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Abstract 
Introduction 
Nottingham histological grade (NHG) is a well established prognostic factor in breast cancer 
histopathology. However, manual NHG assessment of biopsies is challenging and has a large 
inter-assessor variability with a large proportion being classified as NHG2 (intermediate 
grade). Here, we evaluate whether DeepGrade, a previously developed model for the risk 
stratification of resected tumour specimens, could be applied to risk-stratify biopsy specimens. 
Methods 
A total of 11,943,905 tiles from 1171 whole slide images (WSIs) of preoperative biopsies from 
897 patients diagnosed with breast cancer in Stockholm, Sweden, were included in this 
retrospective observational study. DeepGrade, a deep convolutional neural network model, was 
applied for classification of  low and high risk tumours and evaluated against clinically 
assigned grades 1 and 3 using area under the operating curve (AUC). The prognostic value of 
the DeepGrade model in the biopsy setting was evaluated using time-to-event analysis. 
Results 
The DeepGrade model classified resected tumour cases with grades NHG1 and NHG3 using 
only biopsy specimens with an AUC of 0.903 (95% CI: 0.88;0.93). The model could also 
classify the biopsy NHG (1 and 3) assessed on the biopsy of 186 patients with an AUC of 0.959 
(95% CI: 0.93; 0.99). Furthermore, out of the 434 NHG2 tumours, 255 (59%) were classified 
as DeepGrade2-low, and 179 (41%) were classified as DeepGrade2-high. Using a multivariable 
Cox proportional hazards model the hazard ratio between low- and high-risk groups was 
estimated as 2.01 (p-value = 0.036). 
Conclusions 
DeepGrade could predict the resected tumour grades NHG1 and NHG3 using only the biopsy 
specimen and sub-classify grade 2 tumours into low and high risks. The results demonstrate 
that the DeepGrade model  can provide decision support for biopsy grading, and potentially 
provide decision support in the clinical setting to identifying high-risk tumours based on 
preoperative breast biopsies, thus improving information available for clinical treatment 
decisions. 
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Introduction 
Breast cancer is now the most common cancer type globally1. In the majority of cases, 
suspected breast lesions are initially identified by mammography   screening which is 
recommended in most developed countries to prevent breast cancer2,3. For women with a 
suspected lesion, a preoperative core biopsy is performed  for histological inspection of the 
tissue4. Evaluation of the biopsy by a pathologist is key to diagnose breast cancer, but also for 
treatment decisions based on histological  subtypes and biomarker analysis5.  
In addition to histopathological diagnosis and subtyping, grading is a cornerstone in the 
histopathological assessment of the biopsy6. Histological grade reflects the degree of 
differentiation of a tumour by comparing the similarity of malignant cells to that of normal 
breast terminal duct lobular units7. Currently, the most commonly used grading method is the 
Notthingham Histological Grade (NHG) adapted by Elston-Ellis following work from Bloom-
Richardson8,9. Histological grading relies on the performance and expertise of pathologists 
which evaluate three morphological features: the degree of tubular formation (gland 
architecture), nuclear pleomorphism (nucleus size and shape) and the mitotic count9. 
Histological grade is also an important prognostic feature, with higher grade tumours being 
associated with poor prognosis independently of the tumour type or endocrine status10. 
Therefore, it has an important role in deciding what type of treatment a patient will receive11. 
One of the major challenges with histological grading is that it relies on the experience, 
expertise and interpretation of the pathologist, resulting in high inter-observer and inter-lab 
variabilities7,12. In addition, about 50% of all resected breast cancer specimens are diagnosed 
as NHG2, which has no clinical value12–14.  
Histological grade assessment is even more complicated in biopsy specimens with very limited 
tumour material and frequent tissue artefacts12. This causes  significant discrepancies between 
the biopsy grade, and the histological grade assigned on the resected specimen15. These 
uncertainties also come with a greater number of biopsy samples not being assigned a grade at 
all, and with up to 70% of the biopsy samples being assigned the intermediate NHG2 
grade13,16,17. 
The recent advances in computational pathology based on the availability of large amounts of 
digitised whole-slide histopathological images (WSIs), as well as the development of novel 
artificial intelligence technologies, has enabled model-based grading of tumours  in resected 
specimens, and also enabled further risk-stratification of intermediate-risk NHG2 patients into 
two risk subgroups with independent prognostic value18.  
In this study, we aim to assess whether the DeepGrade model, developed using resected tumour 
specimens, could be used to predict NHG1 and NHG3 tumours in the biopsy specimens. It will 
allow the earlier identification of the high risk tumours from the initial biopsy specimens, 
provide decision support for grading of preoperative biopsies, and further improve information 
that can be used in the treatment planning at the preoperative stage. 
 
Methods 
Patients 
This retrospective study included female patients who underwent a biopsy at the Stockholm 
South General Hospital in Stockholm, Sweden between June 2012 and May 2018. Patients 
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diagnosed with invasive breast cancer as their primary diagnosis and who had undergone a 
surgical removal of their tumour within two months following their biopsy without receiving 
neoadjuvant therapy were included in the study (see Figure 1 for detailed explanation of 
selection criteria). A total of 1171 whole slide images (WSIs) from 897 patients were included 
in the final analyses. The WSIs from the resected specimen of 807 of these patients was also 
available which were also used for comparison of the prediction of DeepGrade score on this 
material. Clinical data was retrieved retrospectively, either from the Swedish National Breast 
Cancer Registry, or from the pathology reports. This study was reviewed and approved by local 
and governmental ethics committees.  
 

 

 
 
 

Figure 1. Consort diagram.  
The data used contained whole slide images of biopsies for 897 patients who have a resected 
tumour NHG grade and who did not receive neoadjuvant chemotherapy. A total of 667 
patients had a biopsy NHG grade, 807 patients had a matching resected tumour slide on 
which DeepGrade predictions could also be performed and, survival data was available for 
726 patients. 
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WSI and deep model 
For each patient between one and seven Haematoxylin and Eosin (H&E) stained formalin-fixed 
paraffin-embedded (FFPE) histopathology slides of biopsy specimens were digitised in-house 
using either Hamamatsu Nanozoomer XR or Hamamatsu Nanozoomer S360 scanners at 40X 
magnification (0.227 μm/pixel and 0.230 μm/pixel respectively). Methodology for 
preprocessing of the WSIs was performed according to the methodology previously 
described18. Initially, tissue segmentation was performed by transforming lower-level 
representations obtained using OpenSlide19 from RGB to HSV colour space. Two masks were 
then generated using the Otsu’s threshold to remove the non-tissue areas20. A maximum value 
of 25 was added to the Otsu threshold value in order to reduce the removal of the tissue regions 
due to the high threshold value on the transformed saturation channel in some cases.   
 
WSI regions included in the tissue mask were tiled into image tiles of 598x598 pixels with a 
down-sampled resolution equivalent to 20X (271μm x 271μm). Due to the small tissue area in 
biopsy specimens, tiling was performed with 75% overlap between two consecutive tiles. Next, 
in order to remove unsharp tiles, any remaining tiles with background, and those with adipose 
tissue, blurred tiles were excluded when a variance of the Laplacian filtering was lower than 
50021. Lastly, to address the stain variabilities in WSIs, colour normalisation across each WSI 
was performed using the method described by Macenko et al.22, and as implemented by Wang 
et al18. For 807 patients with preoperative biopsies with a matching resected tumour WSI, a 
similar pre-processing method was performed for the WSI pre-processing with two significant 
changes. First, no overlap between two consecutive tiles was considered. Secondly, after the 
colour normalisation step, a tumour segmentation model developed18 was applied to include 
only the tiles from the invasive cancer regions in the resected specimens for further downstream 
analysis. After preprocessing, a total of 11,943,905 tiles were used for predictions from biopsy 
specimens, and 1,169,316 were used from the surgical specimens.  
 
Histological grade prediction 
Classification of NHG3 versus NHG1 on the biopsy WSI, was performed using an ensemble 
of 10 CNN models that were chosen randomly out of the ensemble of 20 models that were 
developed as the DeepGrade model18. All models were developed using an Inception V3 
architecture23. The initial models were trained on 844 WSIs, of which 166 patients for whom 
the biopsy WSI were also included in this study. DeepGrade models were trained to classify 
NHG3 and NHG1 tumours in WSIs from resected specimens. Each model in DeepGrade 
outputs the two class prediction probabilities for each tile (P(NHG3|tilei) and P(NHG1|tilei)). 
The P(NHG3|tilei) class probability from each of the ten models in the ensemble were averaged 
to provide the tile-level prediction score. Next, for each patient all the tile-level prediction 
scores of all the WSIs were pooled together and the patient-level prediction score was 
aggregated by considering the upper-percentile (99th) of the pooled tile-level prediction scores. 
Binary classification threshold into low and high risk groups was determined using the 
Youden’s J statistic24 and was calculated separately for the biopsy and the surgical WSIs. For 
NHG1 and NHG3 DeepGrade-low represents NHG1 whereas DeepGrade-high represents 
NHG3. For NHG2 tumours, DeepGrade stratification represents risk groups which are NHG1-
like or NHG3-like. For NHG1 and NHG3, prediction performance of the DeepGrade model 
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was evaluated against clinically assigned NHG grade on both the biopsy specimen (biopsy 
NHG grade) and on the surgically resected specimen (resected tumour NHG grade) by a 
pathologist. The classification performances were measured using the receiver operating 
characteristic (ROC) curves and the linked area under the curve (AUC) using R package 
pROC25. Agreement between the assigned NHG grade (from the biopsy specimen or the 
resected tumour specimen) and the obtained DeepGrade was measured using Cohen’s kappa 
and the following interpretations: 0-0.20: slight agreement, 0.21-0.40: fair agreement, 0.41-
0.60: moderate agreement, 0.61-0.80: substantial agreement and 0.81-1.00: almost perfect 
agreement26,27.  The classification performance of the DeepGrade on the biopsy WSI was also 
compared to the classification performed on the surgical WSI. Finally, the rates of recurrence-
free survival (RFS) as defined by the presence of a locoregional or distant metastasis or death 
were compared between patients who were assigned in the DeepGrade-high and DeepGrade-
low groups. The time-to-event was defined as the number of days between the date of initial 
diagnosis and either date of recurrence or loss of follow-up. The R packages ‘survival’ and 
‘survminer’ were used to visualise the survival outcomes between groups, and the 
‘forestmodel’ package was used to estimate adjusted hazard ratios (HRs) using multivariate 
Cox proportional hazards regression models.  
 
 
Results 
Firstly, we assessed the discrepancies between the clinical assignment of NHG grade on the 
biopsy and resected specimens (Figure 2a). A quarter of the patients did not have NHG grade 
assigned on the biopsy specimen at all in clinical routine, and 72% of the patients who had a 
biopsy NHG grade available were of NHG2 grade. The overall agreement between the clinical 
grade assignments on the biopsy and on the resected tumour specimen was 65.4% when 
including patients for whom we have both diagnoses. We observed a fair agreement with the 
Cohen’s kappa value of 0.40 (95% CIs: 0.34;0.46) between them. 
 
Assessment of the DeepGrade classification performance on the biopsy specimen 
We evaluated the risk classification performance of the DeepGrade model on the NHG1 and 
NHG3 grade biopsy specimens. We observed an AUC score of 0.959 (95% CI: 0.930;0.989), 
see Figure 2E. For 165 out of 186 patients (89.30%) the DeepGrade model and the pathologists 
were in agreement, representing a substantial agreement with a kappa value of 0.77.  
Of the 897 patients, only 0.6% (5) who had a biopsy NHG3 grade were assigned to the 
DeepGrade low-risk group, which corresponds to NHG1 (Figure 2D). Out of the 230 patients 
who were not assigned a NHG grade at biopsy, 126 (54.8%) were classified in the DeepGrade 
low-risk group, and 104 (45.2%) were classified in the high-risk group. 
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Assessment of the DeepGrade classification performance compared to the resected tumour 
specimen 
To assess the hypothesis that the DeepGrade model not only to predict the NHG grade of the 
biopsy, but also predict the clinically assigned NHG1 and NHG3 grades assigned on the 

Figure 2. DeepGrade prediction results obtained on biopsy specimens compared to the 
clinical NHG assigned by the pathologist. 
Comparison between NHG grades assigned by pathologists on the biopsy specimen and the 
resected tumour specimen;  A. confusion matrix, B. Sankey plot. Comparison between NHG 
grades assigned by pathologists on the biopsy specimen and the DeepGrade assigned on the 
biopsy specimen; C. confusion matrix, D. Sankey plot. E. ROC curve of the prediction score 
obtained by the DeepGrade CNN model compared to biopsy NHG grades 1 and 3. F. Sankey 
plot representing the number of patients assigned to each of the Deep Grade risk group by 
biopsy NHG grades 1 and 3.  

B 

C D 
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A 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.22.23294409doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.22.23294409
http://creativecommons.org/licenses/by-nc-nd/4.0/


resected specimens using only the biopsy material, we compared the prediction results 
obtained. We observed an AUC score of 0.903 (95% CI: 0.876;0.930), see Figure 3A. The 
agreement between the predictions obtained and that of the pathologist was of 385 out of 463 
patients (83.15%) and the kappa value was 0.66 meaning substantial agreement. When looking 
at the patients who were in the DeepGrade-low risk group, but who had a resected tumour 
NHG3 grade, the biopsy NHG grade was either NHG2 or no NHG grade in 93% of the cases, 
with only 3 patients who had NHG3 grade at both biopsy and resected tumour level. Out of the 
434 patients who had a resected tumour with NHG2 grade, 259 (59.67%) were assigned to the 
DeepGrade low-risk group while 179 (40.32%) were assigned to the DeepGrade high-risk 
group.  

 

 
 
Comparison between DeepGrade score on biopsy and resected tumour specimens 
To verify whether the results obtained on the biopsy specimens are in line with those obtained 
on the resected tumour specimen, we compared the DeepGrade score for 807 patients for which 

Figure 3. DeepGrade prediction results obtained on biopsy specimens compared to the 
clinical NHG assigned by the pathologist on the resected specimen.  
A. ROC of the continuous prediction score versus the resected tumour NHG grades 1 and 3 
assigned by a pathologist. B. Sankey plot of the proportion of patients predicted with Deep 
Grade High and Low versus the resected tumour NHG grade. C. Example of a whole slide 
image with prediction results. Red is more likely to be predicted as High risk. D. Sankey 
plot with results of all biopsy specimen comparing the obtained Deep Grade with both the 
biopsy NHG grade and the resected tumour NHG grade 

A B 

C D 
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we had both specimens available (Figure 4). Almost three quarters of the patients were assigned 
the same DeepGrade score on the biopsy and resected specimens. This proportion is even 
higher when considering only patients with a resected tumour NHG1 or NHG3, with 81.3% of 
the patients who were assigned the same DeepGrade score.  
 

 
 
Prognostic performance of the DeepGrade score 
The prognostic performance of the DeepGrade model in biopsy specimens was measured based 
on recurrence-free survival and was visualised using Kaplan-Meier curves. The independent 
prognostic value was measured using multivariable Cox Proportional Hazards model adjusting 
for age (resembling information available at the biopsy stage). When including all patients, the 
DeepGrade model was found to be a predictor of survival with an estimated hazard ratio of 
2.01 for patients with DeepGrade-high on biopsy specimen compared to those with a 
DeepGrade-low score, independently of the patient’s age (Figure 5).  
 

 

 

Figure 4. Comparison of DeepGrade scores on biopsy and resected specimens.  
A. Confusion matrix for all NHG grades combined. B. Confusion matrix for only resected 
NHG1 and NHG3 grades. 

A B 

Figure 5. Recurrence-free survival outcomes for breast cancer patients by DeepGrade 
score obtained on the biopsy specimen.  
A. Kaplan-Meier curves for patients stratified by biopsy DeepGrade low and high risk 
groups. High-risk group had the worst prognosis. B. Forest plot from multivariable Cox 
proportional hasard regression including the biopsy DeepGrade score and age at diagnosis.  

A B 
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Discussion 
The aim of this study was to investigate whether the DeepGrade model, previously developed 
to risk-stratify patients based on the resected tumour specimens, could also be used to risk-
stratify biopsy specimens. We observed a high classification performance when comparing the 
DeepGrade predictions on the biopsy specimen to the biopsy NHG grade. Most interestingly, 
the DeepGrade model could predict the grade of the resected tumour specimen while analysing 
only biopsy material and classification of patients using the DeepGrade model was predictive 
of survival at time of biopsy.  
The identification of NHG3 grade patients at the time of biopsy is critical for the decision to 
treat a patient with neoadjuvant chemotherapy7,28, however, conventional NHG grading of 
biopsies remains challenging. Neoadjuvant therapy is now recommended to most HER2+ and 
triple negative cancers, of whom the vast majority are NHG3. Within the larger ER+, HER2- 
subgroup there are patients with high-risk tumours that should be considered for neoadjuvant 
chemotherapy but most biopsies are assigned a NHG2 grade, or are not graded at all12,16. This 
leads to a discrepancy between pathologists, with up to 45% of women who had a change in 
diagnosis in one cohort16. In a similar manner, 46% of patients who were not assigned a grade 
at the biopsy level were assigned to the high-risk group, of which 50% were actually assigned 
a NHG3 grade on their resected tumour specimen.  
Several studies have developed models to predict grade using deep-learning models on whole-
slide images from resected tumour specimens but not  core biopsies18,29–31. In particular, Wang 
et al. obtained an AUC of 0.907 in their external data which is in line with the accuracy we 
obtain in the biopsy specimen when comparing to the resected tumour grades NHG1 versus 
NHG3 (0.903)18. Others who have predicted grade into two groups (low-grade and high-grade) 
on resected tumour specimens obtained agreements around 80%, and kappa values between 
0.59 and 0.6429,30. Despite predicting the resected specimen grade using only biopsy material, 
we get even higher performance results between grades NHG1 and NHG3 with an agreement 
of 83% and a kappa value of 0.66.  
The use of biopsy specimens in computational pathology for breast cancer is relatively rare in 
the literature, as opposed to the work performed in prostate cancer32–34. Besides from the 
studies mentioned above for tumour identification35–37, studies aimed to predict the response to 
neoadjuvant therapy, in part using grade as their training material38,39. The proposed 
methodology  in this study could be used as a decision support tool to complement human 
pathologists, as it establishes a risk-assessment of all tumours, including those that are hard to 
grade, and without any pre-established criteria for selection, such as cancer subtype.  
This is the first study which suggests to sub-classify grade 2 tumours already at time of biopsy. 
Although several methods have previously been suggested to sub-classify patients, most use 
gene expression profiling assays which are time-consuming and remain costly40. The sub-
classification method presented in this study has the advantages of providing a result to the 
pathologist in a short time-frame and at a very low-cost given most pathology laboratories in 
high-income countries already use digitised WSIs18. Some of the study limitations which are 
worth mentioning include the fact that it is based on retrospective material in order to obtain a 
large enough sample when only including one hospital. Furthermore, for 166 patients (18.5%), 
their resected specimen was used as training data in the initial Deep Grade model18. Finally, 
this model was evaluated on the whole biopsy tissue area, without prior tumour detection 
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model, it is therefore not impossible that the results are on the lower performance side and that 
they could achieve even better accuracy in the future if that is to be performed first.  
In conclusion, we found that the resected tumour grade could be diagnosed based-on  using 
only biopsy specimens, indicating that high-risk tumours could be identified at the preoperative 
stage. In the future, this could provide decision support to pathologists as well as treating 
physicians to improve the quality of relevant information for clinical decisions earlier on in the 
process, and thus potentially reduce both over- and under-treatment of patients in the 
neoadjuvant setting.  
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