studies have failed to identify discernible discrepancies in 
ADC values within tumors when comparing low-grade and high-grade gliomas [59]. 
Similarly, our study found no significant differences in ASL values among different tumor 
grades, types, and IDH mutation statuses. These findings are also inconsistent with previous 
reports in the literature. Previous studies have demonstrated the utility of ASL in predicting 
glioma grade [34] and assessing IDH status [60]. However, Kang et al. did not observe 
significant differences in the 90th percentile regional cerebral blood flow (rCBF) values 
between low- and high-grade glioma groups [42]. A recent meta-analysis indicated that ASL 
shows high accuracy in glioma grading, particularly when considering maximal relative CBF 
values [32]. It is worth noting that our study employed absolute CBF values, which may 
explain the discrepancy observed compared to previously published data. Another potential 
explanation could be attributed to changes made by the WHO's 2021 Classification of CNS 
Tumors in grading gliomas, whereas most prior research was based on the WHO 2016 
version. 
Another noteworthy observation was that the inclusion of ADC or ASL variables in our 
APT-based regression model did not yield any statistically significant enhancement to the 
model. Nevertheless, prior investigations have demonstrated that incorporating ADC values 
into APT may enhance glioma grading [42], [50]. Consequently, further studies are warranted 
to elucidate this aspect. 
We found positive associations between tumor proliferation molecular marker (Ki-67) levels 
and APT values, as well as negative associations between Ki-67 and ADC values. These 
results are in agreement with previously published data. In a study by Yin et al. (2012), Ki-67 
expression was inversely associated with ADC values in tumor parenchyma [61]. 
Furthermore, Yao et al. (2023) demonstrated that minimal ADC values were diagnostically 
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comparable to the Ki-67 proliferation index in assessing pediatric glioma grade [23]. Several 
prior reports have also shown associations between APT values and Ki-67 levels [62]–[64]. 
These results support the notion that active tumor cell proliferation is linked to elevated 
concentrations of mobile proteins within the tumor, leading to an increased APT signal, as 
well as high cellularity resulting in decreased ADC values. Consequently, both ADC and 
APT measurements can indirectly reflect the proliferation index and subsequent malignancy 
of gliomas. 
Moreover, our study unveiled a negative correlation between APT and ADC values within 
the tumor, thus corroborating earlier findings reported in the literature. A negative association 
has recently been shown between ADC and APT values within the tumor [43]. However, our 
results indicate that APT exhibits superior diagnostic accuracy when compared to ADC. 
Therefore, while both APT and ADC values provide insights into tumor cellularity, only APT 
demonstrates precise prognostic capabilities for determining tumor grade and type. 
A previous study highlighted the APT technique as a viable alternative to contrast injection-
dependent sequences such as DSC perfusion [41]. However, our findings indicate that APT 
alone lacks the necessary precision to accurately predict tumor type, and the inclusion of 
necrosis proportion, which can only be identified through CE-T1WI, is needed. Exploring the 
potential utility of combining APT and DSC values in presurgical glioma definition 
represents a promising research direction warranting further investigation. Our study results 
reaffirm the significant potential of the APT technique for the noninvasive diagnosis of 
diffuse gliomas. Therefore, it should be routinely incorporated alongside morphological 
analysis. Another valuable application of APT lies in selecting optimal sites for presurgical 
stereotactic biopsies. It is well established that targeted biopsy of the most malignant region 
of a tumor enhances diagnostic accuracy, and this region can potentially be identified using 
APT maps. It is important to note that beyond its role in presurgical glioma evaluation, APT 
holds considerable utility in assessing treatment effects and overall prognosis [47]–[49], 
although these aspects extend beyond the scope of our current study. 
This study has several limitations. First, the sample size was small, consisting of only 42 
patients, with only five cases presenting low-grade tumors. Second, our brain MRI protocol 
lacked a DSC perfusion sequence, thus impeding any comparison between the effectiveness 
of APT and rCBV values and hindering an assessment of their combined utility. Furthermore, 
there is a lack of follow-up data for the patients who participated in this study. 
In addition, within the scope of this study, we also decided to utilize multinomial logistic 
regression models as classifiers. In doing so, we employed a hierarchical regression approach 
for variable selection and inclusion in the model. We are fully aware of alternative classifier 
options that could have been used in this study, such as support vector machines or decision 
tree classifiers. Similarly, forced entry, stepwise or all-subsets methods could have served as 
alternatives to hierarchical regression. Each of these methods has its own merits and 
limitations and cannot be deemed superior a priori over others. Therefore, the choice of 
methods and approaches was determined by specific research objectives. 
In conclusion, the amide proton transfer technique shows significant potential for noninvasive 
evaluation of diffuse gliomas. To the best of our knowledge, this study represents the initial 
endeavor to evaluate the effectiveness of APT in the preoperative assessment of gliomas 
using the WHO 2021 Classification of CNS Tumors. Furthermore, it is a pioneering attempt 
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to integrate APT data with qualitative tumor characteristics and patient demographics to 
enhance diagnostic accuracy rates. However, given the pilot nature of the study, further 
studies with larger sample sizes and comprehensive follow-up are clearly necessary to 
strengthen these findings. 
 
 
Data availability 
Raw data were generated at Federal Neurosurgical Center Novosibirsk. Derived data supporting the 
findings of this study are available from the corresponding author on request. 
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ASL – arterial spine labeling 
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MRI – magnetic resonance imaging 
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Figure 1. An example of post-processing of MRI data in a patient with glioblastoma (WHO grade 4, 
IDH1 wild type). A – Axial CE-T1WI shows vivid inhomogeneous enhancement; B – same slice after 
semiautomatic tumor segmentation; C- axial T2WI; D – APT map demonstrates marked elevation of 
metabolites in the tumor’s center; E – CBF map (ASL) with slight hyperperfusion from the tumor; F – 
ADC map shows moderate diffusion restriction. 
 
Figure 2. The results of nonparametric statistical comparison of APT median values between groups 
with Kruskal�Wallis (panels A and B) and Mann�Whitney tests (panels C and D). APT levels are 
compared among groups using boxplots, where individual data values are represented by black dots 
and the medians are shown by the thick red horizontal lines. The boxes represent the middle 50% of 
the data, ranging from the 25th to the 75th percentile. The whiskers extend to 1.5 times the 
interquartile range. In this figure, NS indicates p > 0.05; * represents p < 0.05; ** p < 0.01; *** p < 
0.001. 
 
Figure 3. The plot represents areas under the curves (ROC curves) for two multinomial logistic 
regression models (one-vs-the-rest multiclass strategy) used to classify patients according to their 
tumor grade (panel A) or tumor type (panel B). Different grades or types are depicted in different 
colors. The dotted line corresponds to AUC = 0.5 or the random classifier’s performance. 
 
Figure 4. The plot displays areas under the curves for three binary logistic models (IDH1 group 
prediction) with different numbers of predictors, depicted in different colors. The dotted line 
corresponds to AUC = 0.5 or the random classifier’s performance. 
 
Figure 5. Spearman correlation between 90th percentile APT and 10th percentile ADC values. The 
gray area around the red line represents the 95% confidence interval. Individual data points are 
displayed as black dots. 
 
Figure 6. Panel A displays the Spearman correlation between the 90th percentile APT and Ki-67 
values. Panel B shows the Spearman correlation between the 10th percentile ADC values and Ki-67 
levels in the patients. The gray area around the red line represents the 95% confidence interval. 
Individual data points are displayed as black dots. 
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