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Abstract 

Background: As large analyses merge data across sites, a deeper understanding of variance in statistical assessment 

across the sources of data becomes critical for valid analyses. Diffusion tensor imaging (DTI) exhibits spatially varying 

and correlated noise, so care must be taken with distributional assumptions. 

Purpose: We characterize the role of physiology, subject compliance, and the interaction of subject with the scanner 

in the understanding of DTI variability, as modeled in spatial variance of derived metrics in homogeneous regions. 

Methods: We analyze DTI data from 1035 subjects in the Baltimore Longitudinal Study of Aging (BLSA), with ages 

ranging from 22.4 to 103 years old. For each subject, up to 12 longitudinal sessions were conducted. We assess 

variance of DTI scalars within regions of interest (ROIs) defined by four segmentation methods and investigate the 

relationships between the variance and covariates, including baseline age, time from the baseline (referred to as 

“interval”), motion, sex, and whether it is the first scan or the second scan in the session. 

Results: Covariate effects are heterogeneous and bilaterally symmetric across ROIs. Inter-session interval is positively 

related (𝑝 ≪ 0.001) to FA variance in the cuneus and occipital gyrus, but negatively (𝑝 ≪ 0.001) in the caudate 

nucleus. Males show significantly (𝑝 ≪ 0.001) higher FA variance in the right putamen, thalamus, body of the corpus 

callosum, and cingulate gyrus. In 62 out of 176 ROIs defined by the Eve type-1 atlas, an increase in motion is 

associated (𝑝 < 0.05) with a decrease in FA variance. Head motion increases during the rescan of DTI (Δ𝜇 = 0.045 

millimeters per volume). 

Conclusions: The effects of each covariate on DTI variance, and their relationships across ROIs are complex. 

Ultimately, we encourage researchers to include estimates of variance when sharing data and consider models of 

heteroscedasticity in analysis. This work provides a foundation for study planning to account for regional variations 

in metric variance. 

Keywords: brain, aging, DTI, variance, motion. 

 

1 Introduction 

Large datasets enable exploration of questions that would be impractical with smaller- or 

moderate-sized datasets while giving rise to the development and application of deep learning 

models which can assimilate complex data. One prevalent challenge is that large datasets often 

comprise samples aggregated from distinct sources at different time points using diverse 

technologies, causing data heterogeneity, experimental variations, and statistical biases if the 

analysis is not executed appropriately.1 In such scenarios, understanding the variance and 

variability of data is of great importance. The general linear model2, a structured and widely used 

framework for relationship modeling, allows us to illustrate the importance. The general linear 
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model is assessed through regression. A linear regression can be expressed by Y = Xβ + ε, where 

the response variable Y , the covariate matrix X , and the regression coefficients β  are 

conventionally represented in matrix forms given by: 
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where we use 𝑀 to denote the number of samples, and 𝑁 to denote the number of independent 

variables. The error term ε is given by: 

ε~𝒩(0, Σ) (2) 

where Σ represents the covariance matrix. If we assume the errors are uncorrelated,	Σ	is simplified 

to a diagonal matrix. We can simplify estimation of Eq. (1) with a whitening matrix3, W: 

 WY = WXβ +Wε, where W = W) = Σ*"/$ (3) 

Note Wε~𝒩(0, I&), where I& denotes the identity matrix of dimension 𝑀 ×𝑀.  

We illustrate the practical importance of understanding the variance structure for reducing 

statistical errors (Fig. 1).  

Diffusion tensor imaging (DTI)4–6 is a modeling approach used in diffusion-weighted imaging 

7–9, a variant of conventional magnetic resonance imaging (MRI) based on the tissue water 

diffusion rate.10 DTI allows for visualization and measurement of the degree of anisotropy and 

structural orientation of fibers in the brain and has been widely used in studies.11–13 DTI is 

inherently subject to low signal-to-noise ratio, and the noise structure exhibits spatial variability 

and correlation, primarily attributed to fast imaging and noise suppression techniques.14,15 

Understanding the statistical nature of DTI variance or noise has been proven to be beneficial for 

diffusion tensor estimation15,16, outlier detection17, reproducibility assessment18–20.  

Methods have been proposed for DTI variance (or noise) estimation, among which we 

recognize four types. The first type requires multiple repeated acquisitions (therefore, we refer to 

it as the “multiple acquisition method”). After the repeated acquisitions, we could take the standard 

deviation of the measurements, or perform data resampling, such as bootstrap or jackknife,21 to 

quantify uncertainties of DTI parameters. The second type involves two repeated acquisitions, 

which we call the “scan-rescan method”. We compute the difference between the images from 

each acquisition and then calculate the standard deviation of the difference across the space.22,23 
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Note that the standard deviation must be divided by the square root of 2 to account for the 

combination of two random variables (noise in each image). The third and fourth types are used 

when we have only one acquisition. For the third type, we select a homogeneous ROI and compute 

the standard deviation of the measurements within this ROI (“ROI-based method”).24 The fourth 

type, often referred to as “model-based resampling”, involves fitting a model (e.g., diffusion 

tensor) locally to the observed data. The residuals from the fitted model, along with the original 

observed data, are then used by data resampling techniques such as wild bootstrap to generate 

random subsets.21,25 From each subset, we obtain an estimate of a specific parameter. Across all 

subsets, we get the distribution of the estimates and thus quantify the uncertainty of the DTI 

parameter. The first type (multiple acquisition method) makes no assumptions about the noise 

properties at the cost of requiring multiple acquisitions (for each diffusion gradient in the DTI 

scenario).21 The second type (scan-rescan method) assumes that the noise is constant across space, 

or across the region from which the standard deviation is computed.23 The third method (ROI-

based method) assumes that both the noise and the signal are constant across the ROI.24 The fourth 

method (model-based resampling) assumes that the non-constant variance of measured signals can 

be captured by the chosen model.21 In this study, we choose the ROI-based method for estimating 

noise across brain regions in DTI. This is because it does not require repeated acquisitions, and 

one advantage is that we can compute noise from each individual scan within an imaging session, 

enabling inter-scan comparisons. Secondly, by using an individual scan for noise estimation, we 

can mitigate errors caused by motion and inter-scan misalignment of the brain, which could be 

problematic when using the multiple acquisition method or the scan-rescan method. Thirdly, we 

want to avoid using the assumption of the fourth type (model-based resampling).21  

Up to this point, we have been using the terms “variance” and “noise” interchangeably. In the 

following text, we use “variance” when referring to the measure of the dispersion of data, and 

“noise” when referring to the imaging noise such as MRI noise—primarily caused by thermal 

fluctuations and electrical noise—to avoid misinterpretation. 

To gain a better understanding of DTI variance or noise, it is important to characterize the role 

of physiology, subject compliance, and the interaction between the subject and the scanner. Our 

approach is driven by two fundamental questions (Fig. 2): Which factors are associated with DTI 

variance? Where and how does this association manifest? We assess variance of DTI scalars, 

including fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial 
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diffusivity (RD), within ROIs, and investigate the associations between the variance and 

covariates, including baseline age, time from the baseline (referred to as “interval”), motion, sex, 

and whether it is the first or the second scan within the session, using linear mixed effects models26. 

2 Methods 

We use the PreQual27 pipeline for preprocessing and quality assurance of the DTI data in the 

Baltimore Longitudinal Study of Aging (BLSA)28,29 dataset. We consider all subjects with at least 

one session comprising both T1-weighted (T1w) MRI data and DTI data. We exclude 49 DTI 

images exhibiting one or more of the following characteristics according to their potential impact 

on subsequent analyses: 
(1) The presence of extreme susceptibility-induced distortion, motion artifacts, or eddy currents that 

resists correction. 

(2) The failure of the preprocessed data to be fitted by the tensor model. 

(3) An exceptionally low signal-to-noise ratio in the FA and MD images. 

The exclusion of these cases results in the dataset depicted in Fig. 3. We identify 1035 subjects 

(562 F/ 473 M, 22.4 to 94.4 y/o at baseline) with 2751 sessions (1497 F/ 1254 M). During 

subsequent sessions, 4 female subjects and 10 male subjects were diagnosed with Alzheimer’s 

disease, while the remaining subjects remained cognitively normal throughout all sessions. 

2.1 ROI-Based DTI Variance Estimation 

We use a registration-based approach for brain segmentation in the b0 (minimally weighted) 

volume (Fig. 4). We initiate the process with brain segmentations for the T1w images obtained 

through manual parcellations provided by the JHU-MNI-ss atlas (“Eve atlas”)30,31 and automated 

whole-brain segmentation by SLANT32. For the Eve atlas, there are three types of parcellations 

available, each with different regional focus.30 For SLANT segmentation, labels for 132 regions 

covering the whole brain are provided.32 We use the method by Hansen et al.33 to transfer these 

labels from T1w to b0 space. After label transferring, we manually review the segmentation to see 

if the labels align with the anatomical regions. 
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2.2 Linear Mixed-Effects Model 

We use linear mixed-effects models26 to analyze the association between DTI scalar standard 

deviation and covariates. (R program, version 4.2.2 34; Ubuntu 20.04.5 LTS; R package lme4, 

version 1.1.31 35; R package lmerTest, version 3.1.3 36.) 

We study linear mixed-effects models of the form: 

𝜎,-./ ∼ Agebaseline,, + Ageinterval,,- +Motion,-/ + Sex, + Rescan,-/ + 𝑟",, + 𝑟$,. + ε,-./       (4) 

where 𝜎,-./ represents the standard deviation of a DTI scalar (FA, AD, MD, or RD) in a specific 

brain region of subject 𝑖 at session 𝑗 via scanner 𝑘 in acquisition 𝑙, Agebaseline,, (hereafter referred 

to as “baseline”) is the age of subject 𝑖 at baseline session, Ageinterval,,- (hereafter referred to as 

“interval”) is the time between the current session, 𝑗, and the baseline session. Motion,-/ is a 

scalar value reflecting the degree of head movement of subject 𝑖 at session 𝑗 during acquisition 𝑙 

(calculated based on eddy movement, in millimeters)37, Sex, is the gender of subject 𝑖 (0 for 

female and 1 for male), and Rescan,-/ is a binary variable indicating if the acquisition 𝑙 is the 

first scan (coded 0) or the rescan (coded 1) of session 𝑗. We consider subject and scanner as two 

random intercepts, respectively denoted by 𝑟",, and 𝑟$,.. Prior to fitting the models, we 

standardize the dependent variable 𝜎. To allow an artificially “amplified” effect of aging in the 

result, facilitating comparison with other covariates, we convert the units of baseline and interval 

from years to decades. 

We have a total of 2224 models, derived from the four DTI scalars (FA, AD, MD, or RD), 

across varying ROIs defined by Eve Type 1 (176 ROIs), Eve Type 2 (130 ROIs), Eve Type 3 (118 

ROIs),30,31 and SLANT (132 ROIs)32. Each model starts with a full model, with all fixed effects 

and random effects, followed by an implementation of backward model selection.36 The p-values 

for the fixed-effect terms are calculated based on the associated F tests.36 To account for multiple 

comparisons, we adjust the p-values across the pairs of DTI scalar and ROI for a false discovery 

rate (FDR) of 0.05 using the Benjamini-Hochberg method.38 

3 Results 

The magnitude and direction of the effects of each covariate on DTI variance exhibit 

heterogeneous patterns across ROIs (Fig. 5). Specifically, interval is positively related to FA 

variance in ROIs such as the cuneus, middle occipital gyrus, superior occipital gyrus, medulla, 
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precuneus white matter, but negatively related in ROIs such as the caudate nucleus, posterior 

thalamic radiation, and superior fronto-occipital fasciculus (Table 1). Males have higher FA 

variance in the right putamen, thalamus, body of corpus callosum, and cingulum (cingulate gyrus), 

but lower FA variance in the middle frontal gyrus (Table 2). In the right inferior temporal gyrus, 

an increase of 1 millimeter in motion is associated with an increase of 2.211 standard deviations 

in the z-scored standard deviation (𝜎) of FA values (𝛽 = 2.211, 𝑝 ≪ 0.001). Interestingly and 

counterintuitively, in several ROIs, including the medulla, middle occipital white matter, cingulum 

(cingulate gyrus), an increase in motion is linked with a decrease in FA variance (Table 1). 

In the lateral fronto-orbital gyrus, left insular, gyrus rectus, and inferior occipital gyrus, both 

motion and interval exhibit a positive association with FA variance (Table 1). In the left caudate 

nucleus, and right posterior thalamic radiation, they both show a negative association with FA 

variance (Table 1). In many other ROIs, such as the cuneus, lingual white matter, and middle 

occipital white matter, motion is negatively related to FA variance while interval is positively 

related (Table 1). Results from the left ROI closely align with those from the corresponding right 

ROI (Table 1). There are some ROIs where interval is significantly (𝑝 ≪ 0.001) associated with 

FA variance, while motion either gets removed during the model selection or shows weak 

associations (𝑝 ≥ 0.05) (Fig. 5).  

On data extracted from ROIs defined by SLANT segmentation, which has different regional 

focus and delineation than Eve type-1 segmentation, the aforementioned patterns of effects can 

also be observed (Fig. 6, Fig. 7). For instance, in the left cerebellum exterior, both motion and 

interval are positively associated with FA variance, with motion’s coefficient (𝛽 = 0.960, 𝑝 ≪

0.001 ) higher than that of interval (𝛽 = 0.485, 𝑝 ≪ 0.001 ). This parallels the relationship 

observed between the motion and interval coefficients in the left cerebellum defined by the Eve 

type-1 segmentation (𝛽 = 0.993, 𝑝 ≪ 0.001  for motion; 𝛽 = 0.471, 𝑝 ≪ 0.001  for interval). 

Similarly, in ROIs such as the right cuneus, left precuneus, right superior occipital gyrus, and right 

middle occipital gyrus, motion shows a negative association with FA variance, while interval 

shows a positive association. (See Supplementary Materials for coefficients and p-values.) 

In the model selection process, we observe that the rescan and the motion terms appear 

mutually exclusive, with only one preserved post-selection in most models. This pattern is echoed 

in the heatmaps of coefficients (Fig. 5, Fig. 6), where the cell in either the motion or the rescan 

column is colored grey. This hints at a correlation between rescan and motion. Supporting this 
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observation, we detect an increase in head motion in the rescan of DTI acquired right after the first 

scan of DTI in the same session (mean shift Δ𝜇 = 0.045 millimeters per volume, relative mean 

shift Δ𝜇/𝜇 = 17.0%, coefficient of determination 𝑅$ = 0.065). 

We provide the results from other pairs of DTI scalar and segmentation method in the 

Supplementary Materials. 

4 Discussion 

While many studies have estimated and shown the spatial variability of DTI variance (or 

noise),14,15,39 we characterize how DTI variance is associated with physiological and behavioral 

factors across brain regions. We answer the questions: Which factors are associated with DTI 

variance? Where and how does this association manifest? We found region-specific and 

bidirectional effects of covariates—including interval (which captures the within-individual 

longitudinal change over time), motion, and sex—on FA variance across brain regions. For 

instance, FA variance is positively associated with interval in cuneus, but negatively associated in 

caudate nucleus. Long-standing research has demonstrated that there is a decline in white matter 

microstructure with aging,40–45 with the consensus being that frontal and parietal areas are 

particularly vulnerable and the occipital and motor areas are mostly preserved. The frontal lobe 

exhibits the most pronounced decline, with FA declining by approximately 3% per decade starting 

at ~35 years of age.46 Although our study focuses on the standard deviation of FA, our results 

converge with these prior research studies as we have shown high sensitivity to aging in the frontal, 

parietal, and temporal areas. While it is unclear what mechanisms are driving the changes in these 

areas, potential culprits include the change of uniformity of fiber orientations and fiber density.47–

49 

Previous studies50–52 have shown differences in FA between genders across brain regions. Oh 

et al. found that males have significantly higher FA values in global corpus callosum structure 

areas, while they exhibit lower FA values than females in the partial areas of the rostrum, genu, 

and splenium.50 Menzler et al. found that males show higher FA values in the thalamus, corpus 

callosum and cingulum.52 Most of these regions previously identified in the literature also show 

significant (𝑝 ≪ 0.001) associations between FA variance and sex in our study. While previous 

studies have reported changes in mean FA values, we offer a different perspective by depicting the 

variance of FA values. 
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The negative association observed between motion and FA variance in multiple regions, while 

counterintuitive, is not unreasonable. One might naturally expect that as motion increases, the 

uncertainty (reflected as variance) in the image should increase, given that motion leads to lower 

image quality, signal-to-noise ratio, and artifacts that can mislead image interpretation.53,54 

However, the images we use for analysis have undergone motion correction during preprocessing. 

Although in practice, motion artifacts cannot be fully eliminated from the image, the recorded 

motion value doesn’t reflect the motion’s impact in the image after preprocessing. Instead, it 

reflects the subject’s motion during image acquisition. A higher motion value does not necessarily 

correspond to a noisier image post-preprocessing. Furthermore, Zeng et al. found that head motion 

during brain imaging is not merely a technical artifact but a reflection of a neurobiological trait. 

Specifically, individuals with stronger distant connectivity in the default network could 

consistently refrain from moving and such “head motion tendency” remains consistent within 

individuals.55 These points, taken together, provide explanations from image processing and 

biological perspectives, respectively, for why FA variance can decrease as motion increases. 

4.1 Limitations of Current Study 

First, this study relies on a registration-based method for brain segmentation in the b0 space. 

Despite rigorous quality assurance, the labels for each brain region may not correspond flawlessly 

with the true anatomical regions. Consequently, the standard deviation of DTI scalars extracted 

from each region combines both voxel-wise modeling factors and image analysis factors from 

neighboring regions. Second, we used backward model selection for the fixed-effect terms of the 

linear mixed-effects models. Such method can be unstable according to Breiman et. al.56 Third, we 

use the variance of DTI scalar values in the ROI as a proxy for measuring noise. This is not an 

ideal proxy, as the ROI-based variance captures not only the image noise but also the spatial 

variability in voxel intensity due to microstructural variations. This makes it suboptimal to reflect 

DTI noise. Fourth, our study only includes the BLSA dataset. Incorporating data from additional 

sources could make the findings more convincing. Fifth, the motion value used in this study is 

based on movement calculated by FSL’s eddy37, which approximates true head motion. 
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5 Conclusion 

The notion of harnessing variance to enhance the reliability of analysis is universally applicable. 

Having a better understanding of variance is pivotal in mega-analyses, where heteroscedasticity is 

often an inherent challenge. Our study illuminates the complex and heterogeneous effects of 

covariates including baseline age, interval, motion, sex, and rescan on DTI variance across ROIs. 

More comprehensive efforts are required to fully characterize the variance. In the meantime, we 

encourage researchers to consider models of heteroscedasticity in their analyses and to include 

their estimates of variance when sharing data. As highlighted in the introduction, the application 

of the whitening matrix, constructed using the variance of the data, significantly reduces statistical 

errors. We anticipate that more sophisticated methods can further unlock the potential benefits 

derived from a nuanced understanding of variance, thereby bolstering the accuracy and reliability 

of future research.  
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Fig. 1 Simulation shows that applying the whitening matrix to the standard linear regression equation reduces the 

number of false positives (FP) and false negatives (FN) under heteroskedasticity. In the top row, the population truth 

has zero slope. In data sampled from the synthetic population data, ordinary least square (OLS) regression using the 

standard equation generates FP, while the solution with whitening, W, does not falsely reject the null hypothesis (the 

horizontal line). After 10,000 experiments, the FP frequency is lower with whitening, centering at 5 per 100. In the 

second row, the population truth has a positive slope. In data sampled from the synthetic population data, OLS 

regression using the standard equation generates FN, while the solution with whitening, W, does not. After 10,000 

experiments, the FN frequency with whitening is half that of the one without whitening. 
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Fig. 2 We observe that the noise (approximated by the difference) in DTI scalar images such as fractional anisotropy 

(FA) images generally increase with age. But motion is also considered to increase with age.57,58 We would like to 

know: Which factor is associated with DTI variance? Where and how does this association manifest? 
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Fig. 3 The BLSA dataset we use has a slight imbalance between the number of females and males, but it is well-

matched and appropriate for our research objectives in other aspects: i) the age ranges of females and males align 

closely; ii) rescan DTI data were acquired in most sessions, enabling inter-scan comparisons; iii) the distributions of 

sessions of females and males align closely. 

 

  

Female Male
# Subjects 562 473
Age at baseline

Range 24.2 - 94.4 22.4 - 92.4
Mean (SD) 69.8 (12.5) 71.5 (13.2)

# Sessions 1497 1254
w/ rescan DTI 1471 1207

w/o rescan DTI 26 47
# Subjects by the total number of sessions

1 205 172
2 112 94
3 86 77
4 69 60
5 51 33
6 17 20
7 11 10
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9 2 3
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Fig. 4 Brain segmentation labels are obtained using the SLANT segmentation of the target subject’s T1w image, and 

using three types of manual parcellations provided by the Eve atlas. To generate transformation matrices for 

transferring these labels to DTI scalar images, intra- and inter- modality registrations are performed. Standard 

deviations of DTI scalars within each ROI are computed. 
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Fig. 5 Covariate effects on FA standard deviation (standardized) are region-specific. Motion and interval exhibit 

opposite effect directions in many ROIs. Gender differences exist in multiple ROIs. Counterintuitively, motion is 

negatively related to FA standard deviation in many ROIs. The lookup table for the abbreviation of ROI name is in 

the Supplementary Materials. 
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Covariate Ageinterval Motion 

ROI Left Right Left Right 
 𝛽 p-value 𝛽 p-value 𝛽 p-value 𝛽 p-value 

Caudate Nucleus -0.383 4.0e-41 -0.317 2.4e-26 -0.337 2.1e-03 NA NA 
Posterior Thalamic Radiation -0.091 1.1e-07 -0.414 7.7e-94 -0.186 5.0e-03 -0.188 1.8e-02 

Superior Fronto-occipital Fasciculus -0.358 2.5e-35 -0.220 6.4e-11 NA NA NA NA 
Middle Occipital Gyrus 0.957 7.2e-218 0.726 1.1e-173 -0.266 2.3e-02 NA NA 

Lateral Fronto-orbital Gyrus 0.427 5.5e-28 0.457 1.4e-31 1.481 3.6e-28 2.011 2.3e-51 
Insular 1.055 1.7e-132 1.276 1.5e-208 0.935 5.8e-10 NA NA 

Gyrus Rectus 0.636 4.6e-59 0.787 1.2e-88 0.887 2.1e-10 0.818 5.2e-09 
Inferior Occipital Gyrus 0.746 1.6e-109 0.505 2.6e-62 0.422 9.3e-4 0.597 3.4e-08 

Body of Corpus Callosum 0.439 7.6e-60 0.336 2.6e-32 -0.242 2.4e-02 -0.357 1.1e-03 
Inferior Cerebellar Peduncle 0.560 2.9e-55 0.605 1.7e-61 -0.469 2.6e-04 -0.346 1.1e-02 
Cingulum (Cingulate Gyrus) 0.247 1.9e-17 0.498 3.0e-57 -0.630 2.0e-10 -0.476 1.2e-05 

Cuneus 0.951 1.1e-288 1.061 ≤ 2.3e-308 -0.318 3.2e-04 -0.471 5.4e-07 
Cuneus WM 0.555 2.0e-96 0.585 1.4e-95 -0.383 4.0e-05 -0.393 7.9e-05 

Fornix(cres) Stria Terminalis 0.340 5.4e-41 0.509 9.0e-60 -0.313 1.4e-03 -0.433 9.9e-05 
Middle Frontal WM 0.203 1.2e-15 0.275 5.4e-22 -0.623 8.0e-12 -0.716 2.5e-12 

Superior Frontal WM 0.341 2.4e-48 0.338 3.5e-39 -0.316 1.6e-04 -0.440 7.3e-07 
Lateral Fronto-orbital WM 0.372 7.3e-28 0.410 1.0e-33 -0.566 1.7e-06 -0.376 2.5e-03 

Lingual WM 0.366 2.3e-36 0.426 6.1e-45 -0.640 6.4e-10 -0.695 1.5e-10 
Medulla 0.537 1.9e-48 0.519 3.9e-45 -0.744 1.6e-08 -0.750 1.6e-08 

Superior Occipital Gyrus 0.734 4.7e-163 0.644 1.3e-134 -0.311 1.1e-03 -0.445 1.7e-06 
Middle Occipital WM 0.544 3.5e-102 0.308 2.3e-38 -0.501 2.2e-08 -0.564 3.5e-11 

Precuneus WM 0.549 3.0e-96 0.499 1.7e-76 -0.341 6.2e-04 -0.508 1.4e-07 
 

Table 1 Covariate effects on FA standard deviation (standardized) in selected ROIs from Eve Type 1 atlas. 
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Covariate Sex 
ROI Left Right 

 𝛽 p-value 𝛽 p-value 
Putamen NA NA 0.602 2.6e-27 
Thalamus 0.388 5.9e-13 0.450 4.3e-18 

Body of Corpus Callosum 0.287 4.1e-07 0.353 1.3e-09 
Cingulum (Cingulate Gyrus) 0.509 1.7e-16 0.471 1.4e-14 

Middle Frontal Gyrus -0.370 1.8e-09 -0.148 1.9e-02 
 

Table 2 Effects of sex on FA standard deviation (standardized) in selected ROIs from Eve Type 1 atlas. 
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Fig. 6 The region-specific and bidirectional patterns of covariate effects are similarly observed in the results derived 

from SLANT segmentation, despite its differing definitions and delineations of ROIs compared to Eve type-1 

segmentation (Fig. 5). 
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Fig. 7 Despite the different definitions and delineations of ROIs between Eve type-1 and SLANT segmentations, 

results based on the two segmentation methods are largely similar (comparable regions are colored similarly) and 

both show that the effects of motion and interval on FA variance vary across ROIs. 
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