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Abstract 

Purpose: As large analyses merge data across sites, a deeper understanding of variance in statistical assessment across 
the sources of data becomes critical for valid analyses. Diffusion tensor imaging (DTI) exhibits spatially varying and 
correlated noise, so care must be taken with distributional assumptions. Here we characterize the role of physiology, 
subject compliance, and the interaction of subject with the scanner in the understanding of variance. 

Approach: We analyze DTI data from 1035 subjects in the Baltimore Longitudinal Study of Aging (BLSA), with 
ages ranging from 22.4 to 103 years old. For each subject, up to 12 longitudinal sessions were conducted. In each 
session, a scan and a rescan of DTI were performed. We assess variance of DTI scalars within regions of interest 
(ROIs) defined by four segmentation methods and investigate the relationships between the variance and covariates, 
including baseline age, time from the baseline (referred to as “interval”), motion, sex, and scan-rescan pairs. 

Results: Covariate effects are heterogeneous and bilaterally symmetric across ROIs. The interval is positively related 
to FA variance in the cuneus and occipital gyrus, but negatively in the caudate nucleus. Males show higher FA variance 
in the right putamen, thalamus, body of the corpus callosum, and cingulate gyrus. In certain ROIs, an increase in 
motion is associated with a decrease in FA variance. Head motion increases during the rescan of DTI. 

Conclusions: The effects of each covariate on DTI variance, and their relationships across ROIs are complex. 
Ultimately, we encourage researchers to include estimates of variance when sharing data and consider models of 
heteroscedasticity in analysis. 

 
Keywords: brain, aging, DTI, variance, motion. 
 
*Address all correspondence to Chenyu Gao, E-mail: chenyu.gao@vanderbilt.edu 
 

 

1 Introduction 

The Autism Brain Imaging Data Exchange (ABIDE),1 Alzheimer’s Disease Neuroimaging 

Initiative (ADNI),2 Human Connectome Project (HCP),3 Open Access Series of Imaging Studies 
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(OASIS),4 and UK (United Kingdom) Biobank5 are making large volumes of their data available 

to the wider scientific community. These “big data” studies create the possibility of exploring 

questions that would be impractical with smaller- or moderate-sized datasets6 while giving rise to 

the development and application of powerful machine learning technologies which are capable of 

assimilating and evaluating large volumes of complex healthcare data.7 One prevalent challenge is 

that large datasets typically comprise samples aggregated from distinct sources at different time 

points using diverse technologies, causing data heterogeneity, experimental variations, and 

statistical biases if the analysis is not executed appropriately.8  

Diffusion tensor imaging (DTI)9–12 is a modeling approach used in diffusion-weighted imaging 

(DWI) 13–15, a variant of conventional magnetic resonance imaging (MRI) based on the tissue water 

diffusion rate.16 DTI allows for visualization and measurement of the degree of anisotropy and 

structural orientation of fibers in the brain and has been widely used in studies.17–20 DTI is 

inherently subject to low signal-to-noise ratios (SNR) and multiple sources of artifacts,21,22 which 

can have negative impact on the estimation of the diffusion anisotropy23 and the structural 

connectivity24, among others25–27. Moreover, the noise structure in DTI exhibits spatial variability 

and correlation, primarily attributed to fast imaging and noise suppression techniques.28,29 

Understanding the statistical nature of DTI variance has been proven to be beneficial for diffusion 

tensor estimation29,30, outlier detection31, and reproducibility assessment23,25,26. Considerable 

efforts have been dedicated to estimating DTI variance28,29,32 and enhancing the reliability of 

analyses by leveraging the variance33 or considering models of heteroscedasticity34. To gain a 

better understanding of DTI variance, it is important to characterize the role of physiology, subject 

compliance, and the interaction between the subject and the scanner. 
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In the context of many mega-analyses, we are interested in relationship modeling. The general 

linear model, a structured and widely used framework for relationship modeling, allows us to 

illustrate the importance of understanding variance and variability. The general linear model is 

assessed through linear regression. A linear regression can be expressed by Y = Xβ + ε, where the 

response variable Y, the covariate matrix X, and the regression coefficients β are conventionally 

represented in matrix forms given by: 
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where we use 𝑀 to denote the number of samples, and 𝑁 to denote the number of independent 

variables. The error term ε is given by: 

ε~𝒩(0, Σ) (2) 

where Σ represents the covariance matrix. If we assume the errors are uncorrelated,	Σ	is simplified 

to a diagonal matrix. We can simplify estimation of Eq. (1) by transforming ε into a diagonal form 

with a whitening matrix35, W: 

 WY = WXβ +Wε, where W = W) = Σ*"/$ (3) 

Note Wε~𝒩(0, I&), where I& denotes the identity matrix of dimension 𝑀 ×𝑀.  

We illustrate the practical importance of understanding the variance structure for reducing 

statistical errors (Fig. 1). The simulations use two populations, each generated from a different 

linear model, with β set to 0 and 1, respectively. Noise is introduced to Y, following normal 

distribution with mean zero and standard deviation proportional to X. In each iteration, we sample 

50 data points from the population data and conduct ordinary least squares (OLS) regressions using 

both the standard linear regression equation, Y = Xβ + ε, and Eq. (3), where W is constructed 
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using the sample standard deviations of the noise. Following 10,000 experiments, each comprising 

100 iterations, the number of both false positives and false negatives is reduced when using Eq. 

(3) compared to the standard linear regression equation. 

Our approach is driven by two fundamental questions (Fig. 2): Which factor is associated with 

DTI variance? Where and how does this association manifest? We assess variance of DTI scalars, 

including fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial 

diffusivity (RD), within ROIs, and investigate the associations between the variance and 

covariates, including baseline age, time from the baseline (referred to as “interval”), motion, sex, 

and scan-rescan pairs (whether it is the first or the second scan within the session) using linear 

mixed effects models36.  

2 Methods 

We use the PreQual37 pipeline for preprocessing and quality assurance of the DTI data in the 

Baltimore Longitudinal Study of Aging (BLSA)38,39 dataset. We consider all subjects with at least 

one session comprising both T1-weighted (T1w) MRI data and DTI data. We exclude 49 DTI 

images exhibiting one or more of the following characteristics according to their potential impact 

on subsequent analyses: 

(1) The presence of extreme susceptibility-induced distortion, motion artifacts, or eddy currents that 
resists correction. 

(2) The failure of the preprocessed data to be fitted by the tensor model. 
(3) An exceptionally low signal-to-noise ratio in the FA and MD images. 
 
The exclusion of these cases results in the dataset depicted in Fig. 3. We identify 1035 subjects 

(562 F/ 473 M, 22.4 to 94.4 y/o at baseline) with 2751 sessions (1497 F/ 1254 M). Out of the 2751 

sessions, both scan and rescan DTI data (acquired in the same session) are available for 2678 

sessions. 4 female subjects and 10 male subjects were diagnosed with Alzheimer’s disease during 

subsequent sessions.  
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2.1 ROI-Based DTI Variance Estimation 

We use a registration-based approach for brain segmentation in the b0 (minimally weighted) 

volume (Fig. 4). We initiate the process with brain segmentations for the T1w images obtained 

through manual parcellations provided by the JHU-MNI-ss atlas (“Eve atlas”)40,41 and automated 

whole-brain segmentation by SLANT42. For the Eve atlas, there are three types of parcellations 

available, each with different regional focus.40 For SLANT segmentation, labels for 132 regions 

covering the whole brain are provided.42 We use the method by Hansen et al.43 to transfer these 

labels from T1w to b0 space. After label transferring, we manually review the segmentation to see 

if the labels align with the anatomical regions. 

2.2 Linear Mixed-Effects Model 

We use linear mixed-effects models36 to analyze the association between DTI standard deviation 

and covariates. (R program, version 4.2.2 44; Ubuntu 20.04.5 LTS; R package lme4, version 1.1.31 

45; R package lmerTest, version 3.1.3 46.) 

We study linear mixed-effects models of the form: 

𝜎,-./ ∼ Agebaseline,, + Ageinterval,,- +Motion,-/ + Sex, + Rescan,-/ + 𝑟",, + 𝑟$,. + ε,-./       (4) 

where 𝜎,-./ represents the standard deviation of a DTI scalar (FA, AD, MD, or RD) in a specific 

brain region of subject 𝑖 at session 𝑗 via scanner 𝑘 in acquisition 𝑙, Agebaseline,, (hereafter referred 

to as “baseline”) is the age of subject 𝑖 at baseline session, Ageinterval,,- (hereafter referred to as 

“interval”) is the time between the current session, 𝑗, and the baseline session. Motion,-/ is a 

scalar value reflecting the degree of head movement of subject 𝑖 at session 𝑗 during acquisition 𝑙 

(calculated based on eddy movement, in millimeters)47, Sex, is the gender of subject 𝑖 (0 for 

female and 1 for male), and Rescan,-/ is a binary variable indicating if the acquisition 𝑙 is the 
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first scan (coded 0) or the rescan (coded 1) of session 𝑗. We consider subject and scanner as two 

random intercepts, respectively denoted by 𝑟",, and 𝑟$,.. Prior to fitting the models, we 

standardize the dependent variable 𝜎. To allow an artificially “amplified” effect of aging in the 

result, facilitating comparison with other covariates, we convert the units of baseline and interval 

from years to decades. 

We have a total of 2224 models, derived from the four DTI scalars (FA, AD, MD, or RD), 

across varying ROIs defined by Eve Type 1 (176 ROIs), Eve Type 2 (130 ROIs), Eve Type 3 (118 

ROIs),40,41 and SLANT (132 ROIs)42. Each model starts with a full model, with all fixed effects 

and random effects, followed by an implementation of backward model selection.46 The p-values 

for the fixed-effect terms are calculated based on the associated F tests.46 To account for multiple 

comparisons, we adjust the p-values across the pairs of DTI scalar and ROI for a false discovery 

rate (FDR) of 0.05 using the Benjamini-Hochberg method.48 

To evaluate the effects of each independent variable on DTI variance, we visualize p-values 

and coefficients using seaborn49 package’s clustermaps. We use grey cells to indicate missing 

values, which can arise either from term removal during model selection or from a corresponding 

p-value above 0.05. We optimize the hierarchical clustering and the ordering of rows based on 

Euclidean distance. There are 16 such figures, each corresponding to a DTI scalar-segmentation 

pair. Only 2 are included and discussed in the main text, with the remaining in the Supplementary 

Materials. ROI names are abbreviated, with a reference table in the Supplementary Materials. We 

visualize the coefficients of motion and interval in 3D for enhanced interpretation. The 

transparency of each region is determined by the absolute value of its coefficient so that regions 

with smaller coefficients appear more transparent than those with larger coefficients. 
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3 Results 

The magnitude and direction of the effects of each covariate on DTI variance exhibit 

heterogeneous patterns across ROIs (Fig. 5). Specifically, interval is positively related to FA 

variance with 𝑝 ≪ 0.001 in ROIs such as the cuneus (left: 𝛽 = 0.951; right: 𝛽 = 1.061), middle 

occipital gyrus (left: 𝛽 = 0.957; right: 𝛽 = 0.726), superior occipital gyrus (left: 𝛽 = 0.734; 

right: 𝛽 = 0.644), medulla (left: 𝛽 = 0.537; right: 𝛽 = 0.519), precuneus white matter (left: 𝛽 =

0.549; right: 𝛽 = 0.499). In contrast, interval is negatively related to FA variance with 𝑝 ≪ 0.001 

in ROIs such as the caudate nucleus (left: 𝛽 = −0.383; right: 𝛽 = −0.317), posterior thalamic 

radiation (left: 𝛽 = −0.091; right: 𝛽 = −0.414), and superior fronto-occipital fasciculus (left: 

𝛽 = −0.358; right: 𝛽 = −0.220). Males have higher FA variance in the right putamen (𝛽 =

0.602, 𝑝 ≪ 0.001), thalamus (left: 𝛽 = 0.388, 𝑝 ≪ 0.001; right: 𝛽 = 0.450, 𝑝 ≪ 0.001), body 

of corpus callosum (left: 𝛽 = 0.287, 𝑝 ≪ 0.001; right: 𝛽 = 0.353, 𝑝 ≪ 0.001), and cingulum 

(cingulate gyrus) (left: 𝛽 = 0.509, 𝑝 ≪ 0.001; right: 𝛽 = 0.471, 𝑝 ≪ 0.001), but lower FA 

variance in the left middle frontal gyrus (𝛽 = −0.370, 𝑝 ≪ 0.001). In the right inferior temporal 

gyrus, an increase of 1 millimeter in motion is associated with an increase of 2.211 standard 

deviations in the z-scored standard deviation (𝜎) of FA values (𝛽 = 2.211, 𝑝 ≪ 0.001). 

Interestingly and counterintuitively, in several ROIs, including the medulla (left: 𝛽 = −0.744; 

right: 𝛽 = −0.750), middle occipital white matter (left: 𝛽 = −0.501; right: 𝛽 = −0.564), 

cingulum (Cingulate Gyrus) (left: 𝛽 = −0.630; right: 𝛽 = −0.476), an increase in motion is 

linked with a decrease in FA variance (𝑝 ≪ 0.001). 

In the lateral fronto-orbital gyrus (left: 𝛽 = 1.481 for motion, 𝛽 = 0.427 for interval; right: 

𝛽 = 2.011 for motion, 𝛽 = 0.457 for interval), left insular (𝛽 = 0.935 for motion, 𝛽 = 1.055 for 

interval), gyrus rectus (left: 𝛽 = 0.887 for motion, 𝛽 = 0.636 for interval; right: 𝛽 = 0.818 for 
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motion, 𝛽 = 0.787 for interval), and inferior occipital gyrus (left: 𝛽 = 0.422 for motion, 𝛽 =

0.746 for interval; right: 𝛽 = 0.597 for motion, 𝛽 = 0.505 for interval), both motion and interval 

exhibit a positive association with FA variance with 𝑝 ≪ 0.001. In the left caudate nucleus (𝛽 =

−0.337, 𝑝 = 0.002 for motion; 𝛽 = −0.383, 𝑝 ≪ 0.001 for interval), and right posterior thalamic 

radiation (𝛽 = −0.188, 𝑝 = 0.018 for motion; 𝛽 = −0.414, 𝑝 ≪ 0.001 for interval), they both 

show a negative association with FA variance. In many other ROIs, such as the cuneus, lingual 

white matter, and middle occipital white matter, motion is negatively related to FA variance while 

interval is positively related (Table 1). Results from the left ROI closely align with those from the 

corresponding right ROI. For instance, interval coefficient in the left cuneus (𝛽 = 0.951, 𝑝 ≪

0.001) is close to the coefficient in the right cuneus (𝛽 = 1.061, 𝑝 ≪ 0.001). There are some ROIs 

where interval is significantly (𝑝 ≪ 0.001) associated with FA variance, while motion either gets 

removed during the model selection or shows weak associations (𝑝 ≥ 0.05).  

On data extracted from ROIs defined by SLANT segmentation, which has different regional 

focus and delineation than Eve type-1 segmentation, the aforementioned patterns of effects can 

also be observed (Fig. 6). For instance, in the right cerebellum exterior, both motion and interval 

are positively associated with FA variance, with motion’s coefficient (𝛽 = 1.166, 𝑝 ≪ 0.001) 

higher than that of interval (𝛽 = 0.265, 𝑝 ≪ 0.001). This parallels the relationship observed 

between the motion and interval coefficients in the left cerebellum defined by the Eve type-1 

segmentation (𝛽 = 0.993, 𝑝 ≪ 0.001 for motion; 𝛽 = 0.471, 𝑝 ≪ 0.001 for interval). Similarly, 

in ROIs such as the right cuneus (𝛽 = −0.358, 𝑝 < 0.001 for motion; 𝛽 = 0.768, 𝑝 ≪ 0.001 for 

interval), left precuneus (𝛽 = −0.230, 𝑝 = 0.018 for motion; 𝛽 = 0.826, 𝑝 ≪ 0.001 for 

interval), right superior occipital gyrus (𝛽 = −0.207, 𝑝 = 0.036 for motion; 𝛽 = 0.977, 𝑝 ≪

0.001 for interval), and right middle occipital gyrus (𝛽 = −0.227, 𝑝 = 0.028 for motion; 𝛽 =
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0.469, 𝑝 ≪ 0.001 for interval), motion shows a negative association with FA variance, while 

interval shows a positive association. This pattern also persists in the counterpart ROIs defined by 

the Eve type-1 segmentation (Fig. 5, Table 1).  

In the model selection process, we observe that the rescan and the motion terms appear 

mutually exclusive, with only one preserved post-selection in most models. This pattern is echoed 

in the clustermaps of coefficients (Fig. 5, Fig. 6), where the cell in either the motion or the rescan 

column is colored grey. This hints at a correlation between rescan and motion. Supporting this 

observation, we detect an increase in head motion in the rescan of DTI acquired right after the first 

scan of DTI in the same session (mean shift Δ𝜇 = 0.045 millimeters, relative mean shift Δ𝜇/𝜇 =

17.0%, coefficient of determination 𝑅$ = 0.065). 

4 Discussion 

While many studies have estimated and shown the spatial variability of DTI variance (or 

noise),28,29,32 we characterize how DTI variance is associated with physiological and behavioral 

factors across brain regions. We answer the questions: Which factor is associated with DTI 

variance? Where and how does this association manifest? We found region-specific and 

bidirectional effects of covariates—including interval (which captures the within-individual 

longitudinal change over time), motion, and sex—on FA variance across brain regions. Within the 

cuneus, for instance, FA variance is positively associated with interval, meaning that the FA values 

become “noisier” as interval increases (which corresponds to individuals getting older). In 

contrast, within the caudate nucleus, FA values become more “monotonous” as interval increases. 

Long-standing research has demonstrated that there is a decline in white matter microstructure 

with aging,50–55 with the consensus being that frontal and parietal areas are particularly vulnerable 

and the occipital and motor areas are mostly preserved. The frontal lobe exhibits the most 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.22.23294381doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.22.23294381
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

pronounced decline, with FA declining by approximately 3% per decade starting at ~35 years of 

age.56 Although our study focuses on the standard deviation of FA, we believe our results converge 

with these prior research studies as we have shown high sensitivity to aging in the frontal, parietal, 

and temporal areas. While it is unclear what mechanisms are driving change in these areas, 

potential culprits include the change of uniformity of fiber orientations and fiber density.57–59 

Previous studies60–62 have shown differences in FA between genders across brain regions. Oh 

et al. found that males have significantly higher FA values in global corpus callosum structure 

areas, while they exhibit lower FA values than females in the partial areas of the rostrum, genu, 

and splenium.60 Menzler et al. found that males show higher FA values in the thalamus, corpus 

callosum and cingulum.62 Most of these regions previously identified in the literature also show 

significant (𝑝 ≪ 0.001) associations between FA variance and sex in our study. While previous 

studies have reported changes in mean FA values, we offer a different perspective by depicting the 

variance of FA values. 

The negative association observed between motion and FA variance in multiple regions, while 

counterintuitive, is not unreasonable. One might naturally expect that as motion increases, the 

uncertainty (reflected as variance) in the image should increase, given that motion leads to lower 

image quality, signal-to-noise ratio, and artifacts that can mislead image interpretation.24,27 

However, the images we use for analysis have undergone motion correction during preprocessing. 

Although in practice, motion artifacts cannot be fully eliminated from the image, the recorded 

motion value doesn’t reflect the motion’s impact in the image after preprocessing. Instead, it 

primarily reflects the subject’s motion during image acquisition, so a higher motion value does not 

necessarily correspond to a noisier image post-preprocessing. Furthermore, Zeng et al. found that 

head motion during brain imaging is not merely a technical artifact but a reflection of a 
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neurobiological trait. Specifically, individuals with stronger distant connectivity in the default 

network could consistently refrain from moving and such “head motion tendency” remains 

consistent within individuals.63 These points, taken together, provide explanations from image 

processing and biological perspectives, respectively, for why FA variance can decrease as motion 

increases. 

4.1 Limitations of Current Study 

This study relies on a registration-based method for brain segmentation in the b0 space. Despite 

rigorous quality assurance, the labels for each brain region may not correspond flawlessly with the 

true anatomical regions. Consequently, the standard deviation of DTI scalars extracted from each 

region combines both voxel-wise modeling factors and image analysis factors from neighboring 

regions. Second, we used backward model selection for the fixed-effect terms of the linear mixed-

effects models. Such method can be unstable according to Breiman et. al.64 Additionally, we did 

not eliminate the random-effect terms during model selection. Lange and Laird showed that the 

inclusion of unnecessary random effects could lead to a near singular random effect covariance 

matrix.65 These two potential pitfalls could compromise the robustness and reliability of our 

analysis. Third, our study only includes the BLSA dataset. Incorporating data from additional 

sources could make the findings more convincing. Fourth, the motion value used in this study is 

based on movement calculated by FSL’s eddy47, which approximates true head motion. 

5 Conclusion 

The notion of harnessing variance to enhance the reliability of analysis is universally applicable. 

Having a better understanding of variance is pivotal in mega-analyses, where heteroscedasticity is 

often an inherent challenge. Our study illuminates the complex and heterogeneous effects of 
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covariates including baseline age, interval, motion, sex, and scan-rescan pairs on DTI variance 

across ROIs. More comprehensive efforts are required to fully characterize the variance. In the 

meantime, we encourage researchers to consider models of heteroscedasticity in their analyses and 

to include their estimates of variance when sharing data. As highlighted in the introduction, the 

application of the whitening matrix, constructed using the variance of the data, significantly 

reduces statistical errors. We anticipate that more sophisticated methods can further unlock the 

potential benefits derived from a nuanced understanding of variance, thereby bolstering the 

accuracy and reliability of future research. 
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Fig. 1 Simulation shows that applying the whitening matrix to the standard linear regression equation reduces the 

number of false positives (FP) and false negatives (FN) under heteroskedasticity. In the top row, the population truth 

has zero slope. In data sampled from the synthetic population data, ordinary least square (OLS) regression using the 

standard equation generates FP, while the solution with whitening, W, does not falsely reject the null hypothesis (the 

horizontal line). After 10,000 experiments, the FP frequency is lower with whitening, centering at 5 per 100. In the 

second row, the population truth has a positive slope. In data sampled from the synthetic population data, OLS 

regression using the standard equation generates FN, while the solution with whitening, W, does not. After 10,000 

experiments, the FN frequency with whitening is half that of the one without whitening. 
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Fig. 2 Noise in DTI scalar images such as fractional anisotropy (FA) images generally increase with age. But motion 

is also considered to increase with age.66,67 Here we show three typical subjects with both their motion levels and 

noise levels in DTI scans increasing. 
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Fig. 3 The BLSA dataset we use has a slight imbalance between the number of females and males, but it is well-

matched and appropriate for our research objectives in other aspects: i) the age ranges for both females and males 

align closely; ii) rescan DTI data were acquired in most sessions; iii) there is a balanced distribution of sessions 

between females and males. 

 

  

Female Male
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Fig. 4 Brain segmentation labels are obtained using the SLANT segmentation of the target subject’s T1w image, and 

using three types of manual parcellations provided by the Eve atlas. To generate transformation matrices for 

transferring these labels to DTI scalar images, intra- and inter- modality registrations are performed. Standard 

deviations of DTI scalars within each ROI are computed. 
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Fig. 5 Covariate effects on FA variance, represented as standardized standard deviation, are region-specific and 

bidirectional across ROIs. Gender differences exist in multiple ROIs. Motion and interval exhibit opposite effect 

directions in many regions. Counterintuitively, motion is negatively related to FA variance in many ROIs.   
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 Ageinterval Motion 
ROI 𝛽 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝛽 𝑝 − 𝑣𝑎𝑙𝑢𝑒 

Left Body of Corpus Callosum 0.439 7.6e-60 -0.242 2.4e-02 
Right Body of Corpus Callosum 0.336 2.6e-32 -0.357 1.1e-03 
Left Inferior Cerebellar Peduncle 0.560 2.9e-55 -0.469 2.6e-04 

Right Inferior Cerebellar Peduncle 0.605 1.7e-61 -0.346 1.1e-02 
Left Cingulum (Cingulate Gyrus) 0.247 1.9e-17 -0.630 2.0e-10 

Right Cingulum (Cingulate Gyrus) 0.498 3.0e-57 -0.476 1.2e-05 
Left Cuneus 0.951 1.1e-288 -0.318 3.2e-04 

Right Cuneus 1.061 ≤ 2.3e-308 -0.471 5.4e-07 
Left Cuneus WM 0.555 2.0e-96 -0.383 4.0e-05 

Right Cuneus WM 0.585 1.4e-95 -0.393 7.9e-05 
Left Fornix(cres) Stria Terminalis 0.340 5.4e-41 -0.313 1.4e-03 

Right Fornix(cres) Stria Terminalis 0.509 9.0e-60 -0.433 9.9e-05 
Left Middle Frontal WM 0.203 1.2e-15 -0.623 8.0e-12 

Right Middle Frontal WM 0.275 5.4e-22 -0.716 2.5e-12 
Left Superior Frontal WM 0.341 2.4e-48 -0.316 1.6e-04 

Right Superior Frontal WM 0.338 3.5e-39 -0.440 7.3e-07 
Left Lateral Fronto-orbital WM 0.372 7.3e-28 -0.566 1.7e-06 

Right Lateral Fronto-orbital WM 0.410 1.0e-33 -0.376 2.5e-03 
Left Lingual WM 0.366 2.3e-36 -0.640 6.4e-10 

Right Lingual WM 0.426 6.1e-45 -0.695 1.5e-10 
Left Medulla 0.537 1.9e-48 -0.744 1.6e-08 

Right Medulla 0.519 3.9e-45 -0.750 1.6e-08 
Left Superior Occipital Gyrus 0.734 4.7e-163 -0.311 1.1e-03 

Right Superior Occipital Gyrus 0.644 1.3e-134 -0.445 1.7e-06 
Left Middle Occipital WM 0.544 3.5e-102 -0.501 2.2e-08 

Right Middle Occipital WM 0.308 2.3e-38 -0.564 3.5e-11 
Left Precuneus WM 0.549 3.0e-96 -0.341 6.2e-04 

Right Precuneus WM 0.499 1.7e-76 -0.508 1.4e-07 
 

Table 1 Selected ROIs (defined by Eve type-1segmentation) where interval coefficient and motion coefficient show 

opposite signs. Within these ROIs, FA variance increases with interval but decreases with motion. 
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Fig. 6 The region-specific and bidirectional patterns of covariate effects are similarly observed in the results derived 

from SLANT segmentation, despite its differing definitions and delineations of ROIs compared to Eve type-1 

segmentation (Fig. 5). 
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Fig. 7 Despite the different definitions and delineations of ROIs between Eve type-1 and SLANT segmentations, 

results based on the two segmentation methods are largely similar (comparable regions are colored similarly) and 

both show that the effects of motion and interval on FA variance vary across ROIs. 
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Caption List 
 
Fig. 1 Simulation shows that applying the whitening matrix to the standard linear regression 

equation reduces the number of false positives (FP) and false negatives (FN) under 

heteroskedasticity. In the top row, the population truth has zero slope. In data sampled from the 

synthetic population data, ordinary least square (OLS) regression using the standard equation 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.22.23294381doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.22.23294381
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

generates FP, while the solution with whitening, W, does not falsely reject the null hypothesis (the 

horizontal line). After 10,000 experiments, the FP frequency is lower with whitening, centering at 

5 per 100. In the second row, the population truth has a positive slope. In data sampled from the 

synthetic population data, OLS regression using the standard equation generates FN, while the 

solution with whitening, W, does not. After 10,000 experiments, the FN frequency with whitening 

is half that of the one without whitening. 

Fig. 2 Noise in DTI scalar images such as fractional anisotropy (FA) images generally increase 

with age. But motion is also considered to increase with age.66,67 Here we show three typical 

subjects with both their motion levels and noise levels in DTI scans increasing. 

Fig. 3 The BLSA dataset we use has a slight imbalance between the number of females and males, 

but it is well-matched and appropriate for our research objectives in other aspects: i) the age ranges 

for both females and males align closely; ii) rescan DTI data were acquired in most sessions; iii) 

there is a balanced distribution of sessions between females and males. 

Fig. 4 Brain segmentation labels are obtained using the SLANT segmentation of the target 

subject’s T1w image, and using three types of manual parcellations provided by the Eve atlas. To 

generate transformation matrices for transferring these labels to DTI scalar images, intra- and inter- 

modality registrations are performed. Standard deviations of DTI scalars within each ROI are 

computed. 

Fig. 5 Covariate effects on FA variance, represented as standardized standard deviation, are 

region-specific and bidirectional across ROIs. Gender differences exist in multiple ROIs. Motion 

and interval exhibit opposite effect directions in many regions. Counterintuitively, motion is 

negatively related to FA variance in many ROIs. 
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Table 1 Selected ROIs (defined by Eve type-1segmentation) where interval coefficient and motion 

coefficient show opposite signs. Within these ROIs, FA variance increases with interval but 

decreases with motion. 

Fig. 6 The region-specific and bidirectional patterns of covariate effects are similarly observed in 

the results derived from SLANT segmentation, despite its differing definitions and delineations of 

ROIs compared to Eve type-1 segmentation (Fig. 5). 

Fig. 7 Despite the different definitions and delineations of ROIs between Eve type-1 and SLANT 

segmentations, results based on the two segmentation methods are largely similar (comparable 

regions are colored similarly) and both show that the effects of motion and interval on FA variance 

vary across ROIs. 
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