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 43 

Abstract 44 

Background 45 

The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin 46 

maintenance. TLK2 variants are associated with ‘Intellectual Disability, Autosomal Dominant 57’ 47 

(MRD57), a neurodevelopmental disorder (NDD) characterized by intellectual disability (ID), 48 

autism spectrum disorder (ASD) and microcephaly. Several TLK1 variants have been reported 49 

in NDDs but their functional significance is unknown. 50 

Methods 51 

A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and 52 

primary immunodeficiency was determined to have a novel, heterozygous variant in TLK1 53 

(c.1435C>G, p.Q479E) by genome sequencing (GS). Single cell gel electrophoresis, western 54 

blot, flow cytometry and RNA-seq were performed in patient-derived lymphoblast cell lines. In 55 

silico, biochemical and proteomic analysis were used to determine the functional impact of the 56 

p.Q479E variant and previously reported NDD-associated TLK1 variant, p.M566T.  57 

Results 58 

Transcriptome sequencing in patient-derived cells confirmed expression of TLK1 transcripts 59 

carrying the p.Q479E variant and revealed alterations in genes involved in class switch 60 

recombination and cytokine signaling. Cells expressing the p.Q479E variant exhibited reduced 61 

cytokine responses and higher levels of spontaneous DNA damage but not increased sensitivity 62 

to radiation or DNA repair defects. The p.Q479E and p.M566T variants impaired kinase activity 63 

but did not strongly alter localization or proximal protein interactions. 64 

Conclusion 65 

Our study provides the first functional characterization of TLK1 variants associated with NDDs 66 

and suggests potential involvement in central nervous system and immune system 67 
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development. Our results indicate that, like TLK2 variants, TLK1 variants may impact 68 

development in multiple tissues and should be considered in the diagnosis of rare NDDs. 69 

Introduction 70 

The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are conserved serine-threonine kinases that 71 

function in numerous cellular processes, including DNA replication, DNA repair, transcription 72 

and chromatin maintenance(1). Both TLK1 and TLK2 interact with and regulate the ASF1A and 73 

ASF1B histone H3-H4 chaperones(2–7). Depletion of both TLK1 and TLK2, or both ASF1A and 74 

ASF1B, led to overlapping cellular phenotypes, including DNA damage, innate immune 75 

activation and the induction of the alternative lengthening of telomeres (ALT) pathway(8–10). 76 

TLK1 and TLK2 are regulated by the DNA damage response and the phosphorylation of TLK1 77 

on its C-terminus by the checkpoint kinase CHK1 inhibits TLK1 activity(11,12). TLK1 also 78 

phosphorylates the RAD9 protein, part of the RAD9-RAD1-HUS1 (9-1-1) complex that responds 79 

to DNA damage and regulates CHK1 activity, as well as the NEK1 kinase, that is involved in the 80 

DNA damage response and ciliogenesis(4,13–19).  81 

 82 

Despite clear associations with fundamental cellular processes and multiple links to the DNA 83 

damage response, Tlk1 deficiency in mice did not result in any overt phenotypes. Notably, both 84 

immune system development and fertility were grossly normal, suggesting DNA repair-85 

dependent processes in V(D)J recombination and meiosis were functional(8). Additionally, the 86 

deletion of TLK1 in hundreds of cancer cell lines did not strongly influence cell fitness(20). In 87 

contrast, loss of Tlk2 in mice led to embryonic lethality due to a role in placental development, 88 

and TLK2 is an commonly essential gene in many cancer cell lines, indicating distinct functions 89 

or regulation that remain to be fully understood(8,20).  90 

 91 

Variants in TLK2 have been implicated in Intellectual Developmental Disorder, Autosomal 92 

Dominant 57 (MRD57, MIM# 618050), a heterogenous neurodevelopmental disorder (NDD) 93 
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characterized by intellectual disability (ID), autism spectrum disorder (ASD), microcephaly, 94 

additional behavioral problems, growth delay and facial dysmorphism, including 95 

blepharophimosis, telecanthus, prominent nasal bridge, broad nasal tip, thin vermilion of the 96 

upper lip and upslanting palpebral fissures(21–25). A subset of cases also exhibited 97 

gastrointestinal problems, seizures, skeletal malformations and ocular problems. With one 98 

exception, all of the disease-associated TLK2 variants identified to date are heterozygous, and 99 

those examined biochemically showed diminished kinase activity, suggesting pathological 100 

outcomes are largely due to reduced kinase activity(23,24).  101 

 102 

Activation of TLK2 requires dimerization through its first coiled-coil (CC1), which is also required 103 

for its heterodimerization with TLK1(26,27). As TLK1 and TLK2 interact, some of the identified 104 

TLK2 missense variants may exert dominant negative effects on wild type TLK2 and potentially 105 

TLK1(28). While >40 TLK2 variants have been identified in NDD patients, to date, only four de 106 

novo TLK1 variants have been associated with NDDs (Table 1)(21–25,29).  However, no causal 107 

links have been established, and the effects of any of the individual variants on protein function 108 

have not been investigated. 109 

 110 

Here we report the identification of a male proband who presented with microcephaly, ID, 111 

seizures, global developmental delay, cerebral calcifications, feeding difficulties, growth 112 

hormone deficiency, hypothyroidism, urticaria and primary immunodeficiency. He had extensive 113 

prior genetic testing, including whole exome sequencing (WES), that did not identify a clear 114 

genetic cause for his phenotype. Subsequent research exome sequencing (ES) and genome 115 

sequencing (GS) through the Rare Genomes Project (RGP) identified heterozygous, de novo 116 

variants in TLK1 c.1435C>G (p.Q479E) and MDM1 c.1197dupT (p.K400Ter). 117 

 118 
TLK1 variant TLK1 protein Disease association Reference 
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c.74C>T p.P25L Intellectual disability (25) 

c.112_113del p.T38fs Intellectual disability ClinVar 

c.424G>A p.R142S Limb, ear, eye and muscle abnormalities DECIPHER 

c.1101del p.K367Nfs* Schizophrenia (30) 

c.1435C>G p.Q479E Intellectual disability, microcephaly, 
immunodeficiency 

This study 

c.1697T>C p.M566T Autism Spectrum Disorder (29) 

c.1796C>G p.A599G Congenital heart defect (31) 

 119 
Table 1: List of TLK1 variants reported with links to human disease. Positions are based on 120 
NM_012290.5.  121 
 122 

Materials and Methods 123 

Genome sequencing (GS), variant calling, and prioritization 124 

GS and data processing for this individual and his parents were performed by the Genomics 125 

Platform at the Broad Institute of MIT and Harvard. PCR-free preparation of sample DNA (350 126 

ng input at >2 ng/uL) was accomplished using Illumina HiSeq X Ten v2 chemistry. Libraries 127 

were sequenced to a mean target coverage of >30X. WGS data was processed through a 128 

pipeline based on Picard, using base quality score recalibration and local realignment at known 129 

indels. The BWA aligner was used for mapping reads to the human genome build 38. Single 130 

Nucleotide Variants (SNVs) and insertions/deletions (indels) were jointly called across all 131 

samples using the Genome Analysis Toolkit (GATK) HaplotypeCaller package version 4.0. 132 

Default filters were applied to SNV and indel calls using the GATK Variant Quality Score 133 

Recalibration (VQSR) approach. Annotation was performed using Variant Effect Predictor 134 

(VEP). GATK-SV(32) was used to detect structural variants (SVs), which were annotated with 135 

the GATK SVAnnotate tool. Mitochondrial DNA (mtDNA) single nucleotide and small indel 136 

variants were called from GS data using the gnomAD-mitochondria pipeline(33) and large 137 

mtDNA deletions were called by MitoSAlt(34). ExpansionHunter v5 was used to genotype 138 

known disease-associated short tandem repeats (STRs)(35). Lastly, the variant call set was 139 
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uploaded to seqr for analysis by the RGP team. Variants in TLK1 (p.Gln479Glu) and MDM1 140 

(p.Lys400Ter) were submitted to ClinVar (submission ID: SUB13580789). 141 

 142 

Cell culture and generation of patient cell lines 143 

Peripheral blood mononuclear cells were isolated from whole blood using Histopaque-1077 144 

(Sigma-Aldrich) and subsequently immortalized with Epstein-Barr virus transformation (Coriell 145 

Institute). Lymphoblastoid cell lines were cultured in RPMI-1640 medium (Corning) 146 

supplemented with 15% fetal bovine serum (FBS) (Gibco), 1% penicillin-streptomycin, and 2 147 

mM L-glutamine. AD-293 cells (Stratagene) were grown in DMEM supplemented with 10% FBS 148 

(Sigma-Aldrich), 50�U/mL penicillin and 50�µg/mL streptomycin (Thermo Fisher Scientific) and 149 

authenticated using STR testing (ATCC). All cells were kept at 37°C in a 5% CO2 incubator. 150 

Cells were counted with a Countess cell counter (Invitrogen) and viability was assessed using 151 

trypan blue. For any given experiment, only cell cultures with a viability >90% were used. Cells 152 

were routinely tested for mycoplasma and found negative (Lonza). 153 

 154 

Genomic DNA and RNA Purification  155 

Genomic DNA was purified from lymphoblastoid cell lines using the Gentra Puregene Cell kit 156 

(Qiagen) following manufacturer’s instructions. Total RNA was extracted from lymphoblastoid 157 

cell lines (LCLs) using the SV Total RNA Isolation System (Promega) following manufacturer’s 158 

instructions. Full methods provided in online supplemental materials and methods. 159 

 160 

PCR amplification and DNA extraction from agarose gels 161 

Genomic DNA was subjected to 35 cycles of PCR amplification using Q5 High-Fidelity DNA 162 

Polymerase (New England Biolabs) with primers that allow for the amplification of the region 163 

containing the variants of interest (online supplemental table S1). PCR products were run in 164 

a 2% agarose gel and purified using the Nucleospin Gel and PCR clean-up kit (Macherey-165 
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Nagel) following manufacturer’s instructions. Full methods provided in online supplemental 166 

materials and methods. 167 

 168 

Nextera library preparation and sequence analysis for variant calling in PCR products 169 

DNA libraries were prepared using the Nextera XT DNA Library Prep kit (Illumina) following 170 

manufacturer’s instructions. Sequencing of PCR amplicons was carried out using the MiSeq 171 

Nano kit sequencing system (Illumina) with 150 bp paired-end (PE) reads. Cleaned reads were 172 

obtained by Trim Galore and FASTQ sequences aligned to the hg38 genome build followed by 173 

BCFtools for variant calling and alternate allele frequency of the sequenced genes(36). A filter 174 

with quality score >=20 was used to remove variants likely observed purely by chance. 175 

 176 

RNA sequencing (RNA-seq) 177 

RNA-seq was performed in the CCR Genomics core facility. RNA-seq data processing was 178 

performed using the RNA-seq pipelines of the CCBR Pipeliner framework 179 

(https://github.com/CCBR/Pipeliner). Full analysis methods provided in online supplemental 180 

materials and methods. Data was submitted to GEO: GSE241032. 181 

 182 

In silico prediction and modeling of missense variants 183 

In silico prediction of variants was analyzed using seqr (https://seqr.broadinstitute.org)(37). 184 

Residue conservation was determined using ConSurf (https://consurf.tau.ac.il)(38) and the 185 

heatmap generated using Prism. The TLK1 kinase domain structure was generated using 186 

Alphafold (https://alphafold.ebi.ac.uk) and color modified in PyMol to indicate residues of 187 

interest. 188 

 189 

Comet and cell proliferation assays 190 
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Comet assays were performed according to manufacturer’s instructions (Trevigen). Proliferation 191 

was assessed using the Click-iT Plus EdU Flow Cytometry Assay Kit (Invitrogen) following 192 

manufacturer’s instructions. Full methods provided in online supplementary materials and 193 

methods. 194 

 195 

Cloning, site-directed mutagenesis, transfection, streptavidin affinity purification, 196 

western blotting and kinase assays 197 

Cloning, mutagenesis, transfections, western blotting, streptavidin affinity purification of TLK1 198 

from cell lysates and in vitro kinase assays were performed as previously described with minor 199 

variations(24). Full methods are provided in the online supplemental materials and methods. 200 

Primers are provided in online supplementary table S1, antibodies are provided in online 201 

supplementary table S2 and uncropped westerns including those used for quantification are 202 

shown in online supplementary figure S1. Westerns and gels used for kinase assays are 203 

shown in online supplementary figure S2. Proteomic data is available in the PRIDE 204 

repository: PXD019450. 205 

 206 

Results 207 

Identification of a proband with a neurodevelopmental disorder and a de novo TLK1 208 

variant 209 

After an uncomplicated pregnancy, the proband was born with microcephaly noted early in the 210 

postnatal period. Between 0-5 months of age, he was admitted to the neonatal intensive care 211 

unit (NICU) due to an infection that progressed to respiratory failure. During a several month 212 

course in the NICU, he was found to have B- and T-cell deficiency and diagnosed with primary 213 

hypothyroidism (TSH 33 uIU/mL, repeat 18.6 uIU/mL). At less than 5 months old, he had a 214 

stroke and a generalized seizure and was treated with levetiracetam, after which he was 215 

weaned off levetiracetam. Brain MRI revealed symmetric periventricular and subcortical 216 
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leukoencephalopathy with mild cystic white matter encephalomalacia, ex vacuo 217 

ventriculomegaly, thinning of the corpus callosum, and bilateral optic nerve atrophy (Figure 1A-218 

D.  219 

T cells normalized before 5 years of age, but he still has B-cell deficiency and 220 

hypogammaglobulinemia (low IgG), treated with weekly subcutaneous immunoglobulin. 221 

Enzymatic testing for severe combined immunodeficiency (SCID), including adenosine 222 

deaminase (ADA) and purine nucleoside phosphorylase (PNP), was normal (age 0). 223 

Between 15 and 20 months, he had a kidney biopsy following episodes of proteinuria and 224 

hematuria that was not diagnostic. Between 6 and 10 years old, he was diagnosed with growth 225 

hormone deficiency and treated with growth hormone injections.  226 

His medical history is also notable for significant global developmental delay, hypotonia, mild 227 

outer retinal dystrophy, feeding difficulties, and skin findings including poikiloderma, annular 228 

urticaria, and a chronic rash that flares up upon infection. He has used a walker for support from 229 

15-20 months of age and has significant speech and language delays, though his receptive 230 

abilities are more developed than his expressive language.  231 

The proband had thorough clinical genetic testing, all of which came back normal. This included 232 

chromosomal microarray and karyotyping, candidate-gene sequencing (CIAS1, RAB27A, 233 

RECQL4), targeted mutation analysis (Factor V Leiden p.R506Q, Factor II/prothrombin 234 

p.G20210A), mtDNA analysis and nuclear mitochondrial disease panel, and panel testing (SCID 235 

panel, Aicardi Gouitéres panel, Noonan syndrome panel, dyskeratosis congenita panel). Clinical 236 

exome sequencing (ES) and subsequent ES reanalysis in 2017 were negative.  237 

Research GS done through RGP identified a rare de novo frameshift variant in MDM1 238 

(c.1197dupT; p.Lys400Ter; 12:68315249, hg38) and a rare de novo missense variant in TLK1 239 

(c.1435C>G; p.Gln479Glu; 2:171007045, hg38) further detailed in this report.  240 
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 241 

Figure 1: T2/FLAIR axial (A, B), sagittal (C), and coronal (D) sections from age 10-15 years 242 

shows symmetric periventricular and subcortical leukoencephalopathy with mild cystic white 243 

matter encephalomalacia, ex vacuo ventriculomegaly, and thin corpus callosum. 244 

 245 

Characterization of patient-derived cells expressing the TLK1 and MDM1 variants 246 

To further investigate the potential impact of the mutations, PBMCs from the proband and an 247 

unaffected female sibling of a similar age, were isolated and transformed with Epstein Barr Virus 248 

(EBV) to generate lymphoblastoid cell lines (LCLs). Genomic DNA from expanded LCLs was 249 
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amplified with specific primers, and sequencing confirmed the presence of both the TLK1 and 250 

MDM1 variants identified by GS.  251 

 252 

We next performed RNA-seq on each LCL to identify differentially expressed genes (DEGs) and 253 

assess the expression levels of the specific variant alleles of both MDM1 and TLK1. Both TLK1 254 

and MDM1 were expressed to similar levels in each cell line (Figure 2A and online 255 

supplementary table S3). The allele harboring the TLK1 variant was transcribed to a similar 256 

extent as the wildtype allele (Figure 2B and online supplementary table S4), and quantitative 257 

western blotting showed total TLK1 protein levels slightly elevated in cells from the proband with 258 

the p.Q479E variant compared to the unaffected sibling (Figure 2C). In contrast to the TLK1 259 

variant, the MDM1 mutant allele was not detectably expressed, likely indicating nonsense-260 

mediated RNA decay (NMD) (Figure 2B). However, total MDM1 protein levels appeared similar, 261 

consistent with RNA-seq data, suggesting that MDM1 protein levels are unaffected in the LCL 262 

line (Figure 2D). We next examined the phosphorylation of two reported TLK1 substrates 263 

ASF1A and NEK1(6,17). In both cases, no significant difference in phosphorylation of either 264 

substrate could be observed between the cell lines (Figure 2E-F). 265 
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 266 

Figure 2: TLK1 and MDM1 variant alleles and impact on protein levels. A. Normalized read 267 

counts for the indicated genes from RNA-seq of transformed LCLs of the Sibling or Proband. 268 

N=2, mean and standard deviation are shown. Full details in online supplementary table S3. 269 

B. Allele specific expression of the indicated genes in the Proband inferred from RNA-seq data. 270 

N=2, mean and standard deviation are shown. Full details in online supplementary table S4. 271 

C. Representative blot of protein levels of TLK1. Quantification of western blots (N=5) is shown 272 

in right panel normalized to Vinculin or Actin. D. Representative blot of protein levels of MDM1 273 

and quantification of western blots (N=4) is shown in right panel normalized to Vinculin or Actin. 274 

E. Representative blot of ASF1A and ASF1A-pS166 (ASF1A-p) levels and quantification of  275 

western blots (N=2) is shown in right panel. F. Representative blot NEK1-pS141 (P-NEK1) 276 
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levels and quantification of western blots (N=3) is shown in right panel. N represents biological 277 

replicates, statistical significance was determined using an unpaired t test with Welch’s 278 

correction (*P<0.05) in panels C,D. 279 

 280 

Gene expression differences consistent with immunodeficiency 281 

RNA-seq data was further analyzed to identify DEGs between the LCL cell lines (Figure 3A). 282 

Ingenuity pathway analysis (IPA) identified Primary Immunodeficiency Signaling (PID) as a top 283 

enriched category, consistent with the immunodeficiency of the proband (Figure 3A-C). Many of 284 

the genes identified are involved in class switch recombination (CSR), and additional DEGs in 285 

CSR genes were identified manually, including CD27 and FCRL3 (Online supplemental table 286 

S3). In addition, the STAT3 pathway, Osteoarthritis pathway (OSTEO) and Hepatic fibrosis 287 

pathways were among the top 4 significantly altered pathways in the LCLs of the proband 288 

compared to the sibling (Figure 3A-C). Notably, these pathways included a number of 289 

transcriptional regulators, cytokines and other cell surface proteins that influence cell to cell 290 

interactions in the immune system.  291 

 292 

Examination of the STAT3 signaling related genes revealed a number of DEGs, including the 293 

Interleukin-6 receptor (IL6R) and CSF2RB, which is a component of multiple cytokine receptors. 294 

As mutations in STAT3 and IL6R are associated with distinct immunodeficiency syndromes 295 

(39), we analyzed STAT3 signaling in cells treated with IL6 and examined the phosphorylation 296 

of Tyrosine 705 (Y705) of STAT3, a marker of its activation. While increased levels of pY705-297 

STAT3 were observed in both samples following IL6 treatment, it was markedly reduced in the 298 

proband, indicating reduced sensitivity to IL6 (Figure 3D). Together, these data indicated that 299 

the cells from the proband showed gene expression changes consistent with immunodeficiency 300 

and defective CSR and were less responsive to IL6 cytokine stimulation. 301 
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 302 

Figure 3: Gene expression differences identify defects in STAT3 signaling in patient-303 

derived cell lines. A. Volcano plot of RNA-seq data depicting DEGs in the Proband compared 304 

to Sibling LCLs. Duplicate samples from each LCL line were analyzed. Full data in online 305 
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supplemental Table S3. Genes in each enriched category identified in IPA analysis (B) are 306 

shown in the indicated color. Hepatic fibrosis genes overlap with Osteoarthritis and are therefore 307 

not shown. B. Ingenuity Pathway Analysis (IPA) of RNA-seq data is shown. C. Heatmap of 308 

individual genes from the indicated enriched pathway are shown. D. Analysis of STAT3 309 

phosphorylation on Y705 in response to IL6 in LCLs. Quantification of 4 independent 310 

experiments is shown below the western blot. STAT3-p (Y705)/STAT3 was normalized to 311 

vinculin and samples were normalized to Sibling -IL6. Statistical significance was determined 312 

using an unpaired t test with Welch’s correction (*P<0.05). 313 

 314 

Growth defects and increased DNA damage in a patient-derived cell line  315 

To determine the potential impact of the genetic variants and DEGs on cell growth and viability, 316 

we compared the growth of the proband- and sibling-derived cell lines by plating the same 317 

number of live cells and counting them every 24 hours over 72 hours. Viability at the beginning 318 

of the experiment was always >90%. The proband-derived cells showed reduced growth over 319 

72 hours, with observable differences after 48 hours (Figure 4A). Flow cytometry analysis of 320 

EdU-pulsed cultures showed a reduction of cells in S-phase with a compensatory increase in 321 

the G1 population (Figure 4B and 4C). Both the G2/M and sub-G1 populations were also 322 

increased in cells from the proband (Figure 4B and 4C). As this suggested potential activation of 323 

cell cycle checkpoints, we examined p53 and p21 levels and found that both were upregulated 324 

in the proband compared to the unaffected sibling (Figure 4D and 4E).  325 

 326 

As the increased p53/p21 levels and elevated sub-G1 population suggested stress or DNA 327 

damage signaling, we used the alkaline comet assay to examine the LCLs for spontaneous 328 

DNA damage and to examine DNA repair following exposure to 2 Gy ionizing radiation (IR). The 329 

proband-derived cells showed increased tail moment values in the alkaline comet assay in the 330 

absence of IR treatment, indicating elevated levels of DNA damage (Figure 4F and 4G). 331 
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However, examination using the neutral comet assay did not reveal evidence of increased DNA 332 

strand breaks (Figure 4H). Consistent with an absence in DSB repair defects, comets induced 333 

by IR treatment were resolved similarly to those in the control cell line, indicating that overall 334 

DSB repair was functional, suggesting that spontaneous damage may be ssDNA gaps or base 335 

damage (Figure 4G). 336 

 337 
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Figure 4: Analysis of cell cycle and DNA damage in patient cell lines. A. Relative cell 339 

growth of the Proband and Sibling LCLs. N=6. B. Example of representative flow cytometry data 340 

to analyze cell cycle in LCLs. Cells were pulsed with 10 µM EdU for 1 hour and stained with 341 

DAPI for DNA content. C. Quantification of cell cycle phases from N=2 independent 342 

experiments with 2 biological replicates each. Replicates from same experiment indicated with a 343 

triangle or circle. D. Western blot analysis of p53 and p21 levels in LCLs. E. Quantification of 344 

p53 (N=4) and p21 (N=3) levels from biological replicates. F. Representative images of alkaline 345 

comet assays untreated or treated with the indicated dose of ionizing radiation (IR). G. Analysis 346 

of tail moment with the indicated treatments and recovery times. Representative of N=2 347 

independent experiments. H. Analysis of tail moment in neutral comet assays. Representative of 348 

N=2 independent experiments. At least 100 comets were analyzed per condition and 349 

experiment. Statistical significance was determined using an unpaired t test with Welch’s 350 

correction (****P<0.0001, ***P<0.001, **P<0.01, *P<0.05). 351 

 352 

In silico and biochemical analysis of the TLK1 variant 353 

As the TLK1 variant was the best genetic candidate for the observed phenotypes, we analyzed 354 

it with a variety of prediction tools to determine if the variant was potentially damaging to TLK1 355 

activity (37). The results were variable, with some prediction tools indicating that the variant was 356 

damaging and others indicating it was tolerated (online supplementary table S5). Analysis of 357 

missense constraint (www.decipher.com) indicated that the kinase domain of TLK1 is highly 358 

constrained (online supplementary figure S3). We next analyzed the specific conservation of 359 

the Q479 residue using Consurf, including also an additional TLK1 variant that was previously 360 

reported in a patient with ASD, p.M566T (Table 1)(29,38). Both residues are located within the 361 

kinase domain of TLK1, with Q479 located in a beta sheet of the N-lobe and M566 in an alpha 362 

helix of the C-lobe. Both residues scored as highly conserved, indicating that they could be 363 

important for kinase activity (Figure 5A). 364 
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 365 

To directly determine if kinase activity was affected, the p.Q479E or p.M566T variants were 366 

generated in an expression vector using site-directed mutagenesis. N-terminally Strep-FLAG-367 

tagged TLK1-WT, or the two variants, were expressed in AD-293 cells and affinity purified from 368 

cell lysates for in vitro kinase assays using purified ASF1A as a substrate (Figure 5B). A kinase 369 

dead mutant of TLK2 (D592V) was used as a negative control for non-specific labeling of the 370 

substrate(24). Both the p.Q479E and p.M566T variant proteins showed reduced 371 

autophosphorylation activity compared to TLK1-WT and their kinase activity was impaired to 372 

similar extent as TLK2-KD compared to TLK1-WT (Figures 5B-C). These results indicated that 373 

both variants resulted in severely impaired TLK1 kinase activity. 374 

 375 
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Figure 5: Conservation analysis, kinase activity and proximal interactions of NDD 377 

associated TLK1 variants. A. Consurf was used to analyze the level of conservation of the 378 

amino acids of human TLK1, with both Q479 and M566 scoring as highly conserved. The 379 

predicted structure of the TLK1 kinase domain (Alphafold) is shown with the location of the two 380 

residues highlighted in pink(42,43). B. Representative in vitro kinase assay of Streptavidin 381 

purified TLK1-WT or NDD variants on purified ASF1A. TLK2-KD is used as a negative control. 382 

C. Quantification of N=4 independent kinase assay experiments. D. Western blotting of 383 

transfected BioID constructs and biotin labeling imaged with Streptavidin. Ponceau is provided 384 

as a transfer control. E. Network depiction of the proximal interactors identified with TLK1 with 385 

physical interactions indicated by solid lines. Proteins identified on nascent DNA at replication 386 

forks by iPOND-MS and proteins in the Simon’s Foundation Autism Research Initiative (SFARI) 387 

or DECIPHER databases are indicated(44). Full results provided in online supplementary 388 

table S6 and additional data in online supplementary figure S4. 389 

 390 

The NDD-associated TLK1 variants do not strongly alter the proximal proteome 391 

We next examined the proximal proteomes of the TLK1 variants using BioID-MS. The BioID 392 

enzyme was fused to the N-terminus of the wild type (WT), p.Q479E and p.M566T constructs, 393 

and they were expressed by transient transfection in AD293 cells that were pulsed with biotin for 394 

24 hours (Figure 5D)(40). Cells were harvested and biotinylated proteins purified using 395 

Streptavidin beads. Isolated proteins were subjected to mass spectrometry and analyzed using 396 

SAINTexpress to identify proteins specifically labeled by TLK1-WT or either variant allele 397 

(online supplementary table S6)(41). The overall network of proximal interactors identified 398 

was similar to that we previously observed for TLK2 (Figure 5E and online supplementary 399 

figure S4)(24). Few strong differences in proximal interactors with either p.Q479E and p.M566T 400 

were identified,  including with substrates ASF1A and ASF1B, or DYNLL1/LC8, which we 401 

previously identified as a robust interactor of TLK2 (online supplementary figure S4 and table 402 
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S6) (8) (24). These results indicated that while both TLK1 variants had reduced activity, their 403 

proximal interactions were not strongly altered, in contrast to what was observed with several 404 

TLK2 NDD variants we previously reported(24). 405 

 406 

Discussion 407 

In this report we describe a proband with a complex phenotype including developmental delay, 408 

intellectual disability, leukoencephalopathy, and primary immunodeficiency. Genetic testing 409 

identified potential candidate genes, including TLK1 and MDM1. The MDM1 variant was not 410 

detectable in LCLs, but total MDM1 expression levels did not appear to be strongly altered at 411 

the mRNA or protein level (Figure 2). However, we cannot rule out a potential impact of MDM1 412 

haploinsufficiency in other tissues. In mice, a homozygous truncation mutation of Mdm1 was 413 

linked to retinal degeneration(45). Therefore, the optic nerve atrophy or retinal dystrophy 414 

observed in the proband could reflect defects in MDM1 function due to heterozygous expression 415 

of the truncated allele or haploinsufficiency in eye development. However, we suggest that 416 

TLK1 is the most likely genetic contributor to the overall phenotype, particularly the 417 

neurodevelopmental outcomes. 418 

 419 

While TLK1-deficient mice do not exhibit any obvious developmental phenotypes, ample 420 

evidence exists that kinase dead forms of TLK1 may impact the function of TLK1 or TLK2 421 

through heterodimerization via the CC1 motif, resulting in a dominant negative effect(26–28). 422 

We examined several substrates of TLK1, ASF1A and NEK1, and did not find a clear difference 423 

in their phosphorylation in patient-derived cell lines (Figure 2). However, cells exhibited 424 

significant levels of spontaneous DNA damage and growth defects (Figure 4), indicating 425 

potential effects on other substrates that we did not analyze in this study. Recent work identified 426 

RAD54, a protein involved in homologous recombination of DSBs, as a TLK1 substrate(46). 427 

However, the increased DNA damage we observed was not DSBs. TLK1 BioID identified two 428 
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proteins involved in Mismatch Repair (MMR), MSH3 and POLD1, as proximal interactors 429 

(Figure 5). The MMR pathway is involved in the repair of some types of base damage, including 430 

that caused by elevated reactive oxygen species, and is also required for CSR(47,48). Thus, 431 

TLK1 could potentially play an undefined regulatory role in MMR that is compromised by the 432 

variant allele. 433 

 434 

Immunodeficiency has not been reported in mouse models of TLK1 or TLK2 deficiency and is 435 

therefore hard to directly link to the heterozygous TLK1 variant identified in this patient based on 436 

current knowledge(8). The immunological presentation, as well as the RNA-seq data generated 437 

from PBMCs and LCLs, is consistent with defects in lymphocyte maturation, particularly in B-438 

cells, reflecting the proband’s status (Figure 3). While the proband initially presented with 439 

primary immunodeficiency, T-cells recovered, indicating that remaining issues may be the result 440 

of impaired B-cell maturation. CSR is a B-cell specific process that is dependent on a number of 441 

non-homologous end-joining (NHEJ) pathway genes that largely, but do not completely, overlap 442 

with those required for V(D)J recombination(49). A particular feature of CSR is a distinct 443 

requirement for 53BP1 and RIF1 that work with a number of proteins to prevent resection and 444 

enforce NHEJ(50). Recent work directly linked ASF1 to RIF1-dependent NHEJ DNA repair(51–445 

53). We, and others, have identified RIF1 as a proximal interactor with TLK1 and TLK2 (8,52–446 

54). Thus, defects in TLK1 that influence ASF1 function in this pathway could potentially impact 447 

CSR. Further work remains to determine how important TLK-mediated regulation of ASF1 is to 448 

RIF1-dependent NHEJ in the context of CSR or if other key repair proteins are regulated by 449 

TLK1. 450 

 451 

The STAT3 signaling pathway is important for immune system development and emerged as a 452 

clearly enriched pathway in our analysis of RNA-seq data. We demonstrated that LCLs are less 453 

responsive to IL6 stimulation, likely due to a reduction in IL6R levels (Figure 3). Whether this is 454 
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a direct result of the TLK1 mutation or reflects the proband’s immunodeficient status, we cannot 455 

determine for certain. However, it is notable that a number of other signaling pathways are not 456 

perturbed, including the phosphorylation of two reported substrates, ASF1A and NEK1 (Figure 457 

2), as well as PKC signaling that has been previously linked with neurodevelopmental disorders 458 

(Supplementary Figure S5)(55). Thus, we postulate that alterations in the STAT3 pathway 459 

could potentially contribute to the immune system phenotypes. 460 

 461 

In a previous study of TLK2 variants implicated in MRD57, we observed altered proximal 462 

interactions and partial mislocalization of TLK2 variant proteins. In contrast, we did not observe 463 

that with either TLK1 variant, as both showed a very similar repertoire of proximal interactors 464 

compared to WT. This suggests potential differences in TLK1 and TLK2 regulation that remain 465 

to be further explored. Despite this, the proximal interaction profiles of TLK1 and TLK2 were 466 

highly similar, further supporting the proposition that they have a large degree of redundancy 467 

(Figure 5)(8). As TLK2 mutations clearly impact neurodevelopment, we propose that the 468 

p.Q479E variant likely interferes with overall TLK1-TLK2 activity via homo and 469 

heterodimerization that impairs chromatin maintenance during brain development. Further 470 

analysis of the neurodevelopmental phenotypes of TLK1- and TLK2-deficient mice is therefore 471 

warranted. 472 

 473 

In summary, our data strongly indicates that mutations in TLK1 are likely to be relevant to rare 474 

NDDs and should be considered in clinical diagnostics. Further, TLK1, and potentially TLK2, 475 

may impact immune system development in certain contexts and additional work is needed to 476 

understand their cellular and developmental roles. 477 

 478 
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