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1 Abstract

2 Joint modelling for mixed longitudinal responses has played a prominent part in disease decision-

3 making. It is based on a joint strategy of estimating joint likelihood with shared random effects. 

4 Non-ignorable missingness in outcomes increases complexity in joint model; a shared parameter 

5 model is proposed to incorporate non-ignorable missing data for joint modelling of longitudinal 

6 responses and missing data mechanism. Parameters are estimated under the Bayesian paradigm 

7 and implemented via Markov chain Monte Carlo (MCMC) methods with Gibbs sampler. To 

8 demonstrate the effectiveness of the proposed method, the joint model is applied to analyze a 

9 prostate cancer dataset. The objective is to assess whether there is an association between two 

10 mixed longitudinal biomarkers, which could have important implications for understanding 

11 disease progression and guiding treatment decisions. The dataset contains non-monotone 

12 missingness pattern. To evaluate the performance and robustness of the proposed joint model, 

13 simulation studies are conducted.

14

15 Keywords: missing data, missingness, oncology, prostate 
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16 1. Introduction

17 Longitudinal studies have a wide range of applications in medicine, where measurements are 

18 repeatedly observed for individuals over time. These measurements are correlated even for 

19 different types of responses and collected for the same individuals. For example, in oncology 

20 research, more than one biomarker of mixed types is measured repeatedly over time for the same 

21 patient. These biomarkers are inherently associated – and this association is accounted for valid 

22 conclusions. Simultaneous modelling of mixed biomarkers is an optimal approach to account for 

23 correlation among multiple biomarkers [1].

24 Missing data is an unavoidable issue in longitudinal studies because patients may not come for a 

25 pre-specified follow-up visit at a particular time point for many reasons. In this regard, missingness 

26 exists in collected data and creates hindrances to extracting inference without making assumptions 

27 about the missingness mechanism. According to Rubin [2], missing completely at random 

28 (MCAR) and missing at random (MAR) mechanisms being not dependent upon unobserved 

29 measurements are ignorable. Not missing at random (NMAR) mechanism may depend upon both 

30 observed and unobserved responses and is considered non-ignorable. Non-ignorable missingness 

31 mechanism is considered in data analysis with longitudinal measurements to get unbiased 

32 estimates. 

33 In literature, selection models, pattern-mixture models (PMMs), and shared parameter models 

34 (SPMs) are mostly applied to tackle non-ignorable missing data. These models use different 

35 factorizations for missingness and measured processes to jointly model longitudinal responses 

36 incorporating missingness. The SPM approach is widely applied to model MAR data in 

37 longitudinal responses. Still, there exists a gap to employ SPM for NMAR. Non-ignorable missing 

38 data is addressed by employing logistic or probit models, which are specifically designed to handle 
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39 situations where the missing data mechanism is influenced by unobserved variables or responses, 

40 resulting in NMAR mechanisms. By integrating the logistic or probit model into the analysis, 

41 researchers can effectively mitigate potential biases caused by non-ignorable missing data that 

42 consequently makes precise inferences based on the available data. Logistic and probit models 

43 provide valuable insights into the underlying patterns of missingness, contributing to obtaining 

44 reliable results in longitudinal studies and other scenarios where missing data is common. 

45 Joint modelling terms are applied to simultaneously analyzed more than one outcome. Many 

46 methods have been proposed to jointly analyze single or multivariate longitudinal measurements 

47 alongside event time data in recent years [3,4]. Another joint modelling term is used to 

48 simultaneously analyze more than one longitudinal outcome possibly of different types using 

49 random effects, marginal or conditional models [5,6]. Catalano and Ryan [7] analyzed toxicity 

50 data proposing bivariate latent variable models to account for the relationship between fetal weight 

51 and malformation in live fetuses. Leon and Carriere [8] studied one longitudinal and one binary 

52 response to assess maternal smoking’s effect on the respiratory illness of children. Liu et al. [9] 

53 formulated a joint model to handle longitudinal binary and continuous responses by incorporating 

54 an ignorable missing data mechanism. Li et al. [10] applied joint modelling for continuous, binary, 

55 and ordinal responses under the Bayesian framework, while Kürüm et al. [11] proposed a joint 

56 model to analyze binary and continuous responses under frequentist statistics.  

57 Under the umbrella of non-ignorable missing data (NMAR) fall both non-monotone and monotone 

58 missingness patterns, which in turn provide incomplete observations. Intermittent missingness 

59 comes under non-monotone missingness pattern, where an individual misses any visit during the 

60 follow-up time, and returns to show up for subsequent visits. The monotone missingness pattern 

61 usually refers to informative drop-out, where an individual leaves the study before completion and 
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62 never comes back to complete follow-up time. Stubbendick and Ibrahim [12] used a likelihood-

63 based approach to incorporate non-monotone NMAR by proposing a joint likelihood of outcome 

64 and missing data indicators. Hogan et al. [13] worked on monotone missingness in longitudinal 

65 data. Gaskins et al. [14] worked on non-ignorable drop-out mixed longitudinal responses using 

66 PMM under joint modelling methodology.

67 In this article, a joint model is proposed for longitudinal continuous-binary biomarkers using a 

68 conditional modelling approach, and two shared parameter models are proposed for non-ignorable 

69 missingness under the conditional model. For estimating the model’s parameters different 

70 approaches are employed: likelihood-based approach, linear programming technique, and 

71 Bayesian approach. We work under the Bayesian framework to obtain parameter estimates. 

72 The article presents a robust statistical approach to analyze longitudinal mixed-effects biomarker 

73 measurements, accounting for non-monotone, non-ignorable missingness in the context of prostate 

74 cancer research. By utilizing joint modelling techniques and considering the missingness 

75 mechanisms, the researchers aim to obtain more reliable and meaningful results from their data 

76 analysis.

77

78 2. Motivation: Prostate cancer dataset

79 This research is motivated by a comprehensive dataset obtained from prostate cancer patients who 

80 underwent external beam radiotherapy (EBRT), Androgen deprivation therapy (ADT), and a 

81 combination of ADT along with other therapies. This dataset spans from 2012 to 2019 and includes 

82 information collected during up to 5 follow-up visits after treatment. The data was sourced from 

83 Mayo hospital, a renowned referral hospital in Pakistan. Data was received in 2021 by the authors 

84 of this study. The authors had no access to information that could identify individual participants.
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85 The evaluation of patients took place from the pre-treatment phase to the post-treatment follow-

86 up. During the pre-treatment phase, demographic characteristics and medical history of the patients 

87 were recorded. We specifically focused on patients’ age, body mass index (BMI), and Gleason 

88 score as baseline predictors for our study. Blood tests were also conducted to measure prostate-

89 specific antigen (PSA), alkaline phosphatase (ALT), platelets, and bilirubin. These biomarkers 

90 were tracked after treatment at each follow-up visit, with PSA and ALP values considered as 

91 indicators of prostate cancer progression after treatment, and endogenous platelets and bilirubin as 

92 time-dependent covariates. Our study included a total of 1,504 patients diagnosed with prostate 

93 cancer, out of which 1,026 received ADT and combination therapies as part of their treatment.

94  

95 3. Model specification

96 3.1 Model for longitudinal measurements

97 Data analysis is described by the joint model specification; sub-models illustrate such mixed types 

98 of complex data modelling. The first sub-model assumes to follow linear mixed-effects model 

99 specified for continuous longitudinal biomarker. Binary longitudinal response is assumed to follow 

100 mixed-effects logistic regression model. 

101 Let 𝑌𝑖𝑗 be the continuous longitudinal outcome for 𝑖𝑡ℎ individual 𝑖 = 1,2,3,….,𝑛 at time 𝑡𝑖𝑗 

102 𝑗 = 1,2,3,….,𝑚𝑦, assume linear mixed effects model as

103                                                         𝑌𝑖𝑗 = 𝑥𝑦′

𝑖𝑗𝛼1 + 𝑤𝑦′

𝑖𝑗𝑢1𝑖 + ԑ𝑖𝑗                                                  (1)

104 where, 𝛼1 is a 𝑝𝑦 dimensional vector of fixed effects regression coefficients, 𝑥𝑦
𝑖𝑗 vector of 

105 covariates. 𝑤𝑦
𝑖𝑗 is 𝑞𝑦 dimensional vector of random effects, 𝑢1𝑖 is a vector of random effects, that 

106 is independently and identically distributed as multivariate normal with mean vector 0 and 

107 covariance matrix 𝐷. ԑ𝑖𝑗~𝑁(0,𝜎2
ԑ) is the random error term. 
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108 Let, 𝑍𝑖𝑗be the binary repeated measurements observe for 𝑖𝑡ℎ individual, 𝑖 = 1,2,3,….,𝑛 at time 𝑠𝑖𝑗. 

109 Where 𝑠𝑖𝑗 = 𝑡𝑖𝑗, 𝑗 = 1,2,3,….,𝑚𝑧, binary response 𝑍𝑖𝑗 assumes to follow logistic mixed effects 

110 model that is given by

111 𝑍𝑖𝑗|𝑢2𝑖,~𝐵𝑒𝑟 (𝜆𝑖𝑗),

112                                                 𝑙𝑜𝑔𝑖𝑡(𝜆𝑖𝑗) = 𝑥𝑧′

𝑖𝑗𝛼2 + 𝑤𝑧′

𝑖𝑗𝑢2𝑖 + 𝛶𝑗𝑌𝑖𝑗,                                          (2)

113

114 where, 𝛼2 is a 𝑝𝑧 dimensional vector of fixed effects regression coefficients, 𝑥𝑧
𝑖𝑗 vector of 

115 covariates. 𝑤𝑧
𝑖𝑗 is 𝑞𝑦 dimensional vector of random effects, 𝑢2𝑖~𝑀𝑉𝑁(0, 𝐷)  is a vector of random 

116 effects, with the addition of associated parameter 𝛶𝑗 to measure the effect of response 𝑌𝑖𝑗 at time 

117 𝑡𝑖𝑗 on response 𝑍𝑖𝑗 at the same time 𝑠𝑖𝑗.

118

119 3.2 Missing data mechanism and shared parameter model

120 Longitudinal data are not fully observed which leads to incomplete measurements. The most 

121 important consideration is to specify an appropriate missing data mechanism based on assumptions 

122 related to unobserved and observed data. Little and Schluchter [15] as well as Fitzmaurice and 

123 Laird [16] applied general location model described by Olkin and Tate [17] assuming the 

124 ignorability assumption. This assumption leads to the usage of observed responses only without 

125 considering a model for missingness mechanism. Usually, the expectation-maximization (EM) 

126 algorithm is employed for parameter estimation. 

127 In this study, we examine two distinct missingness mechanisms to account for the presence of two 

128 different missingness patterns in longitudinal outcomes, two SPM are specified for missingness 

129 mechanisms. 
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130 Let 𝑅𝑖 = (𝑅𝑖1, 𝑅𝑖2,𝑅𝑖3,….,𝑅𝑖𝑛)′ be the vector of response indicators, if 𝑌𝑖𝑗 observed 𝑅𝑖𝑗 = 1, and 𝑅𝑖𝑗

131 = 0 for missing 𝑌𝑖𝑗. In this paper, a SPM based on non-ignorable missigness mechanisms for 𝑌𝑖 

132 and 𝑍𝑖 consider, assuming logistic mixed effects regression models for 𝑅𝑦
𝑖𝑗 and 𝑅𝑍

𝑖𝑗 responses.  

133 Let 𝑅𝑦
𝑖𝑗 be the missingness indicator for continuous response at time 𝑡𝑖𝑗, such that 𝑅𝑦

𝑖𝑗 = 1 if 𝑌𝑖𝑗 is 

134 not fully observed, the model for 𝑅𝑦
𝑖𝑗 is given by

135 𝑅𝑦
𝑖𝑗|𝑢1𝑖~𝐵𝑒𝑟(𝜆𝑅𝑦

𝑖𝑗 ),

136                                                    𝑙𝑜𝑔𝑖𝑡(𝜆𝑅𝑦

𝑖𝑗 ) = 𝜓𝑦′

𝑖𝑗𝛷1 + 𝜋𝑦′𝑢1𝑖,                                                (3)

137

138 Let 𝑅𝑧
𝑖𝑗 be the missingness indicator for continuous response at time 𝑠𝑖𝑗, such that 𝑅𝑧

𝑖𝑗 = 1 if 𝑍𝑖𝑗 is 

139 not fully observed, the model for 𝑅𝑧
𝑖𝑗 is given by

140 𝑅𝑧
𝑖𝑗|𝑢2𝑖~𝐵𝑒𝑟(𝜆𝑅𝑧

𝑖𝑗 ),

141                                        𝑙𝑜𝑔𝑖𝑡(𝜆𝑅𝑧

𝑖𝑗 ) = 𝜓𝑧′

𝑖𝑗𝛷2 + 𝜋𝑧′𝑢2𝑖 + 𝜅𝑗𝑅𝑦
𝑖𝑗,                                                (4)

142 To formulate joint distribution of responses given the random effects, let 𝑌𝑖𝑗 and 𝑍𝑖𝑗 are partitioned 

143 into 𝑌𝑖𝑗 = (𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑌𝑚𝑖𝑠

𝑖𝑗 ) and 𝑍𝑖𝑗 = (𝑍𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑚𝑖𝑠

𝑖𝑗 ), respectively. 

144 Joint model given the random effects is given as

145 𝑓(𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑌𝑚𝑖𝑠
𝑖𝑗 ,𝑍𝑚𝑖𝑠

𝑖𝑗 │𝑢1𝑖,𝑢2𝑖) = 𝑓(𝑌𝑖𝑗,𝑍𝑖𝑗,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗|𝑢1𝑖,𝑢2𝑖)

146
𝑓(𝑌𝑖𝑗,𝑍𝑖𝑗,𝑅𝑦

𝑖𝑗,𝑅𝑧
𝑖𝑗|𝑢1𝑖,𝑢2𝑖) = 𝑓(𝑍𝑖𝑗│ 𝑌𝑖𝑗,𝑅𝑦

𝑖𝑗,𝑅𝑧
𝑖𝑗,𝑢1𝑖,𝑢2𝑖) ×  𝑓(𝑌𝑖𝑗│𝑅𝑦

𝑖𝑗,𝑅𝑧
𝑖𝑗,𝑢1𝑖) ×  𝑓(𝑅𝑧

𝑖𝑗│𝑅𝑦
𝑖𝑗,𝑢1𝑖,𝑢2𝑖) 

×  𝑓(𝑅𝑦
𝑖𝑗|𝑢1𝑖,𝑢2𝑖)

147 = 𝑓(𝑍𝑖𝑗│ 𝑌𝑖𝑗,𝑅𝑧
𝑖𝑗,𝑢2𝑖) × 𝑓(𝑌𝑖𝑗|𝑅𝑦

𝑖𝑗,𝑢1𝑖) × 𝑓(𝑅𝑧
𝑖𝑗│𝑅𝑦

𝑖𝑗,𝑢2𝑖) × 𝑓(𝑅𝑦
𝑖𝑗|𝑢1𝑖)

148                             = 𝑓(𝑍𝑖𝑗│ 𝑌𝑖𝑗,𝑢2𝑖) × 𝑓(𝑌𝑖𝑗|𝑢1𝑖) × 𝑓(𝑅𝑧
𝑖𝑗│𝑅𝑦

𝑖𝑗,𝑢2𝑖) × 𝑓(𝑅𝑦
𝑖𝑗|𝑢1𝑖).                     (5)

149 Joint probability distribution function is formulated further as 

150 𝑓(𝑌𝑖𝑗,𝑍𝑖𝑗,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗) = ∫𝑢1𝑖∫𝑢2𝑖𝑓(𝑌𝑖𝑗,𝑍𝑖𝑗,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗|𝑢1𝑖,𝑢2𝑖)ℎ(𝑢1𝑖,𝑢2𝑖)𝑑𝑢1𝑖𝑑𝑢2𝑖
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151 = ∫𝑢1𝑖∫𝑢2𝑖

𝒎𝒚

𝒋=𝟏
𝑓(𝑌𝑖𝑗|𝑢1𝑖)

𝒎𝒛

𝒋=𝟏
𝑓(𝑍𝑖𝑗|𝑢2𝑖,𝑌𝑖𝑗) ×  

𝑚𝑦

𝑗=1
𝑓(𝑅𝑦

𝑖𝑗| 𝑢1𝑖)

𝑚𝑧

𝑗=1
𝑓(𝑅𝑧

𝑖𝑗|𝑢2𝑖,𝑌𝑖𝑗)𝑑𝑢1𝑖𝑑𝑢2𝑖.

152       (6)

153 3.3 Prior distributions and hierarchical model 

154 The unknown parameters of the proposed model are estimated by employing the Bayesian 

155 framework using Markov chain Monte Carlo (MCMC) techniques [18]. MCMC has an advantage 

156 over conventional methods, with MCMC conditional distribution of each parameter given others 

157 is easily specifying. Priors are chosen to carry out Bayesian inference for unknown parameters, let 

158 Ø = {𝛼1,𝛼2,𝜎2,𝐷1,𝐷2,𝛷1,𝛷2,𝜋𝑦,𝜋𝑧,𝛶𝑙,𝜅𝑘} be the unknown parameters’ vector where 𝑘 = 1,2,3,….,

159 𝑚𝑦 and 𝑙 = 1,2,3,….,𝑚𝑧. We specify proper prior for each set of unknown parameters: Gaussian 

160 distribution for the fixed effects, and  Inverse Gamma distribution for random effects. Different 

161 levels of variances for each distribution are tried out to make robust choice of fixed effects 

162 estimates. Independent prior distributions for unknown parameters are chosen by assigning 

163 hyperparameters that lead to low-informative prior distributions. 

164 α1~N′p1(μα1,∑α1
),

165 σ2~IΓ(aσ2,bσ2),

166 α2~N′p2(μα2,∑α2
),

167 D1~IWishart (ψD1,vD1
),

168 D2~IWishart (ψD2,vD2
),

169 Φ1~N′𝑝𝑦
𝑅
(μΦ1,∑Φ1

),

170 Φ2~N′𝑃𝑧
𝑅
(μΦ2,∑Φ2

),

171 𝜋𝑦~N′𝑞𝑦(μ𝜋𝑦,∑𝜋𝑦),

172 𝜋𝑧~N′𝑞𝑧(μ𝜋𝑧,∑𝜋𝑧),
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173 r~Γ(ar,br),

174 γj~N(μγj,σ
2
γj),j = 1,2,3,…,m𝑦,

175                                                         κj~N(μκj,σ
2
κj),j = 1,2,3,…,m𝑧,                                                   (7)

176

177 where IΓ(a,b) and Γ(a,b) denote inverse gamma distribution and gamma distribution with shape 

178 parameter a and scale parameter b. IWishart (ψ, v) represents the inverse Wishart distribution 

179 with scale and matrix parameters v and ψ, respectively. N(μ, ∑) denotes a normal distribution with 

180 mean vector μ and covariance matrix ∑.

181 The joint posterior density is formulated as

182

𝛩(Ø,𝑢1,𝑢2,𝑌𝑚𝑖𝑠
𝑖𝑗 ,𝑍𝑚𝑖𝑠

𝑖𝑗 |𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗) ∝
𝑛

𝑖=1

𝑚𝑦

𝑗=1
ϴ(𝑌𝑖𝑗;𝑥𝑦′

𝑖𝑗𝛼1 + 𝑤𝑦′

𝑖𝑗𝑢1𝑖,𝜎2
ԑ) × (𝜆𝑅𝑦

𝑖𝑗 )𝑅𝑦
𝑖𝑗(1 ― 𝜆𝑅𝑦

𝑖𝑗 )𝑅𝑦
𝑖𝑗

×
𝑛

𝑖=1

𝑚𝑧

𝑘=1

(𝜆𝑖𝑗)𝑧𝑖𝑘(1 ― 𝜆𝑖𝑗)𝑧𝑖𝑘 × (𝜆𝑅𝑧

𝑖𝑗 )𝑅𝑧
𝑖𝑘(1 ― 𝜆𝑅𝑧

𝑖𝑗 )𝑅𝑧
𝑖𝑘 × 𝛩(Ø),

183                                     (8)

184

185 where,  𝛩(Ø) is the joint prior distribution of unknown parameters. 

186 Samples are drawn iteratively from conditional posterior distributions derived from (8) using 

187 Gibbs sampler, the full conditional distributions for parameters are given by

188                              𝛼|Ս(―𝛼),𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗~𝑁𝑝𝑌(∑𝛼 |. ..(∏𝑛
𝑖=1 𝑥𝑦′

𝑖
𝑌𝑖 ― 𝑤𝑦′

𝑖 𝑎1𝑖

𝜎2
ԑ

),∑𝛼 |. ..)                      (9)

189 Where ∑𝛼 |… = (
∑𝑛

𝑖=1 𝑥𝑦′
𝑖 𝑥𝑦

𝑖

𝜎2
ԑ

+ ∑―1
𝛼1 )

―1
 .

190 𝜎2
ԑ|U(―𝜎2

ԑ),𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗~IГ(
𝑚𝑦𝑛

2 + 𝑎𝜎2,𝑏𝜎2 +
1
2

𝑛

𝑖=1

𝑚𝑦

𝑗=1
(𝑌𝑖𝑗 ― 𝑥𝑦′

𝑖𝑗𝛼1 + 𝑤𝑦′

𝑖𝑗𝑢1𝑖)
2
)

191       (10)
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192 𝛩(𝛼2|U(―𝛼2),𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗) ∝
𝑛

𝑖=1

𝑚𝑧

𝑗=1

exp (𝑥𝑧′

𝑖𝑗𝛼2 + 𝑤𝑧′

𝑖𝑗𝑢2𝑖 + 𝛶𝑗𝑌𝑖𝑗)𝑧𝑖𝑗

1 + exp (𝑥𝑧′

𝑖𝑗𝛼2 + 𝑤𝑧′

𝑖𝑗𝑢2𝑖 + 𝛶𝑗𝑌𝑖𝑗)
× ϴ𝑝𝑧(𝛼2;𝜇𝛼2,∑𝛼2),

193       (11)

194 𝛩(𝛷1|U(―𝛷1),𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗) ∝
𝑛

𝑖=1

𝑚𝑧

𝑗=1

exp (𝜓𝑦′

𝑖𝑗𝛷1 + 𝜋𝑦′𝑢1𝑖)𝑅𝑦
𝑖𝑗

1 + exp (𝜓𝑦′

𝑖𝑗𝛷1 + 𝜋𝑦′𝑢1𝑖)
× ϴ𝑝𝑅𝑦(𝛷1;𝜇𝛷1,∑𝛷1),

195       (12)

196 𝛩(𝛷2|U(―𝛷2),𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗) ∝
𝑛

𝑖=1

𝑚𝑧

𝑗=1

exp (𝜓𝑧′

𝑖𝑗𝛷2 + 𝜋𝑧′𝑢2𝑖 + 𝜅𝑗𝑅𝑦
𝑖𝑗)𝑅𝑍

𝑖𝑗

1 + exp (𝜓𝑧′

𝑖𝑗𝛷2 + 𝜋𝑧′𝑢2𝑖 + 𝜅𝑗𝑅𝑦
𝑖𝑗)

× ϴ𝑝𝑅𝑧(𝛷2;𝜇𝛷2,∑𝛷2),

197       (13)

198 𝐷1|U(―𝐷1),𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗~𝐼𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝜋𝑦 +
𝑛

𝑖=1
𝑢1𝑖𝑢′1𝑖,𝑣 + 𝑞𝑦 + 𝑛 )

199       (14)

200 𝐷2|U(―𝐷2),𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗~𝐼𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝜋𝑧 +
𝑛

𝑖=1
𝑢2𝑖𝑢′2𝑖,𝑣 + 𝑞𝑧 + 𝑛 )

201       (15)

202 𝛩(𝜋𝑦|U(―𝜋𝑦),𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗) ∝
𝑛

𝑖=1

𝑚𝑧

𝑗=1

exp (𝜓𝑦′

𝑖𝑗𝛷1 + 𝜋𝑦′𝑢1𝑖)𝑅𝑦
𝑖𝑗

1 + exp (𝜓𝑦′

𝑖𝑗𝛷1 + 𝜋𝑦′𝑢1𝑖)
× ϴ𝑞𝑅𝑦(𝜋𝑦;𝜇𝜋𝑦,∑𝜋𝑦),

203      (16)

204 𝛩(𝜋𝑧|U(―𝜋𝑧),𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗) ∝
𝑛

𝑖=1

𝑚𝑧

𝑗=1

exp (𝜓𝑧′

𝑖𝑗𝛷2 + 𝜋𝑧′𝑢2𝑖 + 𝜅𝑗𝑅𝑦
𝑖𝑗)𝑅𝑍

𝑖𝑗

1 + exp (𝜓𝑧′

𝑖𝑗𝛷2 + 𝜋𝑧′𝑢2𝑖 + 𝜅𝑗𝑅𝑦
𝑖𝑗)

× ϴ𝑞𝑅𝑧(𝜋𝑧;𝜇𝜋𝑧,∑𝜋𝑧),

205      (17)

206 𝛩(𝛶𝑗|U(―𝛶𝑗),𝑌
𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗) ∝
𝑛

𝑖=1

𝑚𝑧

𝑗=1

exp (𝑥𝑧′

𝑖𝑗𝛼2 + 𝑤𝑧′

𝑖𝑗𝑢2𝑖 + 𝛶𝑗𝑌𝑖𝑗)𝑧𝑖𝑗

1 + exp (𝑥𝑧′

𝑖𝑗𝛼2 + 𝑤𝑧′

𝑖𝑗𝑢2𝑖 + 𝛶𝑗𝑌𝑖𝑗)
× ϴ(𝛶𝑗;𝜇𝛶𝑗,𝜎

2
𝛶𝑗),
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207      (18)

208 𝛩(𝜅𝑗|U(―𝜅𝑗),𝑌
𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗) ∝
𝑛

𝑖=1

𝑚𝑧

𝑗=1

exp (𝜓𝑧′

𝑖𝑗𝛷2 + 𝜋𝑧′𝑢2𝑖 + 𝜅𝑗𝑅𝑦
𝑖𝑗)𝑅𝑍

𝑖𝑗

1 + exp (𝜓𝑧′

𝑖𝑗𝛷2 + 𝜋𝑧′𝑢2𝑖 + 𝜅𝑗𝑅𝑦
𝑖𝑗)

× ϴ(𝜅𝑗;𝜇𝜅𝑗,𝜎
2
𝜅𝑗),

209                (19)

210

211 𝛩(𝑢1𝑖│U(―𝑢1𝑖),𝑌
𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗) ∝

𝑚𝑦

𝑖=1
ϴ(𝑌𝑖𝑗;𝑥𝑦′

𝑖𝑗𝛼1 + 𝑤𝑦′

𝑖𝑗𝑢1𝑖 ,𝜎2
ԑ) ×

𝑚𝑧

𝑗=1

exp (𝜓𝑦′

𝑖𝑗𝛷1 + 𝜋𝑦′𝑢1𝑖)𝑅𝑦
𝑖𝑗

1 + exp (𝜓𝑦′

𝑖𝑗𝛷1 + 𝜋𝑦′𝑢1𝑖)
× ϴ𝑞𝑦(

𝑢1𝑖;0,𝐷1),

212 (20)

213

𝛩(𝑢2𝑖│U(―𝑢2𝑖),𝑌
𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗) ∝

𝑚𝑧

𝑗=1

exp (𝑥𝑧′

𝑖𝑗𝛼2 + 𝑤𝑧′

𝑖𝑗𝑢2𝑖 + 𝛶𝑗𝑌𝑖𝑗)𝑧𝑖𝑗

1 + exp (𝑥𝑧′

𝑖𝑗𝛼2 + 𝑤𝑧′

𝑖𝑗𝑢2𝑖 + 𝛶𝑗𝑌𝑖𝑗)

×

𝑚𝑧

𝑗=1

exp (𝜓𝑧′

𝑖𝑗𝛷2 + 𝜋𝑧′𝑢2𝑖 + 𝜅𝑗𝑅𝑦
𝑖𝑗)𝑅𝑍

𝑖𝑗

1 + exp (𝜓𝑧′

𝑖𝑗𝛷2 + 𝜋𝑧′𝑢2𝑖 + 𝜅𝑗𝑅𝑦
𝑖𝑗)

× ϴ𝑞𝑧(𝑢2𝑖;0,𝐷2),

214 (21)

215 𝑌𝑚𝑖𝑠
𝑖𝑗 |Ս(―𝑌𝑚𝑖𝑠

𝑖𝑗 ),𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗~𝑁(𝑥𝑦′

𝑖𝑗𝛼1 + 𝑤𝑦′

𝑖𝑗𝑢1𝑖,𝜎2
ԑ)

216 (22)

217 𝑍𝑚𝑖𝑠
𝑖𝑗 |Ս(―𝑍𝑚𝑖𝑠

𝑖𝑗 ),𝑌𝑜𝑏𝑠
𝑖𝑗 ,𝑍𝑜𝑏𝑠

𝑖𝑗 ,𝑅𝑦
𝑖𝑗,𝑅𝑧

𝑖𝑗~𝐵𝑒𝑟(𝜆𝑖𝑗).

218 (23)

219 4. Simulation studies

220 Some simulation studies are conducted to assess the performance of the proposed model. The first 

221 simulation is designed with assuming no association between two responses, and between 

222 measurements and missingness processes. The second simulation assumes different associations 

223 between biomarkers, also between biomarkers and missingness processes. Each simulation has 

224 100 random samples and each sample includes 500, 1,000, and 3,000 subjects.
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225 For each individual, the two longitudinal measurements are generated from the following joint 

226 model,

227 𝑌𝑖𝑗 = 𝑥𝑦′

𝑖𝑗𝛼1 + 𝑢1𝑖 + ԑ1𝑖𝑗,      𝑖 = 1,2,3,….,𝑛,   j = 1,2,3,…,m𝑦,                     (24)   

228 𝑌∗
𝑖𝑗 = 𝑥𝑧′

𝑖𝑗𝛼2 + 𝑢2𝑖 + 𝛶𝑗𝑌𝑖𝑗 + ԑ∗
𝑖𝑗,  𝑖 = 1,2,3,….,𝑛,   j = 1,2,3,…,m𝑧,               (25)         

229 where  ԑ∗
𝑖𝑗~𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0,1),   𝑍𝑖𝑗 = 1 for 𝑌∗

𝑖𝑗⪰0, and    𝑍𝑖𝑗 = 0 for 𝑌∗
𝑖𝑗 ≺ 0.

230 For missingness processes, following models are assumed to generate data,

231                                                               𝑅𝑦
𝑖𝑗|𝑢1𝑖~𝐵𝑒𝑟(𝜆𝑅𝑦

𝑖𝑗 ),                                                         (26)

232 where, 𝑙𝑜𝑔𝑖𝑡(𝜆𝑅𝑦

𝑖𝑗 ) = 𝜓𝑦′

𝑖𝑗𝛷1 + 𝜋𝑦′𝑢1𝑖.

233                                                                𝑅𝑧
𝑖𝑗|𝑢2𝑖~𝐵𝑒𝑟(𝜆𝑅𝑧

𝑖𝑗 ),                                                       (27)

234 where, 𝑙𝑜𝑔𝑖𝑡(𝜆𝑅𝑧

𝑖𝑗 ) = 𝜓𝑧′

𝑖𝑗𝛷2 + 𝜋𝑧′𝑢2𝑖 + 𝜅𝑗𝑅𝑦
𝑖𝑗.

235 𝑥𝑦′

𝑖𝑗𝛼1 = 𝛼10 + 𝛼11𝑡𝑖𝑗 + 𝛼12𝑥1𝑖 + 𝛼13𝑥2𝑖 + 𝛼14𝑥3𝑖 + 𝛼15𝑥4𝑖 + 𝛼16𝑥5𝑖 + 𝛼17𝑥6𝑖 + 𝛼18𝑥7𝑖,        

236   𝑥𝑧′

𝑖𝑗𝛼2 = 𝛼20 + 𝛼21𝑠𝑖𝑗 + 𝛼22𝑥1𝑖 + 𝛼23𝑥2𝑖 + 𝛼24𝑥3𝑖 + 𝛼25𝑥4𝑖 + 𝛼26𝑥5𝑖 + 𝛼27𝑥6𝑖 + 𝛼28𝑥7𝑖,      

237    𝜓𝑦′

𝑖𝑗𝛷1 = 𝛷10 + 𝛷11𝑋3𝑖,    𝜓𝑧′

𝑖𝑗𝛷2 = 𝛷20 + 𝛷21𝑋4𝑖 , ԑ𝑖𝑗~𝑁(0,𝜎2
ԑ),  𝑢1𝑖~𝑁(0,𝜎2

𝑢1),  𝑢2𝑖~𝑁(0,𝜎2
𝑢2),  𝑡𝑗 = 0,1,2,3,….,

238 𝑚𝑦,  and 𝑠𝑗 = 0,1,2,3,….,𝑚𝑧.

239 To make simulation feasible, each dataset included small to large individuals with longitudinal 

240 measurements. Follow-up visits are scheduled at time = {0, 1, 2, 3, 4, 5}. The true values 

241 considered for 𝛼1 = 𝛼2 = (1, ― 1,0,2,1,1,1, ― 1, ― 1)′ and 𝛷1 = 𝛷2 = (2,1)′. 𝑥11,𝑥12,𝑥13,𝑥14 are 

242 generated from 𝑁(0,1), and 𝑥15,𝑥16,𝑥17 are generated from 𝑏𝑖𝑛𝑜𝑚(𝑛,1,0.1). 𝑢𝑖 = (𝑢1𝑖,𝑢2𝑖) is 

243 generated from 𝑀𝑉𝑁 = (0,𝐷), where 

244 𝐷 = (𝜎11 𝜎12
𝜎21 𝜎22) = (1.0 0.5

0.5 1.0).

245
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246 For the SPM incorporating non-monotone, non-ignorable missing data mechanism, model (26) 

247 and model (27) are formulated following Fitzmaurice et al. [19]. We first considered independence 

248 (𝛶𝑗,𝜅𝑗) = (0,0)′. Sample sizes are assessed by considering 𝑛 = 500, 𝑛 = 1,000, and 𝑛 = 3,000 

249 individuals with different association parameters as (𝛶𝑗,𝜅𝑗) = (1.000, ― 1.000)′, (𝛶𝑗,𝜅𝑗) =

250 (0.500, ― 0.500)′, (𝛶𝑗,𝜅𝑗) = ( ― 0.500, ― 0.500)′.

251 Sensitivity analysis of posterior distribution is assessed by selecting different prior distributions. 

252 In the case of informative priors, the structure of prior distributions take main focus during the 

253 sensitivity analysis. Non-informative priors are assessed based on changes in posterior inference. 

254 All our parameters are checked for different parameters’ values to assess robustness of posterior 

255 means. In addition, sensitivity analysis can also be done for missingness mechanisms, where the 

256 assessment for ignorable and non-ignorable missingness can be evaluated. We do not apply 

257 sensitivity analysis for different missingness mechanisms, as it is beyond the scope of our study 

258 objective. 

259 A computational procedure to estimate parameters in proposed joint model is conducted using 

260 Gibbs sampling by WinBUGS software. Two parallel MCMC sampling chains run with different 

261 starting values, convergence of chains is examined by trace plots and with diagnostic statistics 

262 suggested by Gelman et al. [18]. Posterior estimates are based on 10,000 iterations after discarding 

263 5,000 of the burn-in period. 

264 Data are generated under two scenarios: biomarker variability is not associated with each other 

265 (𝛶 = 0), and both biomarkers are associated with each other (𝛶 = ±  0.5, 𝑜𝑟 ± 1.0). With that, 

266 it is also evaluated whether either missingness process is associated with the measurements process 

267 (𝜅 = ±  0.5, 0𝑟 ± 1.0) or not. Each dataset is then analyzed using our proposed joint model. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.22.23294418doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.22.23294418
http://creativecommons.org/licenses/by/4.0/


- 15 -

268 Based on the results presented in Table 1, it is to be noted that the performance of the proposed 

269 joint model is good. Consistency of parameter estimates is evaluated by increasing sample size 

270 which causes reduced bias and standard error for respective parameters. The same interpretation 

271 of parameter estimates holds for zero to non-zero association parameters. 

272

273 Table 1: Results of the simulation study for binary and continuous longitudinal biomarkers data incorporating NMAR 
274 based on joint modelling for the simulation study. Estimate (Est.), standard error (SE), Bias for N = 100 simulated 
275 data with sample size 500, 1,000, and 3,000 considering association (𝛶𝑗,𝜅𝑗) = (0.5, ― 0.5)′.

 n=500 n=1,000 n=3,000

Parameter            Real     Est(SE)                     Bias    Est(SE)                      Bias     Est(SE)                    Bias

𝛼10                            1.000             1.130(0.260)               0.130   0.895(0.161)           -0.105  1.088(0.101)               0.088

𝛼11                           -1.000            -1.142(0.196)             -0.142                         -0.985(0.119)             0.015                  -1.006(0.075)             -0.006

𝛼12                   0.000  0.275(0.118)               0.275  0.112(0.073)             0.112                   -0.062(0.043)             -0.062

𝛼13                   2.000  2.587(0.397)               0.587  1.896(0.242)            -0.104                   1.969(0.152)             -0.031

𝛼14                            1.000  1.066(0.209)               0.066  0.943(0.135)             -0.057  0.971(0.082)             -0.029

𝛼15                            1.000  1.093(0.215)               0.093  1.028(0.139)             0.028  1.016(0.086)               0.016 

𝛼16                            1.000  1.133(0.366)               0.133  1.586(0.257)             0.586                    0.962(0.151)             -0.038  

𝛼17                           -1.000 -0.622(0.402)               0.378 -1.121(0.288)            -0.121 -0.991(0.162)              0.009

𝛼18                           -1.000 -1.169(0.376)              -0.169 -0.863(0.264)             0.137 -0.926(0.168)              0.074

𝛼20                            1.000  1.056(0.062)               0.056  1.050(0.043)             0.050  1.044(0.025)               0.044

𝛼21                           -1.000 -1.007(0.005)              -0.007 -0.998(0.004)              0.002 -1.000(0.002)               0.000

𝛼22                            0.000 -0.045(0.021)              -0.045 -0.033(0.030)            -0.033 -0.005(0.002)              -0.005

𝛼23                   2.000  1.976(0.039)              -0.024  1.993(0.028)            -0.007  1.999(0.015)              -0.001

𝛼24                    1.000  0.978(0.037)              -0.022  0.980(0.029)            -0.020  1.007(0.015)               0.007

𝛼25                            1.000             1.036(0.039)               0.036  1.029(0.027)             0.029  1.006(0.016)               0.006

𝛼26                       1.000  1.076(0.122)               0.076                              1.069(0.092)             0.069  1.022(0.053)               0.022

𝛼27                           -1.000 -1.102(0.132)              -0.102                            -1.040(0.095)             -0.040 -1.007(0.050)              -0.007

𝛼28                           -1.000 -0.765(0.120)               0.235 -1.159(0.087)            -0.159                 -1.020(0.051)              -0.020

𝛷10                   2.000  1.845(0.136)              -0.155  1.992(0.101)            -0.008                    1.997(0.060)              -0.003

𝛷11                   1.000  1.039(0.077)               0.039                               1.030(0.058)             0.030  1.008(0.033)               0.008
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𝛷20                            2.000  1.967(0.080)              -0.031  1.989(0.058)            -0.011  1.991(0.034)              -0.009 

𝛷21                   1.000  0.973(0.078)              -0.027  0.990(0.056)            -0.010  0.999(0.032)              -0.001

𝜎2
ԑ                             1.000  1.029(0.029)               0.029  1.023(0.020)             0.023                     1.006(0.012)               0.006

𝜎2
𝑢1                       1.000  0.884(0.074)              -0.116  0.902(0.056)            -0.098  0.989(0.031)              -0.011

𝜎2
𝑢2                   1.000  1.562(0.556)               0.562  1.193(0.284)             0.193                     1.140(0.191)               0.140

𝛶1                              0.500  0.341(0.189)              -0.159                               0.471(0.118)             -0.029                       0.495(0.075)              -0.005

𝛶2                              0.500  0.276(0.187)             -0.224  0.428(0.119)            -0.072  0.502(0.076)               0.002

𝛶3                              0.500  0.614(0.239)               0.114  0.559(0.178)             0.059                    0.521(0.084)               0.021

𝛶4                              0.500  0.534(0.249)               0.034  0.526(0.188)             0.026                    0.512(0.101)               0.012

𝛶5                              0.500  0.538(0.425)               0.038  0.532(0.224)             0.032                    0.509(0.116)               0.009

𝛶6                              0.500  0.603(0.353)               0.103  0.554(0.283)              0.054  0.513(0.353)               0.013

𝜅1                            -0.500  -0.562(0.177)              -0.062                              -0.556(0.134)            -0.056 -0.517(0.077)              -0.017

𝜅2                            -0.500  -0.351(0.182)               0.149 -0.442(0.131)              0.058 -0.490(0.078)               0.010

𝜅3                           -0.500  -0.428(0.189)              0.072                              -0.449(0.132)             0.051                    -0.496(0.076)               0.004

𝜅4                           -0.500  -0.441(0.180)              0.059                              -0.450(0.133)             0.050                  -0.498(0.077)               0.002

𝜅5                           -0.500  -0.514(0.181)             -0.014 -0.510(0.132)             -0.010 -0.506(0.078)              -0.006  

𝜅6                           -0.500  -0.521(0.185)             -0.021                              -0.516(0.132)            -0.016                  -0.507(0.078)              -0.007

𝜋𝑦                           1.000  1.063(0.043)              0.063                                0.998(0.035)              -0.002                     0.998(0.029)              -0.002

𝜋𝑧                           1.000  1.183(0.711)              0.183                                1.058(0.127)               0.058  1.037(0.118)               0.037

276

277

278 5. Prostate cancer data analysis

279 The primary objective of prostate cancer (PC) data analysis is to detect any potential association 

280 between PSA and ALP biomarkers, and to simultaneously analyze both. PC data were collected 

281 from n =1504 patients who had at least 2 measurements of PSA, and ALP. Patients’ 𝐴𝑔𝑒, 

282 𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡𝑠, 𝐵𝑀𝐼, 𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛, 𝐺𝑙𝑒𝑎𝑠𝑜𝑛 𝑆𝑐𝑜𝑟𝑒, 𝐺𝑟𝑎𝑑𝑒 are recorded along with the prescribed 𝐷𝑟𝑢𝑔. 

283 Following joint model is considered,

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.22.23294418doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.22.23294418
http://creativecommons.org/licenses/by/4.0/


- 17 -

284                                                         𝑙𝑜𝑔𝑃𝑆𝐴𝑖𝑗|𝑢1𝑖~𝑁(𝜇𝑖𝑗,𝜎2),                                                  (28)

285                                                            𝐴𝐿𝑃𝑖𝑘|𝑢2𝑖~𝐵𝑒𝑟(𝜆𝑖𝑘),                                                       (29)

286

287
𝜇𝑖𝑗

= 𝛼10 + 𝛼11𝑡𝑗 + 𝛼12𝐴𝑔𝑒𝑖 + 𝛼13𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡𝑠𝑖 + 𝛼14𝐵𝑀𝐼𝑖 + 𝛼15𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛𝑖 + 𝛼16𝐺𝑙𝑒𝑎𝑠𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑖
+ 𝛼17𝐷𝑟𝑢𝑔𝑖 + 𝑢1𝑖

288 and 

289
𝑙𝑜𝑔𝑖𝑡(𝜆𝑖𝑗)

= 𝛼20 + 𝛼21𝑡𝑗 + 𝛼22𝐴𝑔𝑒𝑖 + 𝛼23𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡𝑠𝑖 + 𝛼24𝐵𝑀𝐼𝑖 + 𝛼25𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛𝑖 + 𝛼26
𝐺𝑙𝑒𝑎𝑠𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑖 + 𝛼27𝐷𝑟𝑢𝑔𝑖 + 𝛶𝑗𝑙𝑜𝑔𝑃𝑆𝐴𝑖𝑠𝑘 +𝑢2𝑖

290

291 In addition, for non-ignorable missingness mechanisms following models are proposed,  

292                                                         𝑅𝑙𝑜𝑔𝑃𝑆𝐴
𝑖𝑗 ~𝐵𝑒𝑟(𝜆𝑙𝑜𝑔𝑃𝑆𝐴

𝑖𝑗 ),                                                   (30)

293 where, 𝑙𝑜𝑔𝑖𝑡(𝜆𝑙𝑜𝑔𝑃𝑆𝐴
𝑖𝑗 ) = 𝛷10 + 𝛷11𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡𝑠𝑖 + 𝛷12𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛𝑖 + 𝜋𝑙𝑜𝑔𝑃𝑆𝐴𝑢1𝑖

294                                                                𝑅𝐴𝐿𝑃
𝑖𝑘 ~𝐵𝑒𝑟(𝜆𝐴𝐿𝑃

𝑖𝑘 ),                                                        (31)

295 where, 𝑙𝑜𝑔𝑖𝑡(𝜆𝐴𝐿𝑃
𝑖𝑘 ) = 𝛷20 + 𝛷21𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡𝑠𝑖 + 𝛷22𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛𝑖 + 𝜅𝑘𝑅𝑙𝑜𝑔𝑃𝑆𝐴

𝑖𝑠𝑘 +𝜋𝐴𝐿𝑃𝑢2𝑖,

296 𝑢1𝑖~𝑁(0,𝜎2
𝑢1), and 𝑢2𝑖~𝑁(0,𝜎2

𝑢2)

297 Two parallel MCMC chains runs with different initial values for 10,000 iterations and discarded 

298 first 5,000 iterations as pre-convergence burn-in. Convergence of MCMC chains is checked using 

299 Gelman-Rubin diagnostic test. In addition, trace plots can plot for unknown parameters to assess 

300 convergence. To get posterior inference, prior distributions for unknown parameters are selected 

301 as, ui = (u1i,u2i)~MVN((0,0),Du),  𝑖 = 1,…,𝑛, where Du~IWishart (ψDu,vDu
), such that the hyper-

302 parameters of ψΣu = I2 and vΣu = 2  which lead to low-informative priors. It is also to be assumed 

303 that σ2
ε~IΓ(0.1,0.1), the regression coefficients (𝛼𝑖1,𝛼𝑖2,𝜓𝑖1,𝜓𝑖2)′ are fixed effects unknown 

304 parameters and the prior distributions for them are N(0,1000), γj , 𝑗 = 1,…,𝑚𝑦 is the associated 
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305 parameter of the continuous longitudinal log( PSA) on the binary longitudinal ALP at time j and 

306 the prior distributions for it is N(0,1000). Prior distribution for associated parameter κj , 𝑗 = 1,…,𝑚𝑧 

307 is N(0,1000), 𝜋𝑙𝑜𝑔𝑃𝑆𝐴,𝜋𝐴𝐿𝑃~𝑁(0,1000). 

308 For model selection, we apply the deviance information criterion (DIC), which identifies the most 

309 suitable model by balancing between likelihood and parameters’ numbers. Posterior means and 

310 the number of parameters are used in this criteria to find the best-fitted model [20].

311                                                                𝐷𝐼𝐶 = 𝐷(Ø) + 𝑃,                                                       (32)

312 Where, 𝑃 = 𝐷(Ø) ―𝐷(Ø), and 𝐷(Ø) = ―2log (𝑓(
𝑤
Ø).

313 𝐷(Ø) and Ø are posterior estimates of 𝐷(Ø) and Ø. 𝑤 = 𝑤𝑖 = (𝑤1,𝑤2,𝑤3,….,𝑤𝑛) is full data with 

314 marginal density, 𝑓(
𝑤
Ø) and Ø are vectors of model parameters. The lowest DIC leads us to the best 

315 model fit, that is our proposed joint model.

316 The parameter estimates and their 95% posterior intervals are presented in Table 2 and summarized 

317 for joint model: PSA level decreases with respect to time after treatment, and it is a good sign to 

318 evaluate efficiency of prescribed treatment when this decrease is significant. PSA alone is not an 

319 adequate biomarker, ALP measurements are also taken into account. ALP increases with respect 

320 to time for individuals, but this increase has not had any significant effect. The results indicate that 

321 with increasing age, both PSA and ALP increase. This positive increase is significant for PSA but 

322 non-significant for ALP. Platelets are another predictor of increasing PSA significantly, but due to 

323 one unit increase in platelets, ALP level decreases non-significantly with 0.026 on average. With 

324 increasing BMI, patients’ PSA and ALP both tend to significantly decrease. One unit increase in 

325 bilirubin measurement makes a significant increase of 0.201, and 0.617 in PSA and ALP 

326 measurements, respectively. The results show that PSA and ALP measurements are lower among 

327 those patients with a Gleason score greater than or equal to (4+3) as compared to those whose 
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328 score is lower than and equal to (3+4), it is due to treatment effect. This study’s results revealed 

329 that patients who received ALT, prostatectomy, and their combinations have lower PSA and ALP 

330 measurements as compared to those who received EBRT; and this is a good sign to prove drug 

331 efficacy. There exists a positive correlation between PSA and ALP measurements that can be 

332 revealed with associated parameters 𝛶; while a negative association exists between missingness 

333 and measurement processes. Results revealed that due to the existence of a positive association 

334 both PSA and ALP measurements should be simultaneously taken on PC patients to get insights 

335 about PC progression. In addition, missingness must be incorporated into data to avoid loss of 

336 information. 

337

338 Table 2: Parameter estimates (Mean), standard deviation (Sd), and 95% CI (credible interval) of PC data, by applying 
339 our proposed joint SPM, and separate models.

 JM Separate models

 Mean(Sd) 95%CI  Mean(Sd) 95%CI

Continuous log(PSA) sub-model 

𝛂𝟏𝟏 (Intercept)   2.221(0.046) (2.134, 2.314)    2.167(0.049)      (2.072, 2.261)

𝛂𝟏𝟐 (Time)  -6.597(0.080)  (-6.752,-6.437)   -6.573(0.081) (-6.732, -6.415)

𝛂𝟏𝟑 (Age)  0.290(0.024) (0.242,0.337)    0.303(0.025) (0.254, 0.352)

𝛂𝟏𝟒 (Platelets) 0.251(0.036) (0.181,0.319) 0.217(0.037) (0.148, 0.287)

𝛂𝟏𝟓 (BMI) -0.206(0.024) (-0.253,-0.160) -0.197(0.024) (-0.246, -0.149)

𝛂𝟏𝟔 (Bilirubin) 0.201(0.036) (0.129,0.271) 0.193(0.037) (0.121, 0.266)

𝛂𝟏𝟕 (Gleason 

Score)

0.862(0.161) (0.543,1.171) 0.862(0.179) (0.514, 1.213) 

𝛂𝟏𝟖 (Drug) 0.692(0.163) (0.384,1.009) 0.752(0.182) (0.399, 1.108)

𝜱𝟏𝟎 (Intercept)  0.475(0.029)    (0.418,0.533)     0.473(0.030)                 (0.416, 0.530)

𝜱𝟏𝟏 (Platelets) -0.003(0.001)           (-0.106,0.101)     0.005(0.003)                 (-0.104, 0.101)

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.22.23294418doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.22.23294418
http://creativecommons.org/licenses/by/4.0/


- 20 -

𝜱𝟏𝟐 (Bilirubin)  0.041(0.014)            (-0.064,0.149)     0.019(0.010)                  (-0.086, 0.124)

𝝈𝟐
𝒖𝟏  0.334(0.031)            (0.275, 0.396)     0.356(0.032)                  (0.295, 0.420)

σ2 1.399(0.034) (1.334,1.467) 1.371(0.035) (1.309, 1.437)

𝝅𝒍𝒐𝒈𝑷𝑺𝑨 -0.229(0.060)   (-0.346,-0.113)    -0.229(0.062)       (-0.347,-0.113)

Binary ALP sub-model 

𝛂𝟐𝟏 (Intercept) -1.741(0.335) (-2.369,-1.076) -0.759(0.379) (-0.912, -0.601)

𝛂𝟐𝟐 (Time) 0.182(0.077) (-1.765, 2.014) -2.652(0.282) (-3.236, -2.144)

𝛂𝟐𝟑 (Age)  0.019(0.009) (-0.108,0.125) 0.062(0.043) (-0.022, 0.147)

𝛂𝟐𝟒 (Platelets) -0.026(0.015) (-0.173,0.121) -0.082(0.055) (-0.19, 0.026)

        𝛂𝟐𝟓 (BMI) -0.148(0.029) (-0.244,-0.052) -0.135(0.039) (-0.209, -0.058)

𝛂𝟐𝟔 (Bilirubin) 0.617(0.014) (0.457,0.782) 0.487(0.047) (0.397, 0.58)

𝛂𝟐𝟕 (Gleason 

Score)

0.490(0.319) (-0.230,1.095) 0.648(0.328) (-0.033, 1.263)

𝛂𝟐𝟖 (Drug) -0.587(0.313) (-1.138,0.048) -0.347(0.335) (-0.963, 0.343)

𝜱𝟐𝟎 (Intercept)   1.103(0.054)          (0.997, 1.208)      1.100(0.054)      (0.990, 1.212)

𝜱𝟐𝟏 (Platelets)   0.016(0.009)          (-0.100, 0.132)      0.013(0.010)      (-0.100, 0.140)

𝜱𝟏𝟐 (Bilirubin)   0.212(0.063)          (0.090, 0.337)      0.210(0.064)      (0.089, 0.340)

𝝈𝟐
𝒖𝟐   0.104(0.033)          (0.054, 0.173)      0.101(0.035)      (0.050, 0.180)

𝝅𝑨𝑳𝑷  -0.348(0.126)          (-0.605,-0.107)     -0.343(0.129)      (-0.600, -0.112)

Associated Parameters

𝛄𝟏   0.511(0.147)   (0.219,0.789)

𝛄𝟐  0.029(0.018) (-0.266,0.308)

𝛄𝟑 0.217(0.150) (-0.080,0.506)

𝛄𝟒 0.364(0.161) (0.048,0.677)

𝛄𝟓 1.455(0.335) (0.829,2.160)

𝛋𝟏 -0.538(0.023) (-0.585,-0.493)

𝛋𝟐  0.012(0.001) (-0.048,0.075)
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𝛋𝟑  -0.159(0.041) (-0.239,-0.078)  

𝛋𝟒  -0.382(0.070)        (-0.520,-0.243)

𝛋𝟓  -1.011(0.214)       (-1.451,-0.608)

          𝑫𝑰𝑪   33308 53591

340

341

342  6. Conclusion 

343 The primary goal of this manuscript was to jointly model different types of longitudinal outcomes 

344 incorporating non-ignorable missingness. One can directly apply mixed modelling techniques with 

345 considering missingness as an ignorable phenomenon. However, follow-up studies could get over 

346 the hurdles of loss of information in case of missingness by proposing SPM for mixed-longitudinal 

347 outcomes with missingness. For each missing data process, a logit model is proposed via a latent 

348 variable to depict the tendency of change for individuals. SPM proposed to join longitudinal and 

349 missingness models using random effects. This paper presents a joint modelling approach to 

350 analyze longitudinal biomarkers measurements in the presence of non-ignorable missing data due 

351 to both intermittent and monotone missingness. In our PC dataset, the non-monotone missingness 

352 pattern exists due to patients who missed visits, and monotone missingness data are from those 

353 patients who left the follow-up and never came back to complete the treatment process.  We use 

354 logistic models to describe the missingness patterns. Our proposed model is adequate to account 

355 for the association between measurements and missingness processes, and it can be extended to 

356 models with more than two mixed longitudinal outcomes incorporating more than two missing 

357 outcomes processes.

358 Correlated random effects provide inference for non-ignorable missing data. However, the non-

359 ignorable missingness assumption is untestable for the data at hand. In our collected PC dataset, 
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360 non-ignorable assumption is verified as missingness occurred due to lack of treatment efficacy. 

361 Therefore, we incorporated missingness process in data analysis. However, researchers must put 

362 extra care to check assumptions about missingness mechanism, if the cause of missing data is not 

363 internally related to responses; local sensitivity analysis should be performed. 

364 This study emphasis that PC patients must be monitored for PSA and ALP simultaneously. It is 

365 important to take into consideration both PSA and ALP levels as both can influence the health of 

366 PC patients. In addition, missing observations must be incorporated in data analysis to get full 

367 information about patients’ health and wellbeing. An elevated level of PSA shows the non-

368 effectiveness of particular treatment, and an elevated level of ALP depicts the spread of PC tumor 

369 cells. 
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