
Prediction of COVID-19 infection risk using personal mobile 1 

location data only 2 

 3 

 4 

Ahreum Jang1*, Sungtae Kim1¶, Hyeongwoo Baek1&, Hyejung Kim1%, Hae-Lee Park1%,#a 5 

 6 

1 AI/DX Convergence Business Group, KT 7 

 8 

 9 

#aCurrent Address: KT, 209, Jamsil-ro, Songpa-gu, Seoul, Republic of Korea 10 

 11 

 12 

* Corresponding author 13 

E-mail: ar.jang@kt.com (AJ) 14 

 15 

* Conceptualization, Project administration, Resources, Supervision, Data curation, Formal analysis, 16 

Investigation, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – 17 

review & editing 18 

¶ Conceptualization, Data curation, Investigation, Writing – original draft, Writing – review & editing 19 

& Conceptualization, Data curation, Formal analysis, Methodology, Software, Validation, Visualization, 20 

Writing – original draft, Writing – review & editing 21 

%Conceptualization, Data curation, Writing – review & editing 22 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.22.23294419doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.08.22.23294419
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 23 

Predicting an individual’s risk of infectious disease is a critical technology in infectious 24 

disease response. During the COVID-19 pandemic, identifying and isolating individuals at high risk of 25 

infection was an essential task for epidemic control. We introduce a new machine learning model that 26 

predicts the risk of COVID-19 infection using only individuals’ mobile cell tower location information. 27 

This model distinguishes the cell tower location information of an individual into residential and non-28 

residential areas and calculates whether the cell tower locations overlapped with other individuals. It 29 

then generates various variables from the information of overlapping and predicts the possibility of 30 

COVID-19 infection using a machine learning algorithm. The predictive model we developed showed 31 

performance comparable to models using individual’s clinical information. This predictive model, which 32 

can be used to predict infections of diseases with asymptomatic infections such as COVID-19, has the 33 

advantage of supplementing the limitations of existing infectious disease prediction models that use 34 

symptoms and other information. 35 

Introduction 36 

Beginning from early 2020, the COVID-19 pandemic caused significant human damage 37 

worldwide, and in the absence of treatments and vaccines for the newly emerged infectious disease, each 38 

country had no choice but to focus on epidemic prevention through non-pharmaceutical interventions[1]. 39 

Governments of each country implemented measures to reduce individual infection risk (wearing masks, 40 

social distancing, quarantine, lockdown, etc.) to prevent the spread of infectious diseases, and it was 41 

necessary to quickly lead individuals at high risk of infection to testing and treatment[2]. Implementing 42 

preventive measures for individuals at high risk of infection was one of the important response strategies 43 

in the early stages of the COVID-19 pandemic[3]. 44 
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There are two typical ways to identify individuals at high risk of COVID-19 infection. One 45 

can identify high-risk individuals through the physical symptoms that appear when infected with 46 

COVID-19 and through the potential contact with an infected person. Firstly, screening high-risk 47 

individuals through several factors such as fever and respiratory symptoms, the main symptoms of 48 

COVID-19. Various machine learning and AI research to predict infection risk through these symptoms 49 

have been conducted, and there were models that showed a performance of up to 97.79% Accuracy[4–50 

6]. However, this method has the disadvantage of missing asymptomatic infected individuals. 51 

Another way to identify high-risk individuals is to trace those who have come into contact 52 

with an infected person. There have been attempts to utilize IT technology for this. Contact tracing 53 

mobile applications that track infected individuals and confirm whether they have come into contact 54 

with them were developed. These applications, which utilize widely used modern mobile devices and 55 

technologies such as Bluetooth and GPS (Global Positioning System), provided important information 56 

that could confirm individual locations and determine whether they had contact with infected people. 57 

Several open-source technologies emerged, and two companies providing mobile OS (Operation 58 

System), Apple and Google, even added technology to check and manage whether they came into 59 

contact with a COVID-19 infected individual in the mobile OS, and these digital contact tracing 60 

technologies are known to have been used in more than 46 countries[7,8]. These technologies are useful 61 

for both governments and individuals, but there is a limitation. These mobile applications must be 62 

installed and used by individuals themselves. In countries where it is not mandatory by the government, 63 

the actual usage rate of these applications was very low[9]. It’s a technology that is hard to see effects if 64 

there are few users. 65 

South Korea took a different approach. Instead of contact tracing using mobile applications, 66 

they collected mobile cell tower location data from mobile carriers to find places visited by infected 67 
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individuals and those who came into contact with them. It was possible due to South Korea’s high 68 

mobile usage rate and support of laws and systems. When a COVID-19 confirmed case occurred in 69 

South Korea, the goverment collected the cell tower location data for the 14 days prior to the COVID-19 70 

confirmed patient’s PCR (Polymerase Chain Reaction) test date. This information was used as validation 71 

for epidemiological investigations conducted through interviews with the confirmed cases. Also, when a 72 

mass infection occurred with many confirmed cases, people who overlapped with the confirmed case at 73 

the cell tower location were deemed at risk of infection and were allowed to get tested. Individuals could 74 

not use this information directly and could get a COVID-19 PCR test if they were considered at high 75 

risk of infection based on information such as the visit places of infected individuals announced by the 76 

government[10]. Generally, it is not possible to know the exact location of an individual or whether they 77 

had contact with a specific person using cell tower location information[8]. Nevertheless, in South 78 

Korea, cell tower location information was used in epidemiological investigations of infected 79 

individuals and in analyzing infection hotspots[11]. 80 

The aim of this study is to develop a machine learning model that predicts an individual’s risk 81 

of COVID-19 infection using only cell tower location information. We conducted a study using 82 

COVID-19 test results and cell tower location information collected from a mobile application during 83 

the period of significant COVID-19 outbreak in South Korea. While it’s not possible to determine an 84 

individual’s exact location and whether they had contact with an infected individual with cell tower 85 

location information, we obtained results that we can predict an individual’s risk of COVID-19 infection 86 

using machine learning techniques. If we can address a few constraints discussed in the conclusion of 87 

this study, it can be used as a technology to prevent the spread of a pandemic by complementing the 88 

disadvantages of existing methods of finding high-risk infections in an infectious disease pandemic 89 

situation. 90 
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Methods 91 

Data 92 

All data were obtained from the SHINE mobile application. SHINE is an application that 93 

provides location-based COVID-19 outbreak information and COVID-19 coping strategies based on 94 

user-recorded information such as location, gender, age, COVID-19 test results, and vaccination data, 95 

etc. The app was launched on October 13, 2021, and operated until March 31, 2023, and was available 96 

for use through Apple’s AppStore and APK file installation(Android only) for individuals aged 14 and 97 

above (Fig 1). Upon registration on the mobile app, users consented online to the use of their de-98 

identified device GPS data and personal information entered in the app for research purposes. Moreover, 99 

users who were subscribers of KT (Korea Telecom) also provided online consent to extract and utilize 100 

cell tower location data from KT’s network data infrastructure. Location data was stored only for the 14 101 

days preceding the date when users recorded information such as PCR test results in the app. The 102 

COVID-19 PCR test results were uploaded directly to the application by the users themselves, and the 103 

application service administrators filtered out inaccurate information by comparing all uploaded test 104 

results – verified by documents issued by hospitals or screenshots of text messages with test results 105 

featuring the individual’s name – with the personal information entered during registration. 106 

Consequently, from the app’s launch to June 30, 2022, there were 43,270 total users, 21,046 users who 107 

registered PCR test results, and there were 17,678,028 cases of mobile cell tower location logs. 108 
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 109 

Fig 1. Screenshots of the SHINE mobile application. The language in the image has been translated 110 
into English. 111 

 112 

This research received exemption from review by the Institutional Review Board of 113 

Sungkyunkwan University on November 11, 2022(IRB Number: SKKU 2022-11-014). Subsequently, 114 

we accessed location data, PCR test information, gender, and age data, which were collected 115 

retrospectively only from users who had consented for research purposes, from October 13, 2021, to 116 

June 30, 2022. Our access to this data began on November 28, 2022, and it ensuring all data were non-117 

identifiable at the personal level. 118 

The personal location information used in this study consists of mobile cell tower location 119 

data. This is data from regular communication between the subscriber’s device and the cell tower, 120 

containing information like timestamp, GPS location of the cell tower, and a unique identifier for 121 

subscribers[8]. This data has two limitations. The first is that the GPS location of the cell tower is not 122 

the precise location of the user but only indicating that the user is within the service radius of the cell 123 
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tower. The second is that only information from KT subscribers can be used, and KT subscribers 124 

represent 31.3% of all mobile users in Korea[12]. These limitations require necessary assumptions and 125 

interpretations, which are discussed in the Discussion section. 126 

On the other hand, the GPS information from the device collected in the mobile application 127 

was not used. Although the SHINE mobile application was set to collect the device’s GPS records in the 128 

mobile OS’s background, there were difficulties in continuously collecting reliable location records. 129 

Users often denied providing location information due to battery consumption from running the 130 

application in the background. Moreover, the mobile OS regularly sent location access approval or 131 

denial notifications to users about applications requesting device location information, leading to limited 132 

data tracking users’ locations continuously. However, we were able to obtain mobile telecom cell tower 133 

location data irrespective of the user’s mobile application usage, enabling us to know the reliable 134 

location of the user. 135 

We extracted only KT users who could use cell tower location data among those who 136 

uploaded COVID-19 PCR test results on the mobile app. We further narrowed down the data to include 137 

only Seoul residents from January 1, 2022, to June 30, 2022. The reason for these limitations is that this 138 

period saw the largest outbreak of COVID-19 in Korea[13], and we had the most COVID-19 PCR test 139 

results data, and Seoul is the city with the highest population density in Korea[14]. There was a need to 140 

limit the region to areas with high population density to observe overlapping individual locations in the 141 

data. After considering the incubation period of COVID-19 and PCR test dates, we used PCR test results 142 

and cell tower location data of 837 individuals whose cell tower location data was collected for the 143 

seven days before the PCR test for modeling. The demographic information of these 837 individuals is 144 

as in Table 1. 145 
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Table 1. Demographic info. of Data 146 

 

COVID-19 PCR test Result 

Positive Negative 

Total, n(%) 703 (84%) 134 (16%) 

Sex, n(%) Male 225 (26.9%) 43 (5.1%) 

Female 478 (57.1%) 91 (10.9%) 

Age, n(%) 10-19 40 (4.8%) 0 (0.0%) 

20-29 232 (27.7%) 39 (4.4%) 

30-39 230 (27.5%) 43 (5.1%) 

40-49 116 (13.9%) 35 (4.2%) 

50-59 57 (6.8%) 14 (1.7%) 

60-69 20 (2.4%) 3 (0.4%) 

70-79 7 (0.8%) 2 (0.2%) 

80-89 1 (0.1%) 0 (0.0%) 

Data preprocessing 147 

First, we distinguished whether the cell tower location from each individual’s seven-day 148 

location data was a residential area or a non-residential area. We designated the cell tower location that 149 

appeared most frequently from 10 pm to 7 am the next day for each individual as the residential cell 150 

tower location. We then added a variable to each individual’s cell tower location record to distinguish 151 

whether it was a residential or non-residential area, anticipating that the infection characteristics would 152 

vary depending on this classification. We also extracted cell tower location records only from 9 AM to 153 

10 PM. To assess the possibility of contact with others, as shown in Fig 2, for each individual’s cell 154 

tower location record, we checked the overlapping time with others at the same cell tower. If the overlap 155 

was more than 10 seconds, we marked it as an overlapping. The overlap criterion of 10 seconds was 156 

selected as it provided the largest difference in COVID-19 infection rates between user groups with at 157 

least one overlapping record and those without any overlapping records (Fig 3). Furthermore, in 158 

checking the overlap time at the same cell tower with others, we did not refer to the others’ PCR results 159 

information. This is because the others’ COVID-19 infection status cannot be confirmed when 160 

predicting an individual’s COVID-19 infection. The overlapping time information at cell tower locations 161 
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for each individual over seven days was summarized into six types of information by distinguishing the 162 

type of cell tower location (residential or outing area), and the characteristics of all predictor variables 163 

used for modeling are as in Table 2. And all predictor variables were transformed using the natural 164 

logarithm to reduce data skewness. 165 

 166 

Fig 2. Method for calculating overlaps. In each individual’s location records, it was counted as an 167 
overlap if they were located at the same cell tower as another person for 1 second or more. 168 
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 169 

Fig 3. Difference in COVID-19 positive rates based on the duration of overlap (in seconds). 170 
Difference in COVID-19 positive rates by comparing user groups with overlapping records and those 171 
without, based on each duration of overlap. 172 

Table 2. Characteristics of features 173 

Variables n Mean SDa 

Number of Overlaps Outside 837 38.62 ±126.01 

Residence 837 15.01 ±63.71 

Number of Overlapped people Outside 837 1.4 ±1.46 

Residence 837 0.37 ±0.64 

Total Overlapped Timeb(seconds) Outside 837 888.98 ±2956.47 

Residence 837 302.01 ±1353.17 

Max Overlapped Timec(seconds) Outside 837 75.59 ±199.36 

Residence 837 25.32 ±77.47 

Average Overlapped Timed(seconds) Outside 837 0.33 ±0.86 

Residence 837 0.27 ±0.91 
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Variables n Mean SDa 

Minimum Overlapped Timee(seconds) Outside 837 9.16 ±12.59 

Residence 837 3.64 ±11.13 

Number of overlapped locations(outside) 837 4.17 ±11.65 

aSD = Standard Deviation 174 
bTotal Overlapped Time = Sum of all time overlapped with others over 7 days. 175 
cMax Overlapped Time = Max duration of time overlapped with others in a single event over 7 days. 176 
dAverage Overlapped Time = Average duration of time overlapped with others per event over 7 days. 177 
eMinimum Overlapped Time = Minimum duration of time overlapped with others per event over 7 days. 178 

Development of model for prediction 179 

To train the model, the data was divided into a Training data set (585/837, 70%) and Test data 180 

set (252/837, 30%). It was ensured that the ratio of COVID-19 PCR test results was maintained during 181 

this division. To enhance the model’s generalization performance, records that corresponded to outliers 182 

were removed from the Training data set prior to model training. Outliers were determined by 183 

calculating the IQR (Interquartile Range) for each variable; values smaller than 1.5 times the first 184 

quartile or larger than 1.5 times the third quartile were considered as outliers. Subsequently, data with 185 

negative COVID-19 PCR test results was subjected to Random over-sampling, so the ratio of positive to 186 

negative results for the target variable, the COVID-19 PCR test result, became 1:1. We experimented 187 

with machine learning models like Logistic Regression, a binary classification model, XGBoost 188 

Classifier, and Random Forest Classifier. These models are frequently used for classification and were 189 

used in this study to develop a COVID-19 infection prediction model. Python (version 3.8.10)’s scikit-190 

learn (version 1.0.2) library’s GridSearchCV was used to train the Training data set using 10-Fold Cross 191 

Validation. The entire process from data preprocessing to machine learning model training is as 192 

described in Fig 4. 193 
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 194 

Fig 4. Workflow of analysis 195 

Results 196 

Table 3 shows the performance results measured in the Test data set with five metrics for the 197 

three trained models. Logistic regression exhibited the lowest performance across all metrics, while 198 

XGBoost showed the highest Accuracy and Sensitivity. In contrast, the Random Forest model 199 

demonstrated high Specificity and Precision, outperforming both the Logistic Regression and XGBoost 200 

models in terms of Specificity. There was no significant difference in AUC(Area Under the Curve) 201 

performance between Random Forest and XGBoost, but among the models tested, Random Forest had 202 

the best AUC. The ROCs (Receiver Operating Characteristic curves) for the three models are shown in 203 

Fig 5. 204 

The rank of importance of predictor variables in the Random Forest model, which had the 205 

highest AUC, is shown in Fig 6. The variable with the highest importance was the Total Overlapped 206 

Time in non-residential areas. Also, variables related to non-residential areas had higher importance than 207 
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those related to residential areas. This finding suggests that activities conducted outside residential areas 208 

can provide significant insights for predicting COVID-19 infection. 209 

Table 4 summarizes the algorithms, data, sample sizes, and performance of existing studies 210 

related to COVID-19 infection prediction. The six studies we reviewed all primarily utilized individual 211 

demographics and clinical information, and performance ranged from 0.689 to 0.98 based on AUC 212 

(limited to studies that disclosed AUC). Compared to these studies, our developed model’s performance 213 

was relatively low. However, despite our model utilizing only individual location records for 214 

predictions, its AUC did not significantly differ from that of models incorporating individual symptoms 215 

[15]. When comparing the results of our Random Forest model with the results of this study, our model 216 

showed lower AUC and Sensitivity, but higher Specificity and Precision. 217 

Table 3. Performance of machine-learning algorithms and logistic regression. 218 

Metrics Logistic Regression XGBoost Random Forest 

Accuracy 0.635 0.690 0.647 

Sensitivity 0.637 0.722 0.627 

Specificity 0.625 0.525 0.750 

Precision 0.879 0.876 0.897 

AUC 0.634 0.655 0.679 
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 219 

Fig 5. Receiver operating characteristic curves with corresponding AUC values. AUC values for 220 
each model are also presented in Table 2. 221 
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 222 

Fig 6. Variable importance plots of COVID-19 PCR result predictors for Random forest. 223 

Table 4. Comparison with the Prediction model using symptoms 224 

Reference ML/AI methods Types of Data Sample Performance 

[16] Support Vector Machine Clinical, laboratory 

features, 

Demographics 

556 Accuracy: 77.5% 

Specificity:78.4% AUC: 

0.98(testing dataset) 

[17] Random forest Clinical, 

Demographics 

253 Accuracy: 95.95% Specificity: 

96.95% 

[18] Logistic regression, Random Forest, 

Decision tree, Linear SVM, Naive 

Bayes, Gradient boosting classifier 

Clinical, 

Demographics 

5,434 Accuracy: 97.79%, Sensitivity: 

0.99, Precision 0.97 

[15] Logistic Regression Clinical 378 AUC: 0.6891, Specificity: 

58.6%, Sensitivity: 64.7%, 

Precision: 43.1% 

[19] Random Forest Clinical, 

Demographics 

1,653 AUC: 0.788, recall: 0.799, FPR: 

0.38 

[20] Logistic Regression (LASSO) Clinical, 

Demographics 

143,531 AUC: 0.78 
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Discussion 225 

We have developed a prediction model that addresses the limitations of existing methods in 226 

predicting high-risk individuals for COVID-19 infection. We did this by creating a variable that 227 

represents the possibility of contact with others using only an individual’s cell tower location 228 

information, and then developing an infection risk prediction model using machine learning algorithms. 229 

Though our model showed lower performance compared to the infection prediction model using 230 

symptom information, our results indicate that an individual's COVID-19 infection status can be 231 

predicted to a certain degree without relying on explicit symptoms or contact tracing information. This 232 

could potentially address the limitations of existing studies, which struggle to predict the infection risks 233 

of asymptomatic carriers, and of mobile contact tracing applications with a low user base. Moreover, as 234 

shown in Fig 6, our study supports the general characteristic of infectious diseases that a higher 235 

possibility of contact with others leads to a higher risk of infection. 236 

Another point worth discussing is the overlap information we used for model development. 237 

We created a variable for overlap information if the cell tower locations of each individual overlapped 238 

with others for more than 10 seconds. However, an overlap of cell tower locations does not necessarily 239 

imply direct contact between two individuals. Furthermore, the overlap of cell tower locations for 10 240 

seconds does not confirm the transmission of COVID-19. The data we used represents only a very small 241 

part of all Korean citizens’ cell tower location records, and it is not possible to conclude that an 242 

individual was infected with COVID-19 from the people they overlapped locations with based on this 243 

information alone. We believe this data does not suggest that an individual contracted COVID-19 from 244 

someone with whom they overlapped locations, but rather indirectly indicates they were in a location 245 

with a high risk of COVID-19 infection. In our sample of 837 people, the places where locations 246 

overlapped are likely to have seen many more overlapping individuals, thus increasing potential contact 247 
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points. As shown in Fig 6, we believe the risk of COVID-19 infection increases when an individual 248 

frequently overlaps cell tower locations outside their residence, thereby increasing potential contact with 249 

others. 250 

In order to apply the findings of this research, the following prerequisites need to be fulfilled. 251 

The government or the institution intending to utilize these research results should be able to collect cell 252 

tower location information from mobile carriers. The Korean government was able to collect cell tower 253 

location information of confirmed cases without the individual’s consent through legal procedures. 254 

While it is not necessary for many users to install and use the contact tracing app, the system and 255 

technology should allow for the collection of individual cell tower location information. 256 

Additionally, we foresee the following further research to enhance our findings. First, 257 

important conclusions were derived from a relatively small sample of 837 people within a limited period 258 

and geographic scope. However, these results emphasize the need for further research based on a larger 259 

dataset. If the study is expanded to include a significantly larger number of people, more substantial 260 

conclusions could be drawn. Second, it would be beneficial to investigate whether the risk of infection 261 

from diseases other than COVID-19 can also be predicted using cell tower location information. For 262 

infectious diseases with varying characteristics, the accuracy of infection prediction using cell tower 263 

location information may vary, and this is important consideration. Lastly, we believe that by 264 

incorporating individual symptom information, a more accurate infectious disease prediction model 265 

could be developed. 266 
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Supporting information 330 
S1 Table. Description of software packages, methods and tuning parameters for model 331 
development. 332 

Algorithm Package / Method Parameters Final chosen model 

Logistic 

Regression 

scikit-learn / 

LogisticRegressionCV 

solver=‘liblinear’ max_iter=1000  

XGBoost xgboost / XGBClassifier n_estimators=range(200, 310, 10) 

learning_rate=[0.1] max_depth=range(8, 11) 

alpha=[0, 0.1] gamma=[0, 0.1] lambda=[0, 

0.1] subsample=[0.4, 0.5, 0.6, 0.7, 0.8] 

alpha=0 colsample_bytree=0.7 

gamma=0.1 lambda=0 

max_depth=8 
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Algorithm Package / Method Parameters Final chosen model 

colsample_bytree=[0.4, 0.5, 0.6, 0.7, 0.8] 

min_child_weight=range(1, 9) 

objective=[‘binary:logistic’] 

n_estimators=260 

subsample=0.8 

Random 

forest 

scikit-learn / 

RandomForestClassifier 

n_estimators=range(200, 300, 10) 

max_depth=range(3, 11) 

max_features=range(4, 13) 

max_leaf_nodes=range(4, 13) 

min_samples_leaf=range(5, 11) 

min_samples_split:range(5, 11) 

max_depth=10 

max_features=12 

max_leaf_nodes=13 

min_samples_leaf=7 

min_samples_split=5 

n_estimators=220 

random_state=42 

 333 
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