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Abstract 
Purpose: As large analyses merge data across sites, a deeper understanding of variance in statistical assessment across 
the sources of data becomes critical for valid analyses. Diffusion tensor imaging (DTI) exhibits spatially varying and 30 
correlated noise, so care must be taken with distributional assumptions. Here we characterize the role of physiology, 
subject compliance, and the interaction of subject with the scanner in the understanding of DTI variability, as modeled 
in spatial variance of derived metrics in homogeneous regions. 

Approach: We analyze DTI data from 1035 subjects in the Baltimore Longitudinal Study of Aging (BLSA), with 
ages ranging from 22.4 to 103 years old. For each subject, up to 12 longitudinal sessions were conducted. We assess 35 
variance of DTI scalars within regions of interest (ROIs) defined by four segmentation methods and investigate the 
relationships between the variance and covariates, including baseline age, time from the baseline (referred to as 
“interval”), motion, sex, and whether it is the first scan or the second scan in the session. 

Results: Covariate effects are heterogeneous and bilaterally symmetric across ROIs. Inter-session interval is positively 
related (𝑝 ≪ 0.001) to FA variance in the cuneus and occipital gyrus, but negatively (𝑝 ≪ 0.001) in the caudate 40 
nucleus. Males show significantly (𝑝 ≪ 0.001) higher FA variance in the right putamen, thalamus, body of the corpus 
callosum, and cingulate gyrus. In 62 out of 176 ROIs defined by the Eve type-1 atlas, an increase in motion is 
associated (𝑝 < 0.05) with a decrease in FA variance. Head motion increases during the rescan of DTI (Δ𝜇 = 0.045 
millimeters per volume). 

Conclusions: The effects of each covariate on DTI variance, and their relationships across ROIs are complex. 45 
Ultimately, we encourage researchers to include estimates of variance when sharing data and consider models of 
heteroscedasticity in analysis. This work provides a foundation for study planning to account for regional variations 
in metric variance. 

Keywords: brain, aging, DTI, variance, motion. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2023.08.22.23294381doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.08.22.23294381
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

*Address all correspondence to Chenyu Gao, e-mail address: chenyu.gao@vanderbilt.edu, full postal address: 50 
Vanderbilt University EECS, 2301 Vanderbilt Pl., PO Box 351679 Station B, Nashville, TN 37235-1679 

1 Introduction 
Large datasets enable exploration of questions that would be impractical with smaller- or 
moderate-sized datasets while giving rise to the development and application of deep learning 
models which can assimilate complex data. One prevalent challenge is that large datasets often 55 
comprise samples aggregated from distinct sources at different time points using diverse 
technologies, causing data heterogeneity, experimental variations, and statistical biases if the 
analysis is not executed appropriately.1 In such scenarios, understanding the variance and 
variability of data is of great importance. The general linear model2, a structured and widely used 
framework for relationship modeling, allows us to illustrate the importance. The general linear 60 
model is assessed through regression. A linear regression can be expressed by Y = Xβ + ε, where 
the response variable Y , the covariate matrix X , and the regression coefficients β  are 
conventionally represented in matrix forms given by: 
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where we use 𝑀 to denote the number of samples, and 𝑁 to denote the number of independent 
variables. The error term ε is given by: 65 

ε~𝒩(0, Σ) (2) 
where Σ represents the covariance matrix. If we assume the errors are uncorrelated,	Σ	is simplified 
to a diagonal matrix. We can simplify estimation of Eq. (1) with a whitening matrix3, W: 
 WY = WXβ +Wε, where W = W) = Σ*"/$ (3) 

Note Wε~𝒩(0, I&), where I& denotes the identity matrix of dimension 𝑀 ×𝑀. We illustrate the 
practical importance of understanding the variance structure for reducing statistical errors (Fig. 1).  

Diffusion tensor imaging (DTI)4–6 is a modeling approach used in diffusion-weighted imaging 70 
7–9, a variant of conventional magnetic resonance imaging (MRI) based on the tissue water 
diffusion rate.10 DTI allows for visualization and measurement of the degree of anisotropy and 
structural orientation of fibers in the brain and has been widely used in studies.11–13 DTI is 
inherently subject to low signal-to-noise ratio, and the noise structure exhibits spatial variability 
and correlation, primarily attributed to fast imaging and noise suppression techniques.14,15 75 
Understanding the statistical nature of DTI variance or noise has been proven to be beneficial for 
diffusion tensor estimation15,16, outlier detection17, reproducibility assessment18–20.  

Methods have been proposed for DTI variance (or noise) estimation, among which we 
recognize four types. The first type requires multiple repeated acquisitions (therefore, we refer to 
it as the “multiple acquisition method”). After the repeated acquisitions, we could take the standard 80 
deviation of the measurements, or perform data resampling, such as bootstrap or jackknife,21 to 
quantify uncertainties of DTI parameters. The second type involves two repeated acquisitions, 
which we call the “scan-rescan method”. We compute the difference between the images from 
each acquisition and then calculate the standard deviation of the difference across the space.22,23 
Note that the standard deviation must be divided by the square root of 2 to account for the 85 
combination of two random variables (noise in each image). The third and fourth types are used 
when we have only one acquisition. For the third type, we select a homogeneous ROI and compute 
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the standard deviation of the measurements within this ROI (“ROI-based method”).24 The fourth 
type, often referred to as “model-based resampling”, involves fitting a model (e.g., diffusion 
tensor) locally to the observed data. The residuals from the fitted model, along with the original 90 
observed data, are then used by data resampling techniques such as wild bootstrap to generate 
random subsets.21,25 From each subset, we obtain an estimate of a specific parameter. Across all 
subsets, we get the distribution of the estimates and thus quantify the uncertainty of the DTI 
parameter. The first type (multiple acquisition method) makes no assumptions about the noise 
properties at the cost of requiring multiple acquisitions (for each diffusion gradient in the DTI 95 
scenario).21 The second type (scan-rescan method) assumes that the noise is constant across space, 
or across the region from which the standard deviation is computed.23 The third method (ROI-
based method) assumes that both the noise and the signal are constant across the ROI.24 The fourth 
method (model-based resampling) assumes that the non-constant variance of measured signals can 
be captured by the chosen model.21 In this study, we choose the ROI-based method for estimating 100 
noise across brain regions in DTI. This is because it does not require repeated acquisitions, and 
one advantage is that we can compute noise from each individual scan within an imaging session, 
enabling inter-scan comparisons. Also, this method can be applied to datasets that do not have 
scan-rescan data available, thus enabling validation of our findings using other datasets. Secondly, 
by using an individual scan for noise estimation, we can mitigate errors caused by motion and 105 
inter-scan misalignment of the brain, which could be problematic when using the multiple 
acquisition method or the scan-rescan method. Thirdly, we want to avoid using the assumption of 
the fourth type (model-based resampling).21  

Up to this point, we have been using the terms “variance” and “noise” interchangeably. In the 
following text, we use “variance” when referring to the measure of the dispersion of data, and 110 
“noise” when referring to the imaging noise such as MRI noise—primarily caused by thermal 
fluctuations and electrical noise—to avoid misinterpretation. 

To gain a better understanding of DTI variance or noise, it is important to characterize the role 
of physiology, subject compliance, and the interaction between the subject and the scanner. Our 
approach is driven by two fundamental questions (Fig. 2): Which factors are associated with DTI 115 
variance? Where and how does this association manifest? We assess variance of DTI scalars, 
including fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial 
diffusivity (RD), within ROIs, and investigate the associations between the variance and 
covariates, including baseline age, time from the baseline (referred to as “interval”), motion, sex, 
and whether it is the first or the second scan within the session, using linear mixed effects models26. 120 

2 Methods 
We use the PreQual27 pipeline for preprocessing and quality assurance of the DTI data. PreQual is 
an end-to-end pipeline that applies denoising, inter-scan normalization, susceptibility-induced 
distortion correction, eddy current-induced distortion correction, inter-volume motion correction, 
slice-wise signal dropout imputation, and more. PreQual also provides a summary of the data and 125 
preprocessing in a PDF report for more efficient quality assurance. 

We use data acquired from the neuroimaging substudy of the Baltimore Longitudinal Study of 
Aging (BLSA).28,29 The BLSA is an extensive, ongoing research project that began in 1958, 
enrolling healthy volunteers aged 20 years and older to study normal aging through a longitudinal 
approach by following participants for their entire lives. We consider all subjects with at least one 130 
session comprising both T1-weighted (T1w) magnetization-prepared rapid gradient-recalled echo 
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(MPRAGE) MRI data and DTI data. We exclude 49 DTI images exhibiting one or more of the 
following characteristics according to their potential impact on subsequent analyses: 

(1) The presence of extreme susceptibility-induced distortion, motion artifacts, or eddy currents that 
resists correction. 135 

(2) The failure of the preprocessed data to be fitted by the tensor model. 
(3) An exceptionally low signal-to-noise ratio in the FA and MD images. 
The exclusion of these cases results in the dataset depicted in Fig. 3. We identify 1035 subjects 

(562 F/ 473 M, 22.4 to 94.4 y/o at baseline) with 2751 sessions (1497 F/ 1254 M). Detailed 
demographic information can be found in the supplementary material. The 2751 sessions of MRI 140 
data were acquired by four different scanners, including a 1.5 Tesla Philips Intera scanner (scanner 
A, 83 sessions) at the Kennedy Krieger Institute (KKI), two 3 Tesla Philips Achieva scanners using 
the same platform and protocol (scanner B and C, 16 sessions and 59 sessions, respectively) at the 
KKI, and a 3 Tesla Philips Achieva scanner (scanner D, 2593 sessions) at the National Institute on 
Aging. Detailed scanner information and protocol is provided in Table 1, which was previously 145 
reported30. Among the 1035 subjects, 59 switched to a different scanner in follow-up scans. During 
subsequent sessions, 4 female subjects and 10 male subjects were diagnosed with Alzheimer’s 
disease, while the remaining subjects remained cognitively normal throughout all sessions. 

2.1 ROI-Based DTI Variance Estimation 
We use a registration-based approach for brain segmentation in the b0 (minimally weighted) 150 
volume (Fig. 4). We initiate the process with brain segmentations for the T1w images obtained 
through manual parcellations provided by the JHU-MNI-ss atlas (“Eve atlas”)31,32 and automated 
whole-brain segmentation by SLANT33. For the Eve atlas, there are three types of parcellations 
available, each with different regional focus.31 For SLANT segmentation, labels for 132 regions 
covering the whole brain are provided.33 We use the method by Hansen et al.34 to transfer these 155 
labels from T1w to b0 space. After label transferring, we manually review the segmentation to see 
if the labels align with the anatomical regions. 

2.2 Linear Mixed-Effects Model 
We use linear mixed-effects models26 to analyze the association between DTI scalar standard 
deviation and covariates. (R program, version 4.2.2 35; Ubuntu 20.04.5 LTS; R package lme4, 160 
version 1.1.31 36; R package lmerTest, version 3.1.3 37.) 

We study linear mixed-effects models of the form: 
𝜎,-./ ∼ Agebaseline,, + Ageinterval,,- +Motion,-/ + Sex, + Rescan,-/ + 𝑟",, + 𝑟$,. + ε,-./       (4) 

where 𝜎,-./ represents the standard deviation of a DTI scalar (FA, AD, MD, or RD) in a specific 
brain region of subject 𝑖 at session 𝑗 via scanner 𝑘 in acquisition 𝑙, Agebaseline,, (hereafter referred 165 
to as “baseline”) is the age of subject 𝑖 at baseline session (unit: decade), Ageinterval,,- (hereafter 
referred to as “interval”) is the time between the current session, 𝑗, and the baseline session (unit: 
decade). Motion,-/ is a scalar value reflecting the degree of head movement of subject 𝑖 at 
session 𝑗 during acquisition 𝑙 (calculated based on eddy movement, unit: millimeters)38, Sex, is 
the gender of subject 𝑖 (0 for female and 1 for male), and Rescan,-/ is a binary variable 170 
indicating if the acquisition 𝑙 is the first scan (coded 0) or the rescan (coded 1) of session 𝑗. We 
consider subject and scanner as two random intercepts, respectively denoted by 𝑟",, and 𝑟$,.. 
Prior to fitting the models, we standardize the dependent variable 𝜎. The results for the models 
are based on the standardized 𝜎. 
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We have a total of 2224 models, derived from the four DTI scalars (FA, AD, MD, or RD), 175 
across varying ROIs defined by Eve Type 1 (176 ROIs), Eve Type 2 (130 ROIs), Eve Type 3 (118 
ROIs),31,32 and SLANT (132 ROIs)33. Each model starts with a full model, with all fixed effects 
and random effects, followed by an implementation of backward model selection.37 The p-values 
for the fixed-effect terms are calculated based on the associated F tests.37 To account for multiple 
comparisons, we adjust the p-values across the pairs of DTI scalar and ROI for a false discovery 180 
rate (FDR) of 0.05 using the Benjamini-Hochberg method.39 

3 Results 
The magnitude and direction of the effects of each covariate on DTI variance exhibit 
heterogeneous patterns across ROIs (Fig. 5). Specifically, interval is positively related to FA 
variance in ROIs such as the cuneus, middle occipital gyrus, superior occipital gyrus, medulla, 185 
precuneus white matter, but negatively related in ROIs such as the caudate nucleus, posterior 
thalamic radiation, and superior fronto-occipital fasciculus (Table 2). Males have higher FA 
variance in the right putamen, thalamus, body of corpus callosum, and cingulum (cingulate gyrus), 
but lower FA variance in the middle frontal gyrus (Table 3). In the right inferior temporal gyrus, 
an increase of 1 millimeter in motion is associated with an increase of 2.211 standard deviations 190 
in the z-scored standard deviation (𝜎) of FA values (𝛽 = 2.211, 𝑝 ≪ 0.001). Interestingly and 
counterintuitively, in several ROIs, including the medulla, middle occipital white matter, cingulum 
(cingulate gyrus), an increase in motion is linked with a decrease in FA variance (Table 2). 

In the lateral fronto-orbital gyrus, left insular, gyrus rectus, and inferior occipital gyrus, both 
motion and interval exhibit a positive association with FA variance (Table 2). In the left caudate 195 
nucleus, and right posterior thalamic radiation, they both show a negative association with FA 
variance (Table 2). In many other ROIs, such as the cuneus, lingual white matter, and middle 
occipital white matter, motion is negatively related to FA variance while interval is positively 
related (Table 2). Results from the left ROI closely align with those from the corresponding right 
ROI (Table 2). There are some ROIs where interval is significantly (𝑝 ≪ 0.001) associated with 200 
FA variance, while motion either gets removed during the model selection or shows weak 
associations (𝑝 ≥ 0.05) (Fig. 5).  

On data extracted from ROIs defined by SLANT segmentation, which has different regional 
focus and delineation than Eve type-1 segmentation, the aforementioned patterns of effects can 
also be observed (Fig. 6, Fig. 7). For instance, in the left cerebellum exterior, both motion and 205 
interval are positively associated with FA variance, with motion’s coefficient (𝛽 = 0.960, 𝑝 ≪
0.001 ) higher than that of interval (𝛽 = 0.485, 𝑝 ≪ 0.001 ). This parallels the relationship 
observed between the motion and interval coefficients in the left cerebellum defined by the Eve 
type-1 segmentation (𝛽 = 0.993, 𝑝 ≪ 0.001  for motion; 𝛽 = 0.471, 𝑝 ≪ 0.001  for interval). 
Similarly, in ROIs such as the right cuneus, left precuneus, right superior occipital gyrus, and right 210 
middle occipital gyrus, motion shows a negative association with FA variance, while interval 
shows a positive association. The exact coefficients and p-values are in the supplementary 
materials, where we also provide the results from other pairs of DTI scalar and segmentation 
method. 

In the model selection process, we observe that the rescan and the motion terms appear 215 
mutually exclusive, with only one preserved post-selection in most models. This pattern is echoed 
in the heatmaps of coefficients (Fig. 5, Fig. 6), where the cell in either the motion or the rescan 
column is colored grey. This hints at a correlation between rescan and motion. Supporting this 
observation, we detect an increase in head motion in the rescan of DTI acquired right after the first 
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scan of DTI in the same session (mean shift Δ𝜇 = 0.045 millimeters per volume, relative mean 220 
shift Δ𝜇/𝜇 = 17.0%, coefficient of determination 𝑅$ = 0.065). 

To examine the differences between scanners, we measure the signal-to-noise ratio (SNR) of 
the FA images based on ROIs. There are differences between scanners regarding SNR across ROIs 
(Fig. 8). To validate our findings, we include two additional datasets, ADNI40 and BIOCARD41. 
We exclude data points from subjects with cognitive impairment and use the remaining 1808 225 
subjects from the three datasets for the experiment. Detailed information about the data is included 
in the supplementary materials. We reproduce the experiments of the linear mixed-effects models, 
except that the rescan term in equation (4) is omitted because the definitions of rescan in ADNI 
and BIOCARD differ from the definition of rescan in BLSA. The coefficients and p-values, 
visualized in Fig. 9, show a similar pattern to those derived from the BLSA, although the effect 230 
sizes differ, and the hierarchical clustering differs partly due to the omission of one covariate.  

4 Discussion 
While many studies have estimated and shown the spatial variability of DTI variance (or 
noise),14,15,42 we characterize how DTI variance is associated with physiological and behavioral 
factors across brain regions. We answer the questions: Which factors are associated with DTI 235 
variance? Where and how does this association manifest? We found region-specific and 
bidirectional effects of covariates—including interval (which captures the within-individual 
longitudinal change over time), motion, and sex—on FA variance across brain regions. For 
instance, FA variance is positively associated with interval in cuneus, but negatively associated in 
caudate nucleus. Long-standing research has demonstrated that there is a decline in white matter 240 
microstructure with aging,43–48 with the consensus being that frontal and parietal areas are 
particularly vulnerable and the occipital and motor areas are mostly preserved. The frontal lobe 
exhibits the most pronounced decline, with FA declining by approximately 3% per decade starting 
at ~35 years of age.49 Although our study focuses on the standard deviation of FA, our results 
converge with these prior research studies as we have shown high sensitivity to aging in the frontal, 245 
parietal, and temporal areas. While it is unclear what mechanisms are driving the changes in these 
areas, potential culprits include the change of uniformity of fiber orientations and fiber density.50–

52 
Previous studies53–55 have shown differences in FA between genders across brain regions. Oh 

et al. found that males have significantly higher FA values in global corpus callosum structure 250 
areas, while they exhibit lower FA values than females in the partial areas of the rostrum, genu, 
and splenium.53 Menzler et al. found that males show higher FA values in the thalamus, corpus 
callosum and cingulum.55 Most of these regions previously identified in the literature also show 
significant (𝑝 ≪ 0.001) associations between FA variance and sex in our study. While previous 
studies have reported changes in mean FA values, we offer a different perspective by depicting the 255 
variance of FA values. 

The negative association observed between motion and FA variance in multiple regions, while 
counterintuitive, is not unreasonable. One might naturally expect that as motion increases, the 
uncertainty (reflected as variance) in the image should increase, given that motion leads to lower 
image quality, signal-to-noise ratio, and artifacts that can mislead image interpretation.56,57 260 
However, the images we use for analysis have undergone motion correction during preprocessing. 
Although in practice, motion artifacts cannot be fully eliminated from the image, the recorded 
motion value doesn’t reflect the motion’s impact in the image after preprocessing. Instead, it 
reflects the subject’s motion during image acquisition. A higher motion value does not necessarily 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2023.08.22.23294381doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.22.23294381
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 7 

correspond to a noisier image post-preprocessing. Furthermore, Zeng et al. found that head motion 265 
during brain imaging is not merely a technical artifact but a reflection of a neurobiological trait. 
Specifically, individuals with stronger distant connectivity in the default network could 
consistently refrain from moving and such “head motion tendency” remains consistent within 
individuals.58 These points, taken together, provide explanations from image processing and 
biological perspectives, respectively, for why FA variance can decrease as motion increases. 270 

This study underscores the significance of heteroscedasticity in diffusion-weighted MRI mega-
analyses and provides a relatively straightforward approach to addressing this issue. Despite the 
longstanding recognition of heteroscedasticity in statistical analyses,59–62 its application to 
diffusion-weighted MRI is still in its nascent stages. Recent advancements have started to bridge 
this gap, with emerging studies illustrating the importance of accounting for heteroscedasticity in 275 
MRI data.63–65 These pioneering efforts are pivotal, yet they remain underutilized in the broader 
research community. To enhance the precision and reliability of findings in mega-analyses, it is 
imperative to disseminate these methodologies more widely and integrate them into commonly 
used analytical tools. Future research should focus on developing and employing increasingly 
sophisticated techniques to model and understand heteroscedasticity, thereby improving the 280 
robustness of statistical assessments in large-scale neuroimaging studies. 

4.1 Limitations of Current Study 
First, this study relies on a registration-based method for brain segmentation in the b0 space. 
Despite rigorous quality assurance, the labels for each brain region may not correspond flawlessly 
with the true anatomical regions. Consequently, the standard deviation of DTI scalars extracted 285 
from each region combines both voxel-wise modeling factors and image analysis factors from 
neighboring regions. Second, we used backward model selection for the fixed-effect terms of the 
linear mixed-effects models. Such method can be unstable according to Breiman et. al.66 Third, we 
use the variance of DTI scalar values in the ROI as a proxy for measuring noise. This is not an 
ideal proxy, because signal intensities may not be homogeneously distributed within each ROI, 290 
and the ROI-based variance captures not only the image noise but also the spatial variability in 
voxel intensity due to microstructural variations. This makes it suboptimal to reflect DTI noise. 
Fourth, the motion value used in this study is based on movement calculated by FSL’s eddy38, 
which approximates true head motion. Additional sensors or motion tracking sequences might be 
necessary to quantify head motion during scanning more accurately. 295 

5 Conclusion 
The notion of harnessing variance to enhance the reliability of analysis is universally applicable. 
Having a better understanding of variance is pivotal in mega-analyses, where heteroscedasticity is 
often an inherent challenge. Our study illuminates the complex and heterogeneous effects of 
covariates including baseline age, interval, motion, sex, and rescan on DTI variance across ROIs. 300 
More comprehensive efforts are required to fully characterize the variance. In the meantime, we 
encourage researchers to consider models of heteroscedasticity in their analyses and to include 
their estimates of variance when sharing data. As highlighted in the introduction, the application 
of the whitening matrix, constructed using the variance of the data, significantly reduces statistical 
errors. We anticipate that more sophisticated methods can further unlock the potential benefits 305 
derived from a nuanced understanding of variance, thereby bolstering the accuracy and reliability 
of future research. 
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 310 
 

Fig. 1 Simulation shows that applying the whitening matrix to the standard linear regression equation reduces the 
number of false positives (FP) and false negatives (FN) under heteroskedasticity. In the top row, the population truth 
has zero slope. In data sampled from the synthetic population data, ordinary least square (OLS) regression using the 
standard equation generates FP, while the solution with whitening, W, does not falsely reject the null hypothesis (the 315 
horizontal line). After 10,000 experiments, the FP frequency is lower with whitening, centering at 5 per 100. In the 

second row, the population truth has a positive slope. In data sampled from the synthetic population data, OLS 
regression using the standard equation generates FN, while the solution with whitening, W, does not. After 10,000 

experiments, the FN frequency with whitening is half that of the one without whitening.  
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 320 
 

Fig. 2 We observe that the noise (approximated by the difference between the scan and rescan acquired within the 
same imaging session) in DTI scalar images, such as fractional anisotropy (FA) images, generally increase with age. 

(Subjects’ ages are grouped into five-year bins to respect privacy.) But motion is also considered to increase with 
age.67,68 We would like to know: Which factor is associated with DTI variance? Where and how does this 325 

association manifest?  
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Fig. 3 The BLSA dataset we use has a slight imbalance between the number of females and males, but it is well-
matched and appropriate for our research objectives in other aspects: i) the age ranges of females and males align 330 

closely; ii) rescan DTI data were acquired in most sessions, enabling inter-scan comparisons; iii) the distributions of 
sessions of females and males align closely.  

Female Male
# Subjects 562 473
Age at baseline

Range 24.2 - 94.4 22.4 - 92.4
Mean (SD) 69.8 (12.5) 71.5 (13.2)

# Sessions 1497 1254
w/ rescan DTI 1471 1207

w/o rescan DTI 26 47
# Subjects by the total number of sessions

1 205 172
2 112 94
3 86 77
4 69 60
5 51 33
6 17 20
7 11 10
8 6 1
9 2 3
10 1 0
11 0 3
12 2 0
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Parameter Scanner A Scanners B/C Scanner D 
MPRAGE    
Head coil Philips 8-ch Philips 8-ch Philips 8-ch 

Scan time (mins:secs) 3:58 10:52 10:52 
Slice thickness (mm) 1.5 1.2 1.2 

Number of slices 124 170 170 
Flip angle (deg) 8 8 8 

TR/TE (ms) 6.6/3.3 6.8/3.1 6.5/3.1 
Field of view (mm) 240x240 256x240 256x240 
Acquisition matrix 208x208 256x240 256x240 

Reconstruction matrix 256x256 256x256 256x256 
Reconstructed voxel size (mm) 0.94x0.94 1.00x1.00 1.00x1.00 

DTI    
Head coil Philips 8-ch Philips 8-ch Philips 8-ch 

Scan time (mins:secs) 3:56 3:58 4:20 
Number of gradients 30 32 32 
Number of b0 images 1 1 1 
Max b-factor (s/mm²) 700 700 700 

Number of signal averages 
(NSA) 

1 1 1 

Diffusion gradient timing 
DELTA/delta (ms) 

39.2/15.1 36.3/16 36.3/13.5 

Slice thickness (mm) 2.5 2.2 2.2 
Number of slices 50 65 70 
Flip angle (deg) 90 90 90 

TR/TE (ms) 6210/80 6801/75 7454/75 
Field of view (mm) 240x240 212x212 260x260 
Acquisition matrix 96x96 96x95 116x115 

Reconstruction matrix 256x256 256x256 320x320 
Reconstructed voxel size (mm) 0.94x0.94 0.83x0.83 0.81x0.81 

Table 1 Protocol for the T1w MPRAGE scan and DTI scan.  
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 335 

Fig. 4 Brain segmentation labels are obtained using the SLANT segmentation of the target subject’s T1w image, and 
using three types of manual parcellations provided by the Eve atlas. To generate transformation matrices for 

transferring these labels to DTI scalar images, intra- and inter- modality registrations are performed. Standard 
deviations of DTI scalars within each ROI are computed.  
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 340 
Fig. 5 Covariate effects on FA standard deviation (standardized) are region-specific. Motion and interval exhibit 
opposite effect directions in many ROIs. Gender differences exist in multiple ROIs. Counterintuitively, motion is 

negatively related to FA standard deviation in many ROIs. The lookup table for the abbreviation of ROI name is in 
the Supplementary Materials.  
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 345 
Covariate Ageinterval Motion 

ROI Left Right Left Right 
 𝛽 p-value 𝛽 p-value 𝛽 p-value 𝛽 p-value 

Caudate Nucleus -0.383 4.0e-41 -0.317 2.4e-26 -0.337 2.1e-03 NA NA 
Posterior Thalamic Radiation -0.091 1.1e-07 -0.414 7.7e-94 -0.186 5.0e-03 -0.188 1.8e-02 

Superior Fronto-occipital Fasciculus -0.358 2.5e-35 -0.220 6.4e-11 NA NA NA NA 
Middle Occipital Gyrus 0.957 7.2e-218 0.726 1.1e-173 -0.266 2.3e-02 NA NA 

Lateral Fronto-orbital Gyrus 0.427 5.5e-28 0.457 1.4e-31 1.481 3.6e-28 2.011 2.3e-51 
Insular 1.055 1.7e-132 1.276 1.5e-208 0.935 5.8e-10 NA NA 

Gyrus Rectus 0.636 4.6e-59 0.787 1.2e-88 0.887 2.1e-10 0.818 5.2e-09 
Inferior Occipital Gyrus 0.746 1.6e-109 0.505 2.6e-62 0.422 9.3e-4 0.597 3.4e-08 

Body of Corpus Callosum 0.439 7.6e-60 0.336 2.6e-32 -0.242 2.4e-02 -0.357 1.1e-03 
Inferior Cerebellar Peduncle 0.560 2.9e-55 0.605 1.7e-61 -0.469 2.6e-04 -0.346 1.1e-02 
Cingulum (Cingulate Gyrus) 0.247 1.9e-17 0.498 3.0e-57 -0.630 2.0e-10 -0.476 1.2e-05 

Cuneus 0.951 1.1e-288 1.061 ≤ 2.3e-308 -0.318 3.2e-04 -0.471 5.4e-07 
Cuneus WM 0.555 2.0e-96 0.585 1.4e-95 -0.383 4.0e-05 -0.393 7.9e-05 

Fornix(cres) Stria Terminalis 0.340 5.4e-41 0.509 9.0e-60 -0.313 1.4e-03 -0.433 9.9e-05 
Middle Frontal WM 0.203 1.2e-15 0.275 5.4e-22 -0.623 8.0e-12 -0.716 2.5e-12 

Superior Frontal WM 0.341 2.4e-48 0.338 3.5e-39 -0.316 1.6e-04 -0.440 7.3e-07 
Lateral Fronto-orbital WM 0.372 7.3e-28 0.410 1.0e-33 -0.566 1.7e-06 -0.376 2.5e-03 

Lingual WM 0.366 2.3e-36 0.426 6.1e-45 -0.640 6.4e-10 -0.695 1.5e-10 
Medulla 0.537 1.9e-48 0.519 3.9e-45 -0.744 1.6e-08 -0.750 1.6e-08 

Superior Occipital Gyrus 0.734 4.7e-163 0.644 1.3e-134 -0.311 1.1e-03 -0.445 1.7e-06 
Middle Occipital WM 0.544 3.5e-102 0.308 2.3e-38 -0.501 2.2e-08 -0.564 3.5e-11 

Precuneus WM 0.549 3.0e-96 0.499 1.7e-76 -0.341 6.2e-04 -0.508 1.4e-07 
 

Table 2 Covariate effects on FA standard deviation (standardized) in selected ROIs from Eve Type 1 atlas.  
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Covariate Sex 
ROI Left Right 

 𝛽 p-value 𝛽 p-value 
Putamen NA NA 0.602 2.6e-27 
Thalamus 0.388 5.9e-13 0.450 4.3e-18 

Body of Corpus Callosum 0.287 4.1e-07 0.353 1.3e-09 
Cingulum (Cingulate Gyrus) 0.509 1.7e-16 0.471 1.4e-14 

Middle Frontal Gyrus -0.370 1.8e-09 -0.148 1.9e-02 
 

Table 3 Effects of sex on FA standard deviation (standardized) in selected ROIs from Eve Type 1 atlas.  
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350 
Fig. 6 The region-specific and bidirectional patterns of covariate effects are similarly observed in the results derived 

from SLANT segmentation, despite its differing definitions and delineations of ROIs compared to Eve type-1 
segmentation (Fig. 5).  
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Fig. 7 Despite the different definitions and delineations of ROIs between Eve type-1 and SLANT segmentations, 355 
results based on the two segmentation methods are largely similar (comparable regions are colored similarly) and 

both show that the effects of motion and interval on FA variance vary across ROIs.  
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Fig. 8 Signal-to-noise ratio (SNR) of the FA images across 8 Eve type-1 atlas-defined ROIs, including white matter 
(WM) regions (body of the corpus callosum, precuneus WM, cuneus WM), gray matter regions (insular, putamen, 360 
middle occipital gyrus, thalamus), and mixed regions (medulla), in 4 different scanners of BLSA (where scanner A 
is the 1.5 Tesla Philips Intera scanner, and scanners B/C/D are the 3 Tesla Philips Achieva scanners). “L.” stands for 
the left hemisphere of the brain.  
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Fig. 9 To assess the generalizability of our findings, we include two additional datasets, ADNI and BIOCARD and 365 
fit the linear mixed-effects models. The coefficients and p-values show similar patterns of those from BLSA alone, 
despite that the effect sizes and the hierarchical clustering are different, partly due to the omission of the rescan 
covariate.  
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Caption List 
Fig. 1 Simulation shows that applying the whitening matrix to the standard linear regression 
equation reduces the number of false positives (FP) and false negatives (FN) under 
heteroskedasticity. In the top row, the population truth has zero slope. In data sampled from the 635 
synthetic population data, ordinary least square (OLS) regression using the standard equation 
generates FP, while the solution with whitening, W, does not falsely reject the null hypothesis 
(the horizontal line). After 10,000 experiments, the FP frequency is lower with whitening, 
centering at 5 per 100. In the second row, the population truth has a positive slope. In data 
sampled from the synthetic population data, OLS regression using the standard equation 640 
generates FN, while the solution with whitening, W, does not. After 10,000 experiments, the FN 
frequency with whitening is half that of the one without whitening. 
Fig. 2 We observe that the noise (approximated by the difference between the scan and rescan 
acquired within the same imaging session) in DTI scalar images, such as fractional anisotropy 
(FA) images, generally increase with age. (Subjects’ ages are grouped into five-year bins to 645 
respect privacy.) But motion is also considered to increase with age.67,68 We would like to 
know: Which factor is associated with DTI variance? Where and how does this association 
manifest? 
Fig. 3 The BLSA dataset we use has a slight imbalance between the number of females and 
males, but it is well-matched and appropriate for our research objectives in other aspects: i) the 650 
age ranges of females and males align closely; ii) rescan DTI data were acquired in most 
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sessions, enabling inter-scan comparisons; iii) the distributions of sessions of females and males 
align closely. 
Table 1 Protocol for the T1w MPRAGE scan and DTI scan. 
Fig. 4 Brain segmentation labels are obtained using the SLANT segmentation of the target 655 
subject’s T1w image, and using three types of manual parcellations provided by the Eve atlas. To 
generate transformation matrices for transferring these labels to DTI scalar images, intra- and 
inter- modality registrations are performed. Standard deviations of DTI scalars within each ROI 
are computed. 
Fig. 5 Covariate effects on FA standard deviation (standardized) are region-specific. Motion and 660 
interval exhibit opposite effect directions in many ROIs. Gender differences exist in multiple 
ROIs. Counterintuitively, motion is negatively related to FA standard deviation in many ROIs. 
The lookup table for the abbreviation of ROI name is in the Supplementary Materials. 
Table 2 Covariate effects on FA standard deviation (standardized) in selected ROIs from Eve 
Type 1 atlas. 665 
Table 3 Effects of sex on FA standard deviation (standardized) in selected ROIs from Eve Type 
1 atlas. 
Fig. 6 The region-specific and bidirectional patterns of covariate effects are similarly observed in 
the results derived from SLANT segmentation, despite its differing definitions and delineations 
of ROIs compared to Eve type-1 segmentation (Fig. 5). 670 
Fig. 7 Despite the different definitions and delineations of ROIs between Eve type-1 and SLANT 
segmentations, results based on the two segmentation methods are largely similar (comparable 
regions are colored similarly) and both show that the effects of motion and interval on FA 
variance vary across ROIs. 
Fig. 8 Signal-to-noise ratio (SNR) of the FA images across 8 Eve type-1 atlas-defined ROIs, 675 
including white matter (WM) regions (body of the corpus callosum, precuneus WM, cuneus 
WM), gray matter regions (insular, putamen, middle occipital gyrus, thalamus), and mixed 
regions (medulla), in 4 different scanners of BLSA (where scanner A is the 1.5 Tesla Philips 
Intera scanner, and scanners B/C/D are the 3 Tesla Philips Achieva scanners). “L.” stands for the 
left hemisphere of the brain. 680 
Fig. 9 To assess the generalizability of our findings, we include two additional datasets, ADNI 
and BIOCARD and fit the linear mixed-effects models. The coefficients and p-values show 
similar patterns of those from BLSA alone, despite that the effect sizes and the hierarchical 
clustering are different, partly due to the omission of the rescan covariate. 
 685 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2023.08.22.23294381doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.22.23294381
http://creativecommons.org/licenses/by-nc-nd/4.0/

