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Abstract 
 
Background:  
Parkinson's Disease (PD) affects millions globally, causing motor function impairments. 
Early detection is vital, and diverse data sources aid diagnosis. We focus on lower arm 
movements during keyboard and trackpad/touchscreen interactions, which serve as 
reliable indicators of PD. Previous works explore keyboard tapping and unstructured 
device monitoring, and we attempt to further these works with our structured tests taking 
account 2D hand movement in addition to finger tapping. Our feasibility study utilizes 
keystroke and mouse movement data from a structured online test conducted remotely 
combined with self-reported PD status to create a predictive model for detecting PD 
presence. 
 
Objective:  
Through analysis of finger tapping speed and accuracy through keyboard input and 2-
dimensional hand movement through mouse input, we differentiate between PD and non-
PD participants. This comparative analysis enables us to establish clear distinctions 
between the two groups and explore the feasibility of using motor behavior to predict the 
presence of the disease. 
 
Methods:  
Participants were recruited via email by the Hawaii Parkinson's Association (HPA) and 
directed to a web application for the tests. The 2023 HPA symposium was also used as a 
forum to recruit participants and spread information about our study. The application 
recorded participant demographics, including age, gender, and race, as well as PD status. 
We conducted a series of tests to assess finger tapping, using on-screen prompts to 
request key presses of constant and random keys. Response times, accuracy, and 
unintended movements resulting in accidental presses were recorded. Participants 
performed a hand movement test consisting of tracing straight and curved on-screen 
ribbons using a trackpad or mouse, allowing us to evaluate stability and precision of two-
dimensional hand movement. From this tracing, the test collected and stored insights 
concerning lower arm motor movement. 
  
Results:  
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Our formative study included 31 participants, 18 without PD and 13 with PD, and 
analyzed their lower limb movement data collected from keyboards and computer mice.  
From the dataset, we extracted 28 features and evaluated their significances using an 
ExtraTreeClassifier predictor. A Random Forest model was trained using the six most 
important features identified by the predictor. These selected features included insights 
into precision and movement speed derived from keyboard tapping and mouse tracing 
tests. This final model achieved an average F1-score of 0.7311 (±0.1663) and an average 
accuracy of 0.7429 (±0.1400) over 20 runs for predicting the presence of PD. 
 
Conclusion:  
This preliminary feasibility study suggests the possibility of utilizing technology-based 
limb movement data to predict the presence of PD, demonstrating the practicality of 
implementing this approach in a cost-effective and accessible manner. In addition, this 
study demonstrates that structured mouse movement tests can be used in combination 
with finger tapping to detect PD. 
 
Keywords: Parkinson’s Disease; Digital Health; Machine Learning; Remote Screening; 
Accessible Screening 
 

Introduction 
In the United States alone, PD affects over one million individuals, with approximately 
90,000 new diagnoses each year [1]. PD manifests with motor and non-motor symptoms 
that impact the entire body, including challenges like micrographia that significantly 
disrupt daily life [2] [3] [4] [5] [6]. Unfortunately, symptomatic evaluation remains the 
sole diagnostic method for PD, lacking an official diagnostic procedure. As a result, 
many cases go undiagnosed or misdiagnosed, hindering effective treatment [7] [8] [9] 
[10]. Moreover, even unofficial PD diagnostic tests are costly, requiring specialized 
equipment and laboratory procedures [11] [12] [13] [14]. Thus, there is an urgent need 
for scalable and accessible tools for PD detection and screening. Early diagnosis, which 
includes initiation of treatment and medication at an appropriate time, offers several 
benefits, including timely interventions and appropriate medication, leading to improved 
quality of life for patients [15] [16]. 

PD affects limb movements, particularly lower hand movements, as evidenced by 
multiple studies [5] [17] [18] [19] [20] [21]. Traditionally, clinical settings rely on 
neurologists who consider medical history, conduct physical examinations, and observe 
motor movements and non-motor symptoms for PD diagnosis [22] [23]. Recently, 
researchers have explored the use of smartphones as a measurement tool for PD detection 
[24] [25] [26]. Previous studies have shown that PD can be detected by monitoring digital 
device activity, such as abnormal mouse movements and atypical typing patterns [27] 
[28] [29] [30] [31] [32] [33]. Building on these findings, our goal is to develop a user-
friendly web application that offers a cost-effective and accessible diagnostic method, 
overcoming the limitations of in-person examinations and smartphone tests. 

Previous studies investigating the use of finger movement for PD detection often faced 
challenges in accessibility due to their requirements of specialized equipment like 
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accelerometers and gyroscopes [34] [35]. For instance, Sieberts et al. utilized wearable 
sensors to gather accelerometer and gyroscope data, which might not be easily accessible 
to the general population [31]. Chandrabhatla et al. discussed the transition from lab-
based to remote digital PD data collection, still relying on specific in-lab tools, which 
limited accessibility [36]. Skaramagkas et al. used wearable sensors to distinguish 
tremors, while Schneider et al. found PD distinctions using shoulder shrugs, arm swings, 
tremors, and finger taps [37] [38]. Their findings emphasized arm swings and individual 
finger tremors as significant indicators. 

Numerous studies have leveraged mobile applications, like a work by Deng et al., which 
employed the Mpower app to assess movement [32] [33]. It is worth noting that older 
individuals, who are more vulnerable to PD, might not be as familiar with handheld 
devices like phones and tablets compared to computers and laptops, which are more 
common among them [39] [40] [41] [42]. Mobile phones became widely used in the early 
2000s, with smartphones gaining popularity later, making them less familiar to the 
elderly [43] [44] [45]. On the other hand, many older adults have more experience with 
computers, which have been in use for a longer time [46]. This familiarity not only 
expands the potential participant group but also ensures more reliable data collection due 
to participants' better understanding of the test procedures [47] [48] [49]. 

Keyboard typing's potential for PD prediction has also been explored. In a study by 
Arroyo-Gallego et al., the neuroQWERTY method was used, employing computer 
algorithms that consider keystroke timing and subtle movements to detect PD [50]. This 
approach was extended to uncontrolled at-home monitoring, using participants' natural 
typing and laptop interaction to detect signs of PD. The algorithm's performance at-home 
nearly matched its in-clinic efficacy. However, the lack of structure in this approach 
makes direct performance comparisons challenging. Additionally, Noyce et al. 
investigated genetic mutations and keyboard tapping over 3 years [51]. They calculated 
risk scores using PD risk factors and early features. However, this study involves genetic 
information, which might not be accessible to many patients. 

While drawing tests have been well-studied, the investigation of using mouse hovering to 
trace specific paths is limited. Unlike freehand tablet drawing, which is flexible but lacks 
regulated data, Isenkul and Sakar used a tablet to help PD patients with micrographia 
[52]. Yet, since touchscreens are scarce on larger devices, a mouse provides a more 
accessible comparison [53] [54]. 

Taking a different approach, researchers have used brain scans and biopsies to study 
changes in PD-related brain regions. Kordower et al. observed the progression of 
nigrostriatal degradation in PD patients over time. By analyzing brain regions, they found 
that the loss of dopamine markers four years after diagnosis indicated PD [55]. 

These prior studies collectively contribute valuable insights into using digital devices for 
gathering motor-related PD data. Our research aims to expand upon this inspirational 
prior work by exploring the potential of an easily accessible online test involving 
keyboard finger tapping and mouse movements. We use a web application compatible 
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with common devices to analyze these data, distinguishing individuals with and without 
PD, to assess the feasibility of a more accessible and cost-effective detection method. 
While in-lab devices are precise but less accessible due to cost, web-based tests are cost-
effective and accessible. Mobile apps are user-friendly but less familiar to older PD 
patients. Our web app, accessible on various devices, particularly computers, ensures 
familiarity and consistency for reliable data. Our method furthers freeform drawings and 
keyboard tapping with structured tracing and key tapping tests, allowing direct 
performance comparisons. 

We present an affordable and accessible method for PD detection using a web application 
that captures and analyzes lower hand movements during keyboard and mouse 
interactions. Keystrokes are measured by logging the time interval between prompts and 
keypresses, while false presses are recorded to detect finger shaking. Mouse movement is 
tracked every 500 milliseconds to assess precision and identify shaking or unintended 
movements. In a remote study with 31 participants, including 13 PD patients and 18 non-
PD controls, we trained a machine learning model on six extracted movement features, 
achieving promising predictive performance. The model yielded an average F1 score of 
0.7311 and an average accuracy of 0.7429. These results demonstrate the practicality of 
technology-driven limb movement data collection for effective PD detection. 

Methods 
 

 
Figure 1. Overall study design. Participants completed mouse movement and keyboard 
tapping tests on their device, from which data was collected and analyzed for speed, 
precision, and accuracy. A machine learning model was trained on these data to predict 
the presence of PD. 
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Figure 2. Screenshots of the web application: a) Information is collected through an 
online form, b) The participant is asked to confirm the entered information for 
correctness to prevent mistakes, c) The linear mouse test asks users to trace the ribbon in 
a leftward direction, d) The sine-wave mouse test asks users to trace through the region, 
e) The spiral mouse test asks users to trace a spiral, f) The keyboard test asks users to 
press a certain letter when the red square prompt appears, g) After completion, the test 
informs the participant and thanks them for their time, h) The test informs the user that 
they have already completed the test after completion, minimizing duplicate entries. 
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Figure 3. Participant age distribution: The average age for all participants was 65.226 
years with a standard deviation of 10.832. For PD participants, the average age was 69 
years with a standard deviation of 7.147. For non-PD participants, the average age was 
62.5 years with a standard deviation of 12.144. 
 

 
Figure 4. Gender distribution: Mostly balanced with a 15:16 Male: Female ratio, with 
the total distribution slightly skewed towards female non-PD participants. 
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Figure 5: Race distribution: Largely skewed towards White and Asian Participants, with 
Whites, American Indian/Alaska Natives having a similar amount of PD and non-PD participants, 
with Asian participants mostly being non-PD. 
 
 

Demographic PD participants  Non-PD participants Total 

Gender 

Male 8 7 15 

Female 5 11 16 

Age 

40-49 0 3 3 

50-59 2 4 6 

60-69 4 5 9 

70-79 7 5 12 

80-89 0 1 1 

Race 

American Indian or 
Alaska Native 

0 1 1 
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Asian 3 8 11 

White 10 8 18 

Unspecified 0 1 1 

Total 

Total 13 18 31 

Table 1. Participant Demographics. Displays the gender, age, and race distributions for 
PD, non-PD, and all participants. 
 
 
Feature Enhancement Original 

model F1 
score 

Model F1 
score for 
enhanced 
feature 

F1 score 
improvement 

Amount of 
time taken for 
tracing straight 
line 

Feature taken with 
respect to window 
width 

0.6528 +/- 
0.1960 

 

0.7167 +/- 
0.1633 

0.0639 

Number of 
correctly 
pressed keys 
when 
prompted with 
a random key 

Feature taken with 
respect to average 
keypress time 

0.6333 +/- 
0.1944 

 

0.6944 +/- 
0.2641 

 

0.0611 

Table 2. Feature enhancement. A sample of features that were improved by considering 
other aspects of the data that affected them. 

IRB Approval 
This study obtained approval from the UH Manoa Institutional Review Board (protocol 
#2022-00857). Ensuring accurate identification of PD among participants was a 
significant challenge due to the lack of an official diagnostic certificate for PD. We 
therefore relied on self-report, and we required users to confirm their results with an 
intrusive dialogue that had to be dismissed before the test commenced, minimizing 
mistakes.   

Recruitment 
Participants were recruited through the HPA and similar organizations. We collaborated 
with the former president of the HPA, who shared detailed information about our test via 
email. We set up a booth at the 2023 Hawai’i Parkinson’s Symposium, an event 
coordinated by the HPA. Attendees had the chance to take the test using a provided 
device and receive slips with the test URL. We welcomed participation from both PD and 
non-PD individuals who showed interest. Participants recruited by email were provided 
with a web application link to conveniently complete the tests remotely. The study 
included individuals from both the PD and non-PD groups. This feasibility study 
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consisted of a cohort of 31 participants. The age distribution was 65.226 +/- 10.832 years 
for all participants, 69 +/- 7.147 years for PD participants, and 62.5 +/- 12.144 for non-
PD participants. 

Recognizing the limitations of our small sample size, we stress that this study represents 
an initial investigation into the utility of this test for PD detection. Our plan is to build 
upon these results through a larger-scale study involving a broader range of participants. 

To address potential misclassification associated with using self-reporting, we 
implemented a comprehensive strategy. Participants were presented with an intrusive 
dialog box containing their entered demographics, including PD status, and were required 
to review and confirm its accuracy. They had the flexibility to modify their status and 
demographics, minimizing errors. Demographic data collection followed IRB guidelines 
with support from the HPA. Participants were provided the option to select “prefer not to 
answer” for certain demographic questions, encouraging test completion even without 
specific demographic details, as they were not essential to the study’s objectives. 

Parkinson’s Test 

Participants were instructed to type on a keyboard while the test recorded timestamps and 
finger movements corresponding to key positions (Figure 1). They pressed a specific key 
in response to on-screen signals, and we collected data on the expected key, pressed key, 
and response time. The measurement process had three levels of increasing difficulty 
with greater key randomization. The lowest difficulty of keyboard tapping prompted the 
press of a single key ten times, while the second level alternated between two keys for ten 
trials. The third difficulty changed the requested key to a random one for every press of 
ten trials. For trackpad/mouse data, participants hovered the mouse along a designated 
path. This path was created in a way such that it took up certain percentages of the 
screen, as opposed to a set number of pixels, enabling it to adapt to the screen of the 
device being used and present an equal test to all participants. Starting with a straight 
line, subsequent levels introduced a sine wave-like shape and a spiral shape. Participants 
could monitor their progress by observing a highlighted portion of the shape, guided by 
animated direction indicators and “start”/“finish” markings. The interface of the web 
application, including those for demographic data collection and mouse and keyboard test 
administration, is show in Figure 2.  We recorded data on position, time, and whether the 
mouse was inside or outside the indicated area. We also recorded the height and width of 
the participant’s device so it could be considered for calculations and could be used to 
recreate the user’s test.  

We used a custom web application created with HTML, JavaScript, and CSS to collect 
data. For keyboard tapping, an HTML canvas was used to display a red square as a 
prompt. JavaScript was used to tracked keypress timing and calculated reaction times. 
For mouse tracing, an HTML canvas produced visuals of straight lines, sine waves, and 
spirals with direction indicator animations. JavaScript determined cursor location within 
the designated area and recorded mouse coordinates every 500 milliseconds. 
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After completing both tests, the collected data was securely transmitted and stored using 
a deta.sh base facilitated by the deta.sh micros API, ensuring efficient data management.  

This test was taken by both PD and non-PD participants primarily aged between 50 and 
80 years (Figure 3). The male/female ratio was nearly equal (Figure 4), and the race of 
participants was predominantly White and Asian (Figure 5). In addition, the PD vs non-
PD participant ratio was slightly skewed towards non-PD patients (Table 1). 

Statistical Analysis 

We conducted a series of tests to measure keyboard keypresses, false presses, and 
timestamps as proxies for unintended movements, shaking, and anomalies. Through 
mouse hovering tests, we observed continuous mouse movement controlled by 
participants’ arms and recorded deviations from the centerline. These tests provided 
insights into events such as accidental deviations or vibrations, potentially indicative of 
PD symptoms. Additionally, we examined mouse data, focusing on hovering speed and 
precision as indicators of unintentional lower arm movements. We observed differences 
between participants with and without PD that could serve as potential disease indicators. 
These findings contribute to the advancement of PD detection methods by leveraging 
discernible distinctions between individuals with and without the condition. 

During the test, we collected a total of 17 features in four major categories. One category 
assessed participant hand stability while tracing a straight line, considering mouse 
coordinates (x and y), deviation from the centerline, and whether the mouse was inside 
the given region or not were measured every 500 milliseconds. Another category focused 
on tracing a curved line while maintaining hand stability, for which the coordinates (x 
and y) and whether the mouse was inside the region or not was recorded. The third 
category measured response times and accuracy of key presses prompted by visual cues 
to evaluate reaction speed. The final category recorded the number of false presses during 
keyboard prompts as an indicator of unintended hand movements.  

We extracted 28 features from each participant's test. These included 17 baseline features 
along with additional features derived as a function of the baseline features. For instance, 
analyzing tracing deviation from the centerline produced multiple features like mean and 
max deviations. Incorporating screen width into time taken for tracing improved the 
feature’s association with PD, as seen in Table 2. An ExtraTreeClassifier predictor 
assessed the importance of each feature. We identified six key features as the most 
indicative of PD. These features were used to train a Random Forest model. These six 
features were selected due to their significantly higher importance scores compared to 
other related features as reported by the predictor. The selected features included mean 
deviation during straight line tracing, time to trace sine wave relative to window width, 
spiral tracing time, average false presses, total response time for constant key tapping, 
and accuracy in responding to random key prompts. 
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Our Random Forest model was trained using an 80/20 train/test split. Due to the internal 
out-of-bag evaluation of Random Forest models, a separate validation set was not used. 
The model underwent 20 rounds of training with new train/test splits using an 80/20 ratio 
before for each round. We used this evaluation method to account for our dataset’s small 
size. 

Results 
 
 

 
 
Figure 6: Sample traces of PD and non-PD participants. Generally, PD participant 
traces can be observed to be more irregular and less precise than those of non-PD 
participants. 
 
 
 

Features Used Mean 
AUC +/- 
STD 

Mean Balanced 
Accuracy +/- 
STD 

Mean F1 
Score +/- 
STD 

Single Training Features 

Mean vertical deviation of tracing a straight 
line 

0.6722 +/- 
0.232 

0.5 +/- 0.0 0.6722 +/-
0.0 

Maximum vertical deviation of tracing a 
straight line 

0.6611 +/- 
0.257 

0.5 +/- 0.0 0.6611 +/-
0.0 

- 

- 
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Net vertical deviation of tracing a straight line 0.6222 +/- 
0.1931 

0.55 +/- 0.099 0.6222 +/- 
0.2667 

Total of the absolute values of vertical 
deviations of tracing a straight line 

0.6138 +/- 
0.2328 

0.55 +/- 0.099 0.6138 +/- 
0.2667 

Mean of the absolute values of vertical 
deviations of tracing a straight line 

0.5861 +/- 
0.2057 

0.5 +/- 0.0 0.5861 +/- 
0.0 

Amount of time taken for tracing straight line 0.6528 +/- 
0.1960 
 

0.6417 +/- 0.2102 0.6528 +/- 
0.3742 

Amount of time taken for tracing straight line 
with respect to window width 

0.7167 +/- 
0.1633 

0.5 +/- 0.0 0.7167 +/- 
0.0 

Percentage of points traced in indicated width 
of a straight line 

0.4056 +/- 
0.1196 
 

0.5 +/- 0.0 0.4056 +/- 
0.0 
 

Number of points traced inside the expected 
width of a straight line (with no regard to time 
taken) 

0.6319 +/- 
0.2393 
 

0.5667 +/- 0.1307 0.6319 +/- 
0.2696 
 

Time taken to trace sine wave 0.7667 +/- 
0.1412 

0.65 +/- 0.2118 0.7667 +/- 
0.3277 
 

Time taken to trace sine wave with respect to 
device window width 

0.7472 +/- 
0.1753 

0.5 +/- 0.0 
 

0.7473 

Percentage of traced points inside indicated 
sine curve 

0.6444 +/- 
0.2516 
 

0.5 +/- 0.0 0.6444 +/- 
0.0 
 

Number of points traced inside indicated sine 
curve with no regard to time taken 

0.7 +/- 
0.2273 
 

0.6 +/- 0.1409 
 

0.7 +/- 
0.2455 
 

Time taken to trace a spiral 0.6986 +/- 
0.1586 

0.7583 +/- 0.1633 
 

0.6986 +/- 
0.3363 
 

Time taken to trace spiral with respect to 
device window width 

0.7389 +/- 
0.2247 

0.5 +/- 0.0 0.7389 +/- 
0.0 

Percentage of points traced inside the width of 
the indicated spiral 

0.4181 +/- 
0.1816 

0.5 +/- 0.0 0.4181 +/- 
0.0 
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Number of points traced inside the width of the 
indicated spiral with no regard to time taken 

0.7236 +/- 
0.1646 

0.6833 +/- 0.1137 
 

0.7236 +/- 
0.2800 

Total false key presses with single prompted 
key 

0.5417 +/- 
0.0645 
 

0.5083 +/- 0.0167 0.5417 +/- 
0.16 

Total false key presses with prompt key 
randomly chosen from 2 options 

0.6 +/- 
0.2273 

0.6 +/- 0.1225 0.6 +/- 
0.2494 

Total false key presses with prompt randomly 
chosen 

0.2819 +/- 
0.1883 

0.375 +/- 0.1581 0.2819 +/- 
0.0 
 

Total false key pressed from all trials 0.6347 +/- 
0.2450 

0.575 +/- 0.2048 0.6347 +/- 
0.3309 

Average response time when same key 
prompted 

0.6194 +/- 
0.2208 

0.675 +/- 0.1302 0.6194 +/- 
0.2847 

Average response time when semi-random 
(randomly chosen from 2 options) key 
prompted 

0.6889 +/- 
0.2931 

0.5417 +/- 0.1863 0.6889 +/- 
0.1543 

Average response time when random key 
prompted 

0.6278 +/- 
0.2288 

0.725 +/- 0.2 
 

0.6278 +/- 
0.2398 
 

Number of correctly pressed keys (when 
prompted with same key) with respect to the 
average time taken 

0.6445 +/- 
0.253 

0.5 +/- 0.0 0.6445 +/- 
0.0 

Number of correctly pressed keys (with semi 
random prompt) with respect to the average 
time taken 

0.6833 +/- 
0.3313 

0.5 +/- 0.0 
 

0.6833 +/- 
0.0 

Number of correctly pressed keys when 
prompted with a random key 

0.6333 +/- 
0.1944 
 

0.6333 +/- 0.1944 0.6333 +/- 
0.3997 

Number of correctly pressed keys (when 
prompted with a random key) with respect to 
the average time taken 

0.6944 +/- 
0.2641 
 

0.5 +/- 0.0 0.6944 +/- 
0.0 
 

Model trained with 6 most important features 
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Mean deviation from centerline when tracing 
straight line. 
Amount of time taken to trace sine wave with 
respect to window width. 
Amount of time taken to trace spiral. 
Average false presses from 3 keyboard tapping 
trials. 
Total response time taken when tapping 
constant(unchanging) key. 
Number of correct keys with respect to average 
response time when prompted with random 
letter. 

0.7311 +/- 
0.1663 
 

0.7429 +/- 0.1400 
 

0.7311 +/- 
0.1663 
 
 

 
Table 3: Mean AUC, Balanced Accuracy, and F1 score of models trained on single 
and multiple features. Each individual feature was trained to evaluate its efficacy, 
shown in the first 28 content rows. An ExtraTreeClassifier was used to rank features by 
importance. The 6 most important features were used to train a final Random Forest 
model, shown in the last row. 
 
 

Model trained (20 runs) Accuracy +/- STD F Score +/- STD 

Random Forest Classifier  0.7429 +/- 0.1400 0.7311 +/- 0.1707 

Decision Tree Regression  0.5999 +/- 0.1245 0.5862 +/- 0.1455 

Support Vector Classifier (SVC)  0.6071 +/- 0.1268 0.5816 +/- 0.1622 

MLP Classifier  0.5214 +/- 0.1707 0.3740 +/- 0.1939 

 
Table 4: Mean AUC, Balanced Accuracy, and F1 score of different types of models 
trained. We trained several types of models on the same set of the 6 most important 
features and evaluated their average metrics over 20 runs. Between each run, the train/test 
split was resampled, maintaining the 80:20 ratio. 
 
 
Our Random Forest machine learning (ML) model, trained on six features involving line 
tracing, sinusoid tracing, spiral tracing, accuracy and speed of keypress prompts, and 
false presses, yielded an average F1 score of 0.7311 with a standard deviation of 0.1663. 
It also achieved an average accuracy of 0.7429 with a standard deviation of 0.1400 (Table 
3). All measurements were taken over 20 independent runs, with randomly sampled 
train/test splits created in each run. In addition, we trained the same set of 6 high-
performing features on different types of ML models determine the optimal model type 
(Table 4). 
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We identified high-performing features and further analyzed their relationship with 
participants’ body movements. By reconstructing the traces based on the collected data, 
visual differences between PD and non-PD participants were observed. As shown in 
Figure 6, while most straight-line traces showed similarities, PD participant traces 
exhibited sudden irregularities, whereas non-PD traces contained minimal irregularities. 
Additionally, significant differences were observed in sinusoid traces, with PD 
participants completing the test faster but with more irregularities and fewer points traced 
within the designated area. Conversely, non-PD participants took more time but 
demonstrated greater precision. Similar patterns emerged in spiral traces, where PD 
participants traced the spiral more rapidly but with less precision compared to non-PD 
participants. 

The performance of this model supports the feasibility of the automatic detection of PD 
through hand and finger movement analysis. These findings support the feasibility of 
using traced lines and curves as a potential method for predicting the presence of PD and 
other related conditions affecting limb movements using ubiquitous consumer devices 
such as a laptop.   

Discussion 

Principal Results 
This study provides evidence supporting the feasibility of remote collection of limb 
movement data using ubiquitously available consumer technology. We addressed 
concerns regarding device variations by considering device performance and 
specifications, such as screen height and width, which were measured and recorded by 
the application. Interestingly, excluding the time taken to complete the test improved the 
results for many extracted features. The findings suggest that either device performance 
affected the timing data or PD has limited influence on hand movement speed indicators 
such as key tapping or drawing. However, the latter scenario is unlikely, as multiple 
studies have shown that PD affects key tapping speed [56, 57]. Additionally, false presses 
when prompted with a random key do not seem to be linked to PD, as this feature's 
performance is notably weak. This might be due to displaying the next key before the 
prompt, leading to unintended key presses due to hand repositioning, a phenomenon 
common in older individuals regardless of PD status. Furthermore, our findings reinforce 
the use of measuring limb movements as an indicator of PD presence. The majority of 
models trained on individual extracted features yielded mean F1 scores and AUC values 
surpassing 0.5, indicating a weak but existing correlation between the feature and the 
existence of PD. Additionally, 82.14% (23/28) of the features achieved an F1 score of at 
least 0.6, while 21.4% (6/28) achieved an F1 score of at least 0.7. Our final and most 
optimal model was able to achieve an accuracy of 74.29% and an F1 score of 73.11% 
These results highlight a clear correlation between the speed and precision of tracing 
movements and the speed and accuracy of finger tapping with the presence of PD. 

Comparison to Previous Work 

This study extends prior research by bringing lab-based movement testing to remote 
assessment on personal devices, enhancing accessibility and scalability. Unlike studies 
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monitoring regular keyboard use, we employ a structured test for better comparability. 
Additionally, our app includes structured tracing tests, exploring other motor aspects 
beyond keyboard tapping as a PD indicator. Our model's performance is comparable to 
the at-home neuroQWERTY test by Teresa et al., which acheived an Area Under Curve 
(AUC) of 0.7311, while the clinic-based neuroQWERTY test achieves 0.76 AUC [58]. 
However, our model's accuracy lags behind clinical tests with a similar aim, like Tsoulos, 
Ioannis G., et al., achieving 93.11% PD detection accuracy, and Memedi, Mevludin, et 
al., reaching 84% PD detection accuracy [59, 60]. 

Limitations 
A key limitation of this study concerns device consistency. Using a specific device may 
introduce biases due to user unfamiliarity, while allowing participants to use their own 
devices may result in performance and specification variations. To address this, we 
standardized the collected data and recorded device aspects such as display width, height, 
and frames per second. This information enabled us to assess the influence of screen 
dimensions and device performance on user results. For example, by comparing the 
user’s mouse coordinates to the screen width in pixels, we determined the percentage of 
the screen that the mouse had moved, rather than the raw amount of pixels, which would 
depend on the device used. However, other factors affecting the collected data, including 
differences between trackpads and mice as well as keyboard types have not been 
accounted for. These differences may have influenced our collected data and impacted 
our results. Additionally, the remote nature of the study posed a challenge as participants 
completed it without supervision, potentially introducing errors and impacting results. It 
is worth noting that the PD-to-non-PD participant ratio was 13:18, leading to an 
imbalance that could affect data analysis. Moreover, the study predominantly included 
participants of White and Asian ethnicities, introducing a racial imbalance that may 
impact the model's accuracy for other racial groups if race influences the final prediction.  
 
An additional limitation concerns the age difference in our sample. The non-PD 
participants had an average age of 62.5, while PD participants had an average age of 69. 
Since we did not adjust for this age disparity, it may have influenced our results. In 
addition, the lack of an official PD diagnosis led us to rely solely on self-reports. Despite 
efforts to enhance accuracy, errors could have affected results. Furthermore, it is 
recognized that conditions like essential tremor (ET) cause symptoms similar to PD, 
potentially leading to misdiagnoses [61]. This scenario might have skewed our findings if 
individuals diagnosed with PD had ET. This concern could be addressed by inquiring 
about participants’ history of ET prior to the test and taking this into account for analysis. 

Further research 

Machine learning (ML) holds promise for predicting movement-related conditions, 
including essential tremor, and its application can be extended to other movement-
impacting diseases. Standardizing a comprehensive test could offer individuals a single, 
straightforward assessment to evaluate their likelihood of having different health 
conditions. By incorporating diverse shapes for tracing, such as those involving sudden 
stops or changes in direction, additional valuable insights into hand movements of both 
PD and non-PD participants can be gleaned. To address limitations associated with 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.22.23294440doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.22.23294440
http://creativecommons.org/licenses/by-nc/4.0/


unsupervised remote studies, a supervised approach with real-time monitoring could be 
implemented, providing immediate feedback to ensure protocol adherence and improve 
data reliability. Additionally, collecting information on participants' device types can help 
address potential bias arising from device disparities. With a sufficiently large sample 
size, subgroup analysis based on device type could mitigate the impact of device 
variations on data and strengthen the validity of the findings. Some related studies have 
used significantly more participants [59, 60]. Expanding the participant sample size 
would support the generalizability of our findings. 

Another potentially fruitful avenue of expanding PD screening tools would be to include 
additional data modalities such as computer vision. Computer vision analysis has been 
successfully employed for a variety of health screening and diagnostic tasks [62] [63] 
[64] [65] [66], including abnormal hand movements [67] and movement of other body 
parts [68] for conditions such as autism. Utilizing such techniques for PD screening can 
expand the performance of the tools through a more comprehensive and multimodal 
analysis. 
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