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Abstract 16 

In a pivotal trial (EPIC-HR), a 5-day course of oral ritonavir-boosted nirmatrelvir, given early 17 
during symptomatic SARS-CoV-2 infection (within three days of symptoms onset), decreased 18 
hospitalization and death by 89.1% and nasal viral load by 0.87 log relative to placebo in high-19 
risk individuals. Yet, nirmatrelvir/ritonavir failed as post-exposure prophylaxis in a trial, and 20 
frequent viral rebound has been observed in subsequent cohorts. We developed a mathematical 21 
model capturing viral-immune dynamics and nirmatrelvir pharmacokinetics that recapitulated 22 
viral loads from this and another clinical trial (PLATCOV). Our results suggest that 23 
nirmatrelvir’s in vivo potency is significantly lower than in vitro assays predict. According to 24 
our model, a maximally potent agent would reduce the viral load by approximately 3.5 logs 25 
relative to placebo at 5 days. The model identifies that earlier initiation and shorter treatment 26 
duration are key predictors of post-treatment rebound. Extension of treatment to 10 days for 27 
Omicron variant infection in vaccinated individuals, rather than increasing dose or dosing 28 
frequency, is predicted to lower the incidence of viral rebound significantly. 29 
 30 
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Introduction 32 

The SARS-CoV-2 main protease inhibitor nirmatrelvir is a drug plagued by 33 
contradictions. In a landmark, randomized, double-blinded, placebo-controlled clinical 34 
trial with 1364 analyzed individuals, 300 mg of nirmatrelvir boosted with 100 mg 35 
ritonavir was given twice daily for five days to high-risk individuals with SARS-CoV-2 36 
infection within 3 days of developing symptoms. Compared to placebo, nirmatrelvir 37 
reduced the combined outcome of hospitalization and death by 89%, eliminated death 38 
as an outcome, and reduced viral load by 0.87 log after 5 days of treatment1. This 39 
critical result prompted the Food and Drug Administration (FDA) to issue an 40 
Emergency Use Authorization2. The drug became the most widely prescribed antiviral 41 
for SARS-CoV-2 in the United States, likely preventing thousands of hospitalizations 42 
and many deaths3. Ritonavir boosted nirmatrelvir was recently licensed by the FDA 43 
based on its continued effectiveness and safety4 and has outperformed other antivirals 44 
in terms of hospitalization and viral load reduction5.  45 

However, the use of nirmatrelvir/ritonavir in real-world cohorts has identified viral 46 
rebound as a significant issue. Viral rebound occurred in 14.2% of individuals in one 47 
large cohort and was usually associated with recrudescence of symptoms, though 48 
protection against hospitalization and death appeared to be maintained6 and remains 49 
significant despite high rates of population immunity due to vaccination and prior 50 
infection7. Similar rates of viral rebound were observed between molnupiravir and 51 
nirmatrelvir, suggesting the rebound effect is not drug-specific and may pertain to 52 
characteristics of SARS-CoV-2 infection and treatment duration8. This high incidence 53 
of viral rebound exceeded the 2.3% rate observed in the proof-of-concept trial, which 54 
did not differ from placebo9.  55 

Despite its high efficacy as an early symptomatic therapy for high-risk individuals, 56 
nirmatrelvir/ritonavir was not authorized for use as post-exposure prophylaxis (PEP). In 57 
a clinical trial of post-exposure prophylaxis, nirmatrelvir/ritonavir showed 32% and 58 
37% reductions in symptomatic COVID-19 relative to placebo when given for five or 59 
ten days respectively10. However, neither of these results reached statistical 60 
significance. Notably, molnupiravir, another drug that reduced hospitalization when 61 
given during early symptomatic infection, also failed as post-exposure prophylaxis11. 62 
Only long-acting monoclonal antibodies have demonstrated efficacy for post-exposure 63 
prophylaxis12–14, but these are no longer active against prevalent circulating strains15. 64 

Early during the COVID-19 pandemic, multiple groups employed mathematical models 65 
to simulate the outcomes of clinical trials for SARS-CoV-216–22. These models all 66 
accurately predicted that antiviral therapy that was insufficiently potent or given too 67 
late during infection might fail to provide clinical benefit16–19,21. Our previous modeling 68 
results further suggested that viral rebound may occur and was more likely if a drug 69 
was dosed during the pre-symptomatic phase of infection when viral loads are still 70 
expanding, as occurs in a post-exposure prophylaxis scenario23. The proposed 71 
mechanism of this effect was that reducing viral load may blunt early immune 72 
responses and preserve susceptible cells, allowing viral re-expansion upon cessation of 73 
treatment that was of insufficient potency to eliminate all infected cells24. The model 74 
suggested that this phenomenon could theoretically occur during early symptomatic 75 
treatment as well. At the time, we downplayed the significance of model-generated 76 
rebound as the phenomenon had yet to be demonstrated clinically. However, models fit 77 
to rebound data now suggest a similar mechanism of action25. 78 
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Here we use an updated model for SARS-CoV-2 viral kinetics that was first validated 79 
against a much larger panel of untreated individuals to precisely simulate the virologic 80 
outcomes of two nirmatrelvir/ritonavir trials. We identify that the true in vivo potency 81 
of nirmatrelvir is significantly less than its in vitro potency, such that drug levels are 82 
sub-therapeutic during a portion of the dosing interval. Viral rebound is observed in our 83 
simulations and is more likely when the drug is dosed early during infection and is not 84 
reduced with a higher dose or dosing frequency. Extended-duration treatment is 85 
identified as the best strategy to avoid viral rebound. 86 

 87 
Results  88 

Viral Dynamic, Pharmacokinetic, and Pharmacodynamic Mathematical models 89 

To derive parameters for simulating nasal viral loads in the absence of therapy, we used 90 
the mechanistic mathematical model (Fig 1a) that best recapitulated 1510 SARS-CoV-91 
2 infections in a cohort of 1440 SARS-CoV-2 infected individuals from the National 92 
Basketball Association cohort26. The model assumes a finite number of susceptible 93 
cells. An eclipse phase delays viral production by infected cells. In keeping with an 94 
early interferon-mediated innate immune response, susceptible cells can become 95 
refractory to infection in the presence of infected cells but also revert to a susceptible 96 
state at a constant rate. Infected cells are cleared by cytolysis, a constant early immune 97 
response rate, and delayed acquired immunity, which is activated in a time-dependent 98 
fashion. We used a mixed-effect population approach implemented in Monolix to 99 
estimate model parameters (Fig S1, Table S1).  100 

To reproduce levels of nirmatrelvir, we used a two-compartment pharmacokinetic (PK) 101 
model (Error! Reference source not found.b). Using Monolix and the mixed-effect 102 
population approach, we estimated parameter values by fitting the model to the plasma 103 
concentration of healthy subjects. The model closely recapitulated observed drug levels 104 
following a single dose of 250mg/100mg of nirmatrelvir/ritonavir (Fig S2, Table S2). 105 
The effect of ritonavir as a metabolic inhibitor is accounted for in nirmatrelvir’s 106 
clearance rate in the PK model. We also fit the model to population-level plasma 107 
concentrations following a single dose of 250mg/100mg and 750mg/100mg, showing 108 
that estimated parameters are dose-independent (Table S3). 109 

For the pharmacodynamic (PD) model, we assumed drug efficacy follows a Hill 110 
equation with respect to concentration. We parameterized the model using in vitro 111 
efficacy data collected at different concentrations of nirmatrelvir (details in Materials 112 
and Methods, Fig S3, Table S4). 113 

Finally, we combined the viral dynamic and PKPD models by using treatment efficacy 114 
to lower the viral production rate (details in Materials and Methods, Fig 1). We fit the 115 
combined model to viral load drop from baseline reported in two randomized, 116 
controlled trials: the EPIC-HR trial with 1574 high-risk unvaccinated symptomatic 117 
individuals1 (Fig 2) and the PLATCOV trial with 144 low-risk, symptomatic 118 
individuals (Fig 3a-e) 5. We also fit the combined model to individual viral load data 119 
from PLATCOV (Fig 3f-h, Fig S4 & Fig S5, Table S5).  120 

Mathematical model fitting to clinical trial virologic outcome data 121 

The in vivo potency of a drug is often different from values measured in vitro23,28,29. We 122 
define the in vivo IC50 as the plasma drug concentration required to inhibit viral 123 
replication by 50% and the potency reduction factor (prf) as the ratio between the in 124 
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vivo and in vitro IC50. To identify the in vivo potency of nirmatrelvir, we estimated the 125 
prf using two methods.  126 

For the first method, we simulated virtual cohorts using the combined viral dynamic-127 
PKPD model and fit the results to viral load decay from baseline in two trials. For each 128 
trial arm, we randomly selected 400 individuals from the NBA cohort with the closest 129 
matching viral variant, symptom, and vaccine status (unvaccinated symptomatic 130 
subgroup for EPIC-HR and symptomatic Omicron infection for PLATCOV) and used 131 
their estimated individual viral dynamic parameters in simulations. This approach 132 
generated a wide, realistic range of shedding kinetic patterns among simulated 133 
participants (Fig S1). 134 

We next addressed variability in the timing of baseline viral load measurement relative 135 
to infection. We randomly assigned all individuals an incubation period selected from a 136 
variant-specific gamma distribution found in the literature.27 Treatment start day was 137 
randomly selected from a uniform distribution for each individual within 3 days of 138 
symptom onset for EPIC-HR trial and within 4 days for the PLATCOV trial. 139 

For all simulated individuals in the treatment arm, PK parameters were randomly 140 
drawn from the estimated lognormal population parameter distributions (Table S2) and 141 
PD parameters from a normal distribution with estimated mean and standard error 142 
(Table S4). To estimate the prf, we simulated our virtual cohort treated with 300 mg of 143 
nirmatrelvir twice per day for five days with a range of values and selected the prf that 144 
generated the best agreement between the average change from baseline in the 145 
treatment arm of each trial and each simulation. 146 

Our simulations recapitulated the mean change in viral load from baseline to multiple 147 
timepoints during the two weeks following study enrollment in EPIC-HR (Error! 148 
Reference source not found.a) and PLATCOV (Fig 3a). Similarly, with optimized prf 149 
estimates, the model closely recapitulated mean viral load reduction in the treatment 150 
arms of both trials (Figs 2b and 3b). 151 

Our model also predicted individual-level variability in virologic responses observed in 152 
PLATCOV, including instances of increased viral load following therapy. We 153 
compared simulated and actual distributions of viral load change among trial 154 
participants in the control and treatment arms. On most post-treatment days, simulated 155 
and actual distributions were not statistically dissimilar (Fig 3d, e). Wider distributions 156 
of observed versus simulated viral load change were noted on post-randomization days 157 
1 and 2 for control and days 1 and 4 for treatment (Fig 3d, e), perhaps due to noise in 158 
viral load data from oral swabs: differences of 1-2 logs were often noted between 159 
replicates collected from PLATCOV participants at equivalent timepoints, particularly 160 
on day 1 and 2 (Fig S6).  161 

Reduction of in vivo nirmatrelvir potency relative to in vitro  162 

We plotted the coefficient of determination, R2, for fit to viral load data assuming 163 
different prf values (Figs 2c and 3c). The best values (prf=61 for EPIC-HR and prf=37 164 
for PLATCOV) were determined by maximizing the R2 of the fit. We repeated the 165 
simulation 10 times: the boxplot in the lower panel of Figs 2c and 3c represents the 166 
standard error of the prf average value and does not reflect individual variability.  167 

The reason for slight differences in estimated prfs between the two trials is unknown. 168 
Possible explanations include different sampling methods (nasal swabs in EPIC-HR 169 
versus oropharyngeal swabs in PLATCOV), different trial participant characteristics 170 
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(high-risk adults in EPIC-HR versus lower-risk adults without comorbidities in 171 
PLATCOV), and differing dominant viral variants between the trials.  172 

Mathematical model fitting to individual viral load trajectories in PLATCOV 173 

For the second method, we fit the combined viral dynamic-PKPD model to individual 174 
viral load data from the PLATCOV trial. Since samples were collected after 175 
enrollment, we also included data from symptomatic Omicron-infected individuals in 176 
the NBA cohort to inform the population model about viral expansion rates during 177 
early infection. We used a mixed-effect population approach in Monolix to estimate 178 
each participant’s viral dynamic parameters and their potency reduction factor (prf) 179 
(details in Materials and Methods). Our model closely recapitulated viral load 180 
trajectories, including cases with post-treatment rebound (Fig 3f-g). The estimated 181 
individual prf values were lognormally distributed, with a median of 39.79 (IQR 27.25-182 
55.75, range 13.51-105.03) (Fig 3h, Table S5).  183 

The estimated population distribution of viral load parameters for Omicron-infected 184 
individuals of the NBA cohort and the PLATCOV trial were the same except for 𝜙	(a 185 
proxy for the innate immune response), 𝜏 (timing of the adaptive immune response), 186 
and 𝑡! (infection time) (Fig S7). Time is measured relative to the day of detection in the 187 
NBA cohort and relative to the day of baseline measurement in the PLATCOV trial, so 188 
the larger 𝑡!	and 𝜏	values for PLATCOV reflect the delay between infection and trial 189 
enrollment. The reason for slight differences in estimated 𝜙 values between the two 190 
groups is unknown but might be due to the different sampling methods (nasal swabs for 191 
NBA versus oropharyngeal swabs for PLATCOV). 192 

To further validate our model, we ran counterfactual simulations switching the 193 
PLATCOV treatment and control arms (Fig S8 c & d). We treated participants in the 194 
control arm of the trial (treatment counterfactual) and removed treatment from 195 
participants in the treatment arm (control counterfactual). Due to treatment effect, onset 196 
of the adaptive immune response was not easily identifiable for the treatment arm. 197 
Therefore, when running the control counterfactual simulation, we assigned random 198 
𝜏	values from the estimated control arm distribution. Counterfactual simulations 199 
reproduced the mean viral load drop from baseline observed in the trial (Fig S8a & b) 200 
and predicted a diversity of responses to treatment. In some cases, treatment lowered 201 
the peak and shortened infection (Fig S8c(I) & d(III)), while in other cases, treatment 202 
had a more limited effect (Fig S8c(IV) & d(II)). Our results suggest that some 203 
individuals with treatment-induced rebound may not have rebounded in their 204 
counterfactual case (Fig S8c(III)), while some untreated individuals with persistent 205 
infection might have experienced a treatment-induced rebound (Fig S8d(I)).  206 
 207 

Estimates of viral load reduction with an optimal drug 208 

To illustrate the importance of estimating in vivo drug potency, we compared the PKPD 209 
projection and average change in viral load of treatment arms with prf=1 (no reduction 210 
in potency) and prf=61 (as estimated in the EPIC-HR trial). With an approximately 61-211 
fold weaker potency, drug levels dropped below therapeutic level shortly after each 212 
dose, due to its short half-life (t½), and antiviral effect subsided within a day after 213 
treatment ended maintaining an average efficacy of 82% (eq. 3) over the first 5 days of 214 
treatment (Fig 2d, e). However, the plasma concentration of a perfectly potent drug 215 
(prf=1) remained above therapeutic levels for the duration of treatment with a 5-day 216 
average efficacy of 99.99% and the effect persisted for nearly 10 days (Fig 2e). If the in 217 
vivo potency perfectly matched the measured in vitro potency (prf =1), the same 218 
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treatment regimen could reduce the viral load by approximately 3.5 logs at day 5 219 
relative to the placebo compared to the 0.87 log reduction reported in the trial (Fig 2f). 220 
While estimating nirmatrelvir’s in vitro PD parameters, we assumed only the IC50 221 
differs in vivo. To confirm the validity of this assumption, we simulated the treatment 222 
arm of EPIC-HR with different combinations of the prf and the Hill coefficient. Fig S9 223 
shows that the best fit always happened for prf ~60 and was mostly independent of the 224 
Hill coefficient.  225 

The potency reduction factor was more sensitive to certain PK parameters (Fig S10), 226 
particularly the drug’s clearance rate (𝜅!"). If the drug was cleared from the body more 227 
rapidly then it would need to be more potent to achieve the effect observed in the 228 
clinical trial. However, this did not impact our alternate dosing regimen simulations 229 
since PK parameters were independent of the dose (Table S3).  230 

Frequent viral rebound on nirmatrelvir  231 

To assess whether our model generated viral rebound, we assumed cohort 232 
characteristics compatible with the PLATCOV trial (Fig 3) and randomly drew 233 
individual prf values from the distribution obtained by fitting individual data (Fig 3h, 234 
Table S5). We simulated from infection to 30 days after symptom onset, monitoring 235 
viral load continually. We defined rebound in the control arm as any case with at least 236 
two peaks in viral load with height greater than 3 logs and higher than its preceding 237 
minimum by at least 1 log (Fig S11a). We defined rebound in the treatment arm as any 238 
instance in which a post-treatment viral load exceeded the viral load at the end of the 239 
treatment by 1 log (Fig S11b).  240 

By this definition, we observed rebound in 18.15% of cases treated with the clinical 241 
trial dose and 1.75% of controls in our simulations (Fig 4b).  When a less sensitive 242 
equivalent definition of rebound was used as in the trial (1 log increase in viral load 5 243 
days after treatment cessation), the probability of rebound in the simulation was much 244 
lower (4.12% if treatment was assumed to begin several days after symptoms), closer to 245 
that of the controls, and comparable to that observed in the trial (Fig S12). 246 

Limited impact of nirmatrelvir dose or dosing frequency on viral rebound 247 

We next explored different treatment regimens to estimate their impact on lowering 248 
viral load and the chance of rebound. We simulated therapy with 150, 300, 600, and 249 
900 mg doses administered twice per day for 5 days, starting within 3 days post 250 
symptom onset. Larger doses decreased viral load more significantly and quickly than 251 
300 mg twice daily. 900 mg of nirmatrelvir reduced viral load by a mean of 2 logs on 252 
day 2 and a mean of 4 logs on day 5 compared to the control (Fig 4a).  253 

Individual viral loads were highly variable within each treatment group regardless of 254 
dose (Fig 4a) due to heterogeneous underlying viral dynamics (Fig S1) and different 255 
treatment timing. Responses to treatment also differed substantially according to viral 256 
load trajectory and treatment timing (Fig 4c). The reduction in viral load was almost 257 
always greater during the first 5 days of treatment with higher doses. However, this 258 
only impacted viral elimination in certain cases (Fig 4c,i). Sometimes, viral load 259 
equilibrated to similar levels post-treatment regardless of dose (Fig 4c, ii), while in 260 
other cases, higher doses were associated with rebound (Fig 4c, iv). By achieving a 261 
lower post-treatment viral load nadir, higher doses resulted in a greater likelihood of 262 
viral rebound in our simulations (Fig 4b). 263 

Increasing the frequency of antiviral dosing had nearly equivalent effects to increasing 264 
the dose: a more rapid reduction in viral load (Fig S13a), heterogeneous effects based 265 
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on individual viral dynamics and treatment timing (Fig S13c), and increased chance of 266 
rebound (Fig S13b). 267 

Early treatment as a predictor of SARS-CoV-2 rebound  268 

We next simulated therapy with four different treatment initiation windows: post-269 
exposure prophylaxis (PEP): 0-1 day after infection in the pre-symptomatic phase; 270 
early treatment: 0-1 day after symptom onset as often occurs in community settings; 271 
intermediate treatment: 1-5 days after symptom onset as in the clinical trial; and late 272 
treatment: 5-10 days after symptom onset. In all simulations, the administered dosage 273 
was 300mg twice per day for 5 days.  274 

Applying treatment as PEP or shortly after symptoms lowered viral load more 275 
substantially relative to control than intermediate or late therapy at days 2 and 5 post-276 
treatment, though intermediate and late strategies also significantly lowered viral load 277 
relative to control at these time points (Fig 5a). However, PEP and early treatment were 278 
associated with higher rebound probability after treatment (Fig 5b, c). The boxplots for 279 
control groups in each panel in Fig 5a show the viral load at different points during 280 
infection and are matched to different timing of nirmatrelvir in the treatment arms. 281 

Prolongation of treatment to reduce the probability of SARS-CoV-2 rebound 282 

Next, we analyzed the impact of treatment duration on viral rebound. We simulated 283 
treatment regimens with 300mg nirmatrelvir twice per day for 2, 5, 10, 15, and 20 days. 284 
Treatment was initiated within 3 days after symptoms appeared. Fig 6a demonstrates 285 
the continuous drop in viral load if treatment was maintained until infection was 286 
effectively cleared. The viral load distributions of the treatment arms with 15 and 20 287 
days of treatment on days 2, 5, and 10 matched the viral load distribution of the 288 
treatment arm with 10 days of treatment duration and, therefore, are not shown. 289 
Prolonging treatment duration to 10 days almost eliminated viral rebound (Fig 6b & c). 290 

We next explored the impact of treatment duration given different treatment initiation 291 
time. Prolonging treatment to 15 days for early treatment and 20 days for PEP lowered 292 
the viral load close to the limit of detection (1.26 log) at the end of treatment and 293 
eliminated the probability of rebound for Omicron variants (Fig 7). 294 

Differing observed rebound rates resulting from varying timing of sampling and 295 
definitions 296 

Previous studies defined rebound using criteria with varying virologic thresholds, 297 
timing, and sampling frequency 9. Rebound was sometimes defined when a positive test 298 
followed a negative test 30. In EPIC-HR, treatment started within 5 days of symptoms 299 
onset (our intermediate treatment group) and rebound was defined as a 0.5 log increase 300 
on days 10 and/or 14. By this definition 2.3% of treated cases were classified as 301 
rebound 9. The probability of rebound in our simulation with a threshold of 0.5 log 302 
measured only on day 5 after the end of the treatment was 5.45% and decreased as 303 
thresholds for viral rebound increased (Fig S12). This percentage would be even lower 304 
if treatment started 3-5 days after symptoms (rather than 1-5 days) because rebound 305 
probability is very sensitive to treatment timing. We hypothesize that in EPIC-HR, 306 
participant enrollments skewed later during the 5-day post-symptom window.  307 

In our simulations, we recorded viral load every 0.001 of a day and used a 1 log 308 
threshold to identify rebound cases. This was a more sensitive method to observe 309 
rebound and suggests that in trial and real-world cohorts, rebound is likely more 310 
common in treated individuals than is detected with less frequent sampling (Fig S12).  311 
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 312 

Higher rebound probability in unvaccinated individuals with pre-Omicron variant 313 
infection 314 

All simulations reported in Figures 3-7 were performed assuming symptomatic, 315 
vaccinated individuals with Omicron infection in the NBA cohort or PLATCOV. We 316 
repeated simulations with characteristics compatible with the EPIC-HR trial 317 
(unvaccinated symptomatic individuals with pre-Omicron variants) and prf values 318 
randomly drawn from the distribution obtained in Fig 2c. The same patterns of rebound 319 
probability were observed for altered treatment regimens. However, our model 320 
predicted an overall higher rebound probability in unvaccinated individuals, infected by 321 
pre-Omicron variants (FigS14). While 10 days of treatment would be sufficient to 322 
lower the rebound probability significantly in the vaccinated individuals with Omicron 323 
infection, 15 days of treatment would have been necessary to substantially lower the 324 
incidence of rebound in unvaccinated individuals in the pre-omicron era.  325 

 326 

Immune and viral mechanisms for viral rebound 327 

To understand mechanisms that might explain higher rebound incidence in the PEP and 328 
early treatment groups, we simulated four treatment arms with treatment starting on 329 
days 1, 4, 7, and 10 after infection. Treatment start relative to infection was fixed to 330 
limit the added variability introduced by incubation period and timing of treatment 331 
relative to symptoms in previous simulations. High frequency of rebound with day 1 332 
and day 4 treatment start was evident from viral load after treatment (Fig 8a top row) in 333 
many individual trajectories (grey lines) and to a less dramatic extent in mean viral load 334 
(blue line). A second peak after treatment ended was also seen in infected cells (Fig 8a 335 
middle row, blue line) and the intensity of the innate immune response (the rate of 336 
production of refractory cells) (Fig 8a bottom row).  337 

Applying treatment earlier during infection (day 1 and 4 in our simulations) lowered 338 
the viral load and the populations of infected and refractory cells, preserving 339 
susceptible cells. In the earlier treatment groups the ratio of susceptible to refractory 340 
cells was significantly higher at the end of the treatment than it was in the control group 341 
at equivalent time points (Fig 8b). Innate immune responses were significantly 342 
diminished in treated individuals versus controls due to fewer infected cells (Fig 8c). 343 
Overall, a weaker innate immune response, higher availability of susceptible cells, and 344 
persistence of infected cells after 5 days of treatment allowed viral rebound after 345 
treatment cessation.  346 

We previously partitioned the NBA cohort according to shedding kinetics using k-347 
means clustering26. Groups were ordered by the area under their viral load curve 348 
(AUC), with group 1 having the smallest AUC and group 6 the largest (Fig S15a). We 349 
simulated treatment with different initiation days using these 6 groups and identified 350 
the highest rebound probability in the earlier treatment groups when treating infections 351 
that would have fast initial virus expansion (upslope) and high peak viral load (groups 352 
2, 4, and 6) without treatment (Fig S15b, c).  353 

 354 
Discussion  355 

We previously demonstrated for HSV-231, HIV32, Ebola virus28, and SARS-CoV-223, 356 
that considering the timing and intensity of the immune response is vital to accurately 357 
simulate clinical trials of antiviral agents. If a direct-acting antiviral therapy is given too 358 
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late during infection, then efficacy is often low because the disease is driven by excess 359 
inflammation and cytokine storm. On the other hand, concurrent immune pressure can 360 
provide critical assistance for antiviral agents to eliminate viral replication, as 361 
confirmed in recent studies7. Accordingly, previous modeling suggested that extremely 362 
early treatment of pre-symptomatic SARS-CoV-2 as occurs with PEP requires higher 363 
drug potency than treatment during early symptomatic infection because innate 364 
immunity is more active at this slightly later stage of infection and fewer susceptible 365 
cells remain23. It is increasingly clear that the potency and duration of antiviral therapy 366 
required to achieve clinical benefit depends strongly on the stage of infection and the 367 
ongoing intensity of the immune response. 368 

Prior work also demonstrated that in vitro antiviral drug potency measured in cell 369 
culture often overestimates in vivo potency in humans28,29,33. Specifically, the plasma 370 
drug level required to achieve 50% inhibition of cellular infections in vivo is higher 371 
than the level required in vitro. The discrepancy between in vitro and in vivo potency 372 
can be assessed by fitting viral dynamic-PKPD mathematical models to viral load data 373 
from clinical trials, as we have done here. Traditional PKPD models, which do not 374 
include a dynamic immune response, are not sufficient to estimate in vivo potency. 375 
Because in vivo potency reduction varies from 2 to 100 depending on the infection and 376 
antiviral agents28,31,33, population in vivo IC50 must be assessed separately in each case. 377 

Here, by precisely fitting a combined viral-immune dynamic / PKPD model to viral 378 
load data from a randomized clinical trial as well as an open-label clinical trial of 379 
nirmatrelvir/ritonavir, we merge these two key concepts. We first identify that 380 
nirmatrelvir potency is reduced 60-70 fold in vivo relative to in vitro in the high-risk 381 
population and 30-40 fold in the healthy population. The difference between the 382 
estimated in vivo potency in these two populations might be explained by differences in 383 
demographics, sampling methods, and the dominant viral variants in the two trials. 384 
However, both values fall within the range of inter-individual variability estimated by 385 
fitting the model to the individual viral loads of the second trial. The mechanistic 386 
reasons for this reduction cannot be determined by the model, but may include 387 
increased in vivo protein binding34, inhibition of drug delivery from plasma to sites of 388 
infection, or differences in cellular uptake and drug metabolism in vivo35. Nevertheless, 389 
our estimated in vivo IC50 provides a benchmark plasma level to target in future trials. 390 
The PKPD model also demonstrates that the drug’s relatively short half-life allows it to 391 
dip to subtherapeutic levels even when dosed twice daily. 392 

Our model also develops a viable hypothesis for why nirmatrelvir is highly effective 393 
when given during early symptomatic infection but less so when given as post-exposure 394 
prophylaxis. By preventing a high peak viral load approximately 3-5 days after 395 
infection, therapy preserves susceptible cells and blunts the immediate, likely innate 396 
immune response to SARS-CoV-2, while not eliminating infected cells. If the virus is 397 
not eliminated by an early acquired response along with antiviral pressure, it rebounds 398 
to a peak level that is sometimes comparable to the initial peak. We hypothesize that 399 
viral rebound occurs more frequently in community settings relative to the clinical trial, 400 
because infected individuals in the community are often prescribed the drug very early 401 
after symptom development, whereas in the trial, there was a natural 1 to 2-day delay 402 
based on the enrollment and consent process. Surprisingly, this short delay may have 403 
limited rebound while not affecting the primary endpoints of the trial, a finding 404 
supported by recent clinical studies30, which nevertheless still suggests a clear benefit 405 
for earlier treatment in terms of preventing hospitalization in high-risk individuals7. 406 
Notably, antiviral therapy is not a risk factor for rebound in our model or in clinical 407 
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cohorts if administered late during infection36. However, high viral load shedding is a 408 
risk factor for rebound in our model, as suggested in other studies 37. 409 

Our model identifies optimal conditions for viral rebound, which, counterintuitively, 410 
include early treatment during pre-symptomatic infection and higher or more frequent 411 
dosing. Both factors suppress the amount of infection, thereby preserving susceptible 412 
cells, limiting the development of refractory cells, and dampening the intensity of the 413 
early immune response. The best method to prevent viral rebound is prolonging 414 
treatment, with a longer course needed for PEP. This finding is consistent with trials of 415 
long-acting monoclonal antibodies, which demonstrated efficacy as post-exposure 416 
prophylaxis12–14. 417 

Because our model is validated precisely against mean viral load reduction from two 418 
trials as well as individual viral kinetics it can be used as a tool to test treatment 419 
strategies varied therapeutic goals, timing of treatment, dose, dosing interval, and 420 
duration of therapy. Our prior PD modeling also allows testing of potentially 421 
synergistic agent combinations and consideration of special hosts such as 422 
immunocompromised individuals with persistent infection who may be at risk of 423 
developing drug resistance28,38,39. We believe our approach provides a template for 424 
optimizing future trial designs with nirmatrelvir and other therapies. 425 

Our model has several limitations. First, nasal or oropharyngeal viral load is not a 426 
perfect surrogate of disease activity. On the one hand, viral load reduction has been 427 
correlated with beneficial clinical outcomes for nirmatrelvir1, molnupiravir40, and 428 
monoclonal antibodies41. A recent review shows that viral load reduction is a 429 
reasonably good surrogate endpoint41. Moreover, viral rebound appears to track very 430 
closely with symptomatic rebound in multiple case series9. Yet, early remdesivir 431 
treatment provided a profound reduction in hospitalization while not impacting nasal 432 
viral load, albeit 5 days after completion of therapy42. Data from non-human primates 433 
suggests that the drug has a specific effect on viral loads in the lungs that is not 434 
observed in upper airways, a finding that we were also23. Overall, there is a strong 435 
suggestion from early treatment trials that a reduction in nasal viral loads beyond that 436 
observed in placebo-treated individuals is associated with substantial clinical benefit1. 437 

Another limitation is that the model does not account for drug resistance. While there 438 
has been limited evidence of de novo resistance during nirmatrelvir therapy, serial 439 
passage of virus suggests a relatively low barrier, and some viral rebound could, in 440 
theory, be with resistant variants. Studies to date suggest very little mutational change 441 
between the infecting and rebounding virus43–46. 442 

Our model does not capture immunity in literal terms. For instance, we do not 443 
distinguish innate interferon, antibody, and T-cell responses, as these have not been 444 
measured in sufficient longitudinal detail to precisely ascribe viral clearance to different 445 
components of the immune response. We structured the model for the early response to 446 
roughly map to innate responses, as the model term capturing the progression of 447 
susceptible cells to a refractory state diminishes with decreases in viral load and 448 
assumes no immune memory. The late immune response in our model has memory, 449 
leads to rapid elimination of the virus, and is likely to represent acquired immunity. 450 
While a more accurate model would discriminate different arms of the immune 451 
responses and fit to immune data, ours sufficiently captures the timing and intensity of 452 
immune responses for accurate clinical trial simulation. 453 

Finally, it is our opinion that models lacking a spatial component cannot fully describe 454 
target cell limitation, which is influenced by the packing structure of cells, viral 455 
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diffusion, and infection within multiple concurrent micro-environments31.  456 
Consequently, ordinary differential equations may misclassify the relative impact of 457 
target cell limitation and innate immune responses in the period surrounding peak viral 458 
load. However, our approach provides accurate output for clinical trial simulation. 459 

In conclusion, our model identifies viable mechanistic underpinnings of the high 460 
efficacy of nirmatrelvir therapy for early symptomatic SARS-CoV-2 infection, lower 461 
efficacy for PEP, and high incidence of viral rebound in a real-world setting. The model 462 
can also be used to assess different treatment strategies and suggests prolonging therapy 463 
is the optimal method to avoid rebound while maintaining potent early antiviral 464 
suppression. 465 

 466 

Materials and Methods 467 

Study Design 468 

We developed a viral dynamics model recapitulating viral load data collected from 469 
symptomatic individuals in the NBA (National Basketball Association) cohort47. We 470 
used a two-compartment model to reproduce the PK data of nirmatrelvir plus ritonavir2. 471 
For clinical trial simulation, we constructed a virtual cohort by randomly selecting 400 472 
individuals from the NBA cohort, trying to match the trial populations regarding 473 
vaccine status and history of infection, and assigning individual PK and PD parameters 474 
randomly drawn from their respective inferred distributions. We fit the combined viral 475 
dynamic and PKPD model to the average change in viral load from the baseline as well 476 
as individual viral load data of the control and treatment arms of two previously 477 
published nirmatrelvir/ritonavir clinical trials 1,5. Comparing our model to the control 478 
arms validated our viral dynamic model and demonstrated how well our virtual cohorts 479 
represent the trial control arms. As one method of fitting the treatment arms, we used 480 
the average data from the treatment arms to estimate the potency reduction factor (prf) 481 
by maximizing the R2 of the fit. In a second approach, we fit to individual viral load 482 
trajectories in PLATCOV using the mixed-effect population approach implemented in 483 
Monolix and obtained both individual prf values and a population distribution. With the 484 
estimated prf and in vivo IC50 of the drug, we explored different treatment regimens by 485 
changing dose, dosing frequency, treatment duration, and treatment timing to find the 486 
best strategy to minimize the probability of rebound.  487 

Viral load data 488 

The NBA cohort dataset published by Hay et al47 consists of 2875 documented SARS-489 
CoV-2 infections in 2678 people detected through frequent PCR testing regardless of 490 
symptoms. We used the viral load data from 1510 infections in 1440 individuals that 491 
had at least 4 positive quantitative samples to estimate viral dynamic parameters. We 492 
used parameter sets estimated for the symptomatic subpopulation of these individuals 493 
to construct virtual cohorts. 494 

Clinical trial data 495 

We used viral load data from two nirmatrelvir/ritonavir clinical trials. EPIC-HR by 496 
Hammond et al.1 included 682 and 697 symptomatic high-risk individuals in the control 497 
and treatment arms, respectively. We obtained the average change in viral load data of 498 
the control and treatment arms by digitizing Figure 3A of the manuscript by Hammond 499 
et al.1. Nasal viral load was measured using PCR assay on days 0, 3, 5, 10, and 14 after 500 
the treatment start day and adjusted by the baseline viral load. PLATCOV by Schilling 501 
et al.5 is an open-label, randomized, controlled adaptive trial with 85 and 59 502 
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symptomatic, young, healthy individuals in the control and nirmatrelvir treatment arms, 503 
respectively. The oropharyngeal samples from each participant were collected daily on 504 
days 0 through 7 and on day 14 after the treatment start day, and viral load was 505 
measured using PCR assay. We used the individual viral load data published by the 506 
authors. From PLATCOV, we averaged over the two oral samples collected from each 507 
individual and calculated viral load drop from baseline (to use in method 1, Figure 3) or 508 
used the individual-level viral load data (in method 2, Figure 3). In both trials, the study 509 
participants were treated with 300mg/100mg nirmatrelvir/ritonavir within three days 510 
(EPIC-HR) or four days (PLATCOV) of symptom onset. The treatment was 511 
administered twice per day, for five days. We used EPIC-HR’s lower limit of detection 512 
(LOD = 2 logs imputed as 1 log) in the simulations where we used EPIC-HR cohort 513 
characteristics (unvaccinated symptomatic individuals) (Figures S9, S10, and S14). 514 
When fitting to PLATCOV cohort characteristics (vaccinated symptomatic individuals 515 
with omicron infection) and in all the simulations in the main paper, we used the 516 
maximum LOD reported in the published data (~1.26 log).  517 

PK data 518 

PK data of nirmatrelvir (PF-07321332) with ritonavir was obtained by digitizing Figure 519 
4 of the drug’s Emergency Use Authorization document2  using WebPlotDigitizer48. 520 
The data is from a phase I randomized trial by Singh et al.49 where eight participants (4 521 
fed, 4 fasting) took a single dose of 250mg/100mg nirmatrelvir/ritonavir. Drug 522 
concentrations in plasma were recorded for 48 hours following dosing.  523 

PD data 524 

The data on drug efficacy experiments performed at the University of Washington. The 525 
efficacy of nirmatrelvir in the presence of CP-100356 (an efflux inhibitor 50) was 526 
measured against the delta variant of SARS-CoV2 in Calu-3 cells (human lung 527 
epithelial). The efflux inhibitor ensures consistent, adequate intracellular levels of drug. 528 
Briefly, Calu 3 cells were treated with varying concentrations of nirmatrelvir in the 529 
presence of 2uM CP-100356 prior to infection with SARS-CoV-2 (delta isolate) at a 530 
multiplicity of infection of 0.01. Antiviral efficacy and cell viability (of non-infected 531 
cells treated with drugs) were assessed as described51. There were five replicates per 532 
condition, pooled from 2 independent technical experimental repeats (one experiment 533 
with triplicate conditions, one experiment in duplicate conditions). 534 

Viral dynamics model 535 

We used our model of SARS-CoV-2 dynamics26 to model the viral load of 536 
symptomatic individuals with SARS-CoV-2 infection. Our model assumes that 537 
susceptible cells (𝑆)	are infected at rate 𝛽𝑉𝑆 by SARS-CoV-2 virions. The infected 538 
cells go through a non-productive eclipse phase (𝐼") before producing viruses and 539 
transition to becoming productively infected (𝐼#) at rate 𝜅𝐼". When encountering 540 
productively infected cells, the susceptible cells become refractory to infection (𝑅) at 541 
the rate 𝜙𝐼#𝑆. Refractory cells revert to a susceptible state at rate 𝜌𝑅. The productively 542 
infected cells produce virus at the rate 𝜋𝐼#	and are cleared at rate 𝛿𝐼 representing 543 
cytolysis and the innate immune response that lacks memory and is proportional to the 544 
amount of ongoing infection. If the infection persists longer than time 𝜏, then cytotoxic 545 
acquired immunity is activated, which is represented in our model by the rate 𝑚𝐼#. 546 
Finally, free virions are cleared at the rate 𝛾. Of note, this model, previously proposed 547 
by Ke et al. 52, was selected against other models in26 based on superior fit to data and 548 
parsimony. The model written as a set of differential equations has the form, 549 
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where A		𝑚
(𝑡) = 0					𝑡 < 𝜏

		𝑚(𝑡) = 𝑚				𝑡 ≥ 𝜏      (1f) 556 

 557 

To estimate parameter values, we fit the model to viral load data from the NBA cohort 558 
using a mixed-effect population approach implemented in Monolix. Details on the 559 
model selection and fitting process can be found in Owens et al26. Information about 560 
parameter distributions and the error model is provided in Table S1.  561 

We start the simulations with 10. susceptible cells. The initial value of the refractory 562 
cells is assumed to be zero since the interferon signaling is not active prior to infection. 563 
We further assume there are no infected cells (eclipse or productive) at the beginning of 564 
the infection. We fix the level of inoculum (𝑉!) at 97 copies/ml for each individual.  565 

To resolve identifiability issues, we fixed two parameter values, setting the inverse of 566 
the eclipse phase duration to 𝜅 = 4, and the rate of clearance of virions to 𝛾 = 15 26.  567 

PK model 568 

We used a two-compartmental PK model which includes the amount of drug in the GI 569 
tract (𝐴/+), the plasma compartment (𝐴0), and the lung (𝐴1). The drug is administered 570 
orally, passes through the GI tract and gets absorbed into the blood at the rate 𝜅2. The 571 
drug then transfers from the blood into the peripheral compartment (or the lung) at the 572 
rate 𝜅#1. The metabolized drug transfers back into the plasma at the rate 𝜅1# from 573 
where it clears from the body at the rate 𝜅31. The model in the form of ordinary 574 
differential equations is written as, 575 

(4#$
(*

= −𝜅2𝐴/+   (2a) 576 

(4"
(*

= 𝜅2𝐴/+ + 𝜅1#𝐴1 − (𝜅31 + 𝜅#1)𝐴#   (2b) 577 

(4%
(*

= 𝜅#1𝐴# − 𝜅1#𝐴1   (2c) 578 

 579 

We used Monolix and a mixed-effect population approach to estimate the parameters 580 
and their standard deviations. With the initial condition of (𝐴/+ = 𝐷𝑜𝑠𝑒, 𝐴0 = 0,	 𝐴1 =581 

0); we fit 𝐶# =
4"
-56

 to the plasma concentration data where Vol  is the estimated plasma 582 

volume. Details on parameter distributions and the error model provided in Table S2.  583 

 584 

PD model 585 
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For the pharmacodynamics model we used Hill equation, 𝜖(𝑡) = "&'(3(*))

3(+))9+3-.)
, where 𝐶(𝑡) 586 

is the drug’s concentration in plasma, 𝐸:2; is the maximum efficacy, 𝑛 is the Hill 587 
coefficient, and 𝐼𝐶<! is the drug concentration in plasma required for 50% efficacy. We 588 
used least-squared fitting to obtain the three parameters ( 𝐸:2; , 𝑛, and 𝐼𝐶<!) and their 589 
standard deviations. The average drug efficacy is measured using, 590 

𝐸2=> =
?

*/+'0+@*1)2
∫ 𝜖(𝑡)𝑑𝑡*1)2
*/+'0+

     (3) 591 

Where 𝑡A*2B* and 𝑡>C( are the treatment start day and end day, respectively.  592 

 593 

Combined PKPD and VL models 594 

The plasma concentration of nirmatrelvir obtained from the PK model is used in the PD 595 
model to obtain time-dependent efficacy. 𝜖(𝑡), then, is used to reduce viral production 596 
rate, 𝜋, with the factor of T1 − 𝜖(𝑡)U.	 Equation 1e is written as, 597 

(-
(*
= T1 − ϵ(t)Uπ𝐼#	– 	γV    (4) 598 

Fitting the combined model to individual viral load data in the PLATCOV trial 599 

We used the population mixed-effect approach and Monolix to estimate each 600 
individual's viral dynamics parameters and the potency reduction factor (prf). Due to 601 
the lack of data from the initial phase of infection in the PLATCOV trial, we include 602 
the data from Omicron-infected individuals in the NBA cohort to inform the model 603 
about the initial phase of infection. We fixed the PK parameters to the estimated 604 
population values (Table S2), and the PD parameters other than IC50 to the in vitro 605 
estimated population values (Table S4). We used the study category (NBA vs 606 
PLATCOV) as a covariate for 𝑡! (timing of infection) and 𝜏 (timing of the adaptive 607 
immune response) since the first recorded positive test is likely much later for the 608 
clinical trials. In the NBA study, samples were collected almost daily regardless of 609 
symptoms often leading to pre-symptomatic detection, while in the PLATCOV study, 610 
the baseline measurement occurred after symptom onset, trial enrollment and consent.  611 

Construction of a virtual cohort 612 

To generate a cohort for our simulated clinical trials, we randomly selected 400 613 
individuals (for each arm of the simulated trials) from the unvaccinated symptomatic 614 
subpopulation of the NBA cohort for EPIC-HR and vaccinated with Omicron infection 615 
for PLATCOV and used their individual viral load parameters estimated by fitting our 616 
viral dynamics model to the data. A sample size of n=400 (out of 822 vaccinated 617 
individuals with Omicron infection) was used to mimic a large-scale clinical trial and 618 
maintain relatively low overlap between virtual cohorts used in each arm of the 619 
simulations and between different simulations. Since the time of symptom onset is not 620 
available for all individuals in the NBA data, we randomly drew an incubation period 621 
for each individual from gamma distributions with variant-specific parameters 622 
estimated by Gamiche et al. 27 The start of treatment relative to symptom onset was 623 
randomly selected according to a uniform distribution, except when constructing Fig. 8. 624 
The PK parameters of each simulated individual were randomly drawn from lognormal 625 
distributions, for which estimated mean and standard deviation were inferred from the 626 
PK data. The relevant dose in each scenario was added to the AGI compartment (the 627 
absorption equation) of the PK model (eq 2a) at each dosing timepoint (t=0, 0.5, 1, 1.5, 628 
…., 4.5 days). For all doses, we used the PK parameter distributions estimated for 250 629 
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mg since our analysis showed they are dose-independent. PD parameters were also 630 
randomly drawn from a normal distribution with the estimated mean and standard 631 
deviation. The standard deviation of the PD parameters represents the accuracy of the 632 
assays and not individual variability. The individual potency reduction factors were 633 
also drawn from a lognormal distribution with estimated mean and standard deviation 634 
obtained from fitting the model to the individual viral load data of PLATCOV study.  635 

Potency reduction factor (prf) 636 

The prf is defined as,  637 

                     𝑝𝑟𝑓 = +3-.,4)	6467
+3-.,4)	64+07

                            (5) 638 

 639 

We estimated the prf by maximizing R2 when fitting the change in viral load of the 640 
treatment arm of our simulation to the data from the treatment arm of the clinical trial.  641 

Measuring rebound probability 642 

A viral load rebound in the treatment arm was defined when the viral load at any time 643 
after treatment ended exceeded the viral load at the end of the treatment by 1 log. In the 644 
control group, viral rebound was defined in patients who had at least two peaks with 645 
maximum height of 1000 copies/ml in their viral load trajectories and the second peak 646 
was 1 log higher than its preceding local minimum (Fig S7).  647 

 648 
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Figures and Tables 804 
 805 
 806 

 807 
Fig. 1. Schematics of the viral dynamic model and nirmatrelvir PK-PD two 808 

compartmental model. (a) The viral dynamic model follows the dynamics of 809 
susceptible cells (S), refractory cells (R), eclipse infected cells (IE), productively 810 
infected cells (IP), and virus (V) and includes the early and late cytolytic T-cell immune 811 
responses with rates 𝛿 and m(t). 𝛽 is the infection rate, 𝜙 is the rate of conversion of 812 
susceptible cells to refractory cells, and 𝜌 is the rate of reversion of refractory cells to 813 
susceptible cells. Infected cells produce viruses at the rate 𝜋, and the free viruses are 814 
cleared at the rate 𝛾. (b) Two-compartmental PK model with oral administration of the 815 
drug which models the amounts of the drug in gut tissue (AGI), plasma (AP), and the 816 
tissue (AL). Ka is the rate of absorption of the drug from gut to plasma. KPL and KLP are 817 
the rates of transfer of the drug from plasma to the tissue and back, and KCL is the rate 818 
at which the drug clears from the body. Vol is the estimated plasma volume and CP is 819 
the drug concentration in plasma. 𝜖(𝐶#)	is the drug efficacy that blocks viral production 820 

and is calculated using the Hill equation: "&'(38)

3"
)9(0BD∗+3-.	))

 where Emax is the maximum 821 

efficacy, n is the Hill coefficient, IC50 is the concentration of drug in vitro at which 822 
viral replication rate is reduced by 50%, prf is the potency reduction factor translating 823 
the in vitro potency to in vivo potency.         824 
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 826 
Fig. 2. Lower in vivo potency of nirmatrelvir relative to in vitro potency in EPIC-827 

HR. (a-b) mean (blue), individual (gray), and ranges (labeled dashed lines) of 828 
log10 viral load drop from the baseline of individuals randomly selected from 829 
the NBA cohort treated with (a) placebo or (b) five days of nirmatrelvir / 830 
ritonavir 300 mg twice daily. The red dots were obtained by digitizing Fig 3a of 831 
Hammond et al.1 and model fit was noted by closeness of blue lines to the red 832 
dots. (c) R2 of the fit of the 10 model simulations per prf to the viral load drop 833 
data in light blue and their mean in dark blue. The best model fit was at a 834 
potency reduction factor of 61. The horizontal boxplot in the lower panel shows 835 
the distribution of prf values at which R2 is maximum (mean = 61.8, median 836 
=61, sd=3.5). (d) Drug efficacy when prf=61. Average efficacy was 82% over 837 
the 5-day interval, with notable drops in antiviral efficacy at drug troughs. (e) 838 
Projected average drug efficacy when prf = 1 vs prf = 61. The drug with no 839 
potency reduction has nearly perfect efficacy (average efficacy of 99.99%) over 840 
5 days and has a prolonged post-treatment effect. (f) Projected mean log10 viral 841 
load drop from baseline of the control arm, treatment arm with prf=61, and 842 
treatment arm with prf=1. 843 

 844 
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 846 

 847 
Fig. 3. Lower in vivo potency of nirmatrelvir relative to in vitro potency in 848 

PLATCOV. Method I: (a-b) mean (blue), individual (gray), and ranges 849 
(labeled dashed lines) of log10 viral load drop from the baseline of individuals 850 
randomly selected from the NBA cohort treated with (a) placebo or (b) five 851 
days of nirmatrelvir / ritonavir 300 mg twice daily. The empty and filled red 852 
circles are individual and mean viral load drop from baseline calculated from 853 
viral load data published by Schilling et al.5. Model fit was noted by closeness 854 
of blue lines to the filled red dots. (c) R2 of the fit of the 10 model simulations 855 
per prf to the viral load drop data in light blue and their mean in dark blue. The 856 
best model fit was at a potency reduction factor of 37. The horizontal boxplot in 857 
the lower panel shows the distribution of prf values at which R2 is maximum 858 
(mean = 36.6, median =37, sd=2.15). (d-e) distribution of log10 viral load drop 859 
from baseline of simulated cohort and the 144 individuals in PLATCOV control 860 
arm (d) and treatment arm (e). Adjusted p-values (q-values) were calculated 861 
using Benjamini-Hochberg method and represent dissimilarity between 862 
observed and simulated distributions. Method II: (f-g) sample individual fits to 863 
PLATCOV trial participants in control (f) and treatment (g) arms. (h) 864 
distribution of estimated individual prf values (center line, median; box limits, 865 
upper and lower quartiles; whiskers, 1.5x interquartile range, blue dots are the 866 
prf values for each individual in the treatment arm). Remaining fits are in Figs 867 
S4 and S5. 868 
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 870 
 871 
 872 

 873 
Fig. 4. Increasing the nirmatrelvir dose lowers short-term viral load but increases 874 

the probability of viral rebound. In all scenarios, simulated treatment starts 875 
within the first 3 days post-symptoms. (a) log10 viral load at days 2, 5, and 10 876 
after the treatment start day with different doses. p-values were obtained by 877 
performing two-sided Mann-Whitney U-test between the 300 mg group and the 878 
others, and only p-values <0.01 are shown. Viral loads were only reduced by 879 
higher doses at days 2 and 5, but not day 10, except for 900 mg. (b) The 880 
probability of rebound for different doses. The error bars on each column are 881 
95% confidence intervals. (c) Examples of viral load trajectories assuming 882 
different doses on 4 modeled individuals with equivalent timing of therapy and 883 
untreated viral kinetics. In all box plots, the center line is the median; box limits 884 
are upper and lower quartiles; whiskers show a 1.5x interquartile range. 885 

 886 
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 888 
 889 

 890 
Fig. 5. Early timing of therapy initiation is a key risk factor for viral rebound. In 891 

all simulations, the dose was 300 mg twice daily for five days. PEP = 0 to 1 day 892 
after infection, early = 1-3 days after symptom onset, intermediate = 3-5 days 893 
after symptom onset, and late = 5-10 days after symptom onset. (a) log10 viral 894 
load at days 2, 5, and 10 after the treatment start day with different treatment 895 
durations. p-values were obtained by performing two-sided Mann-Whitney U-896 
test. In all box plots, the center line is the median; box limits are upper and lower 897 
quartiles; whiskers show a 1.5x interquartile range. (b) The probability of 898 
rebound for different treatment timing. The error bars on each column are 95% 899 
confidence interval (c) Samples of viral load trajectories assuming different 900 
treatment timing on 4 modeled individuals with equivalent untreated viral 901 
kinetics. 902 
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 904 
Fig. 6. Prolonging treatment duration limits rebound probability. In all 905 

simulations, treatment starts within the first 3 days post-symptoms and the dose 906 
was 300 mg twice daily. (a) log10 viral load at days 2, 5, and 10 after the 907 
treatment start day with different treatment durations. p-values were obtained by 908 
performing two-sided Mann-Whitney U-test and only values <0.01 are shown. 909 
At day 10, the control group had equivalent viral loads to 2 days of treatment 910 
while 5 or 10 days of treatment significantly lowered viral load. In all box plots, 911 
the center line is the median; box limits are upper and lower quartiles; whiskers 912 
show a 1.5x interquartile range. (b) The probability of rebound for different 913 
treatment durations. The probabilities of rebound after 15 and 20 days of 914 
treatment were zero. The error bars on each column are 95% confidence 915 
interval. (c) Samples of viral load trajectories assuming different treatment 916 
durations on 4 modeled individuals with equivalent timing of therapy and 917 
untreated viral kinetics. Prolonging therapy often avoids rebound. 918 
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 920 
 921 

Fig. 7. Post-exposure prophylaxis requires more prolonged therapy than early 922 
symptomatic therapy to avoid viral rebound.  (a) probability of rebound and 923 
(b) viral load at the end of the treatment as a function of treatment timing and 924 
duration. 925 
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 927 

 928 
Fig. 8. Early therapy preserves susceptible cells, limits refractory cells, does not 929 

eliminate all infected cells, and delays innate immune responses. 930 
Simulations are performed using time since infection as a variable rather than 931 
based on symptoms as in prior figures to eliminate the confounding impact of 932 
variable incubation period. (a) The top row shows the viral load of all 933 
individuals (in grey) and the average viral load (in blue). The middle row shows 934 
a less substantial depletion of susceptible cells (S, in green) and a lower 935 
generation of refractory cells (R, in red) with earlier therapy. The infected cells 936 
(I) are shown in blue. The highlighted area around each line (not visible) shows 937 
the 95% confidence interval. The bottom row shows the rate of production of 938 
refractory cells, which likely represents innate immune responses per day. The 939 
biphasic immune response with a lower initial peak and a second one after the 940 
end of the treatment is observed with early therapy and is present to a lesser 941 
extent in day 4 treated individuals. The highlighted areas show 95% confidence 942 
intervals. (b) Ratios of susceptible (S) to refractory cells (R) at the end of the 5-943 
day treatment for different timings of treatment. (c) Per cell production rate of 944 
refractory cells at the end of the 5-day treatment for different timings of 945 
treatment. In all box plots, the center line is the median; box limits are upper 946 
and lower quartiles; whiskers show a 1.5x interquartile range. p-values were 947 
obtained by performing two-sided Mann-Whitney U-test (∗: 0.01 < 𝑝 ≤ 0.05,∗948 
∗: 0.001 < 𝑝 ≤ 0.01,∗∗∗: 0.0001 < 𝑝 ≤ 0.001,∗∗∗∗: 0.00001 < 𝑝 ≤ 0.0001). 949 
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