1 Bidirectional association and shared risk factors between atrial fibrillation and

2 heart failure: a Mendelian Randomization study

- 3 Haibin Lu, M.D.^{1,2#}, Ziting Gao, M.D.^{1#}, Hongye Wei¹, Yajing Wei¹, Ziyi Qiu¹, Jun
- 4 Xiao, M.D., Ph.D^{3,4*}, Wuqing Huang, M.D., Ph.D^{1*}
- ¹ Department of Epidemiology and Health Statistics, School of Public Health, Fujian
- 6 Medical University, Fuzhou, Fujian, China.
- 7 ² School of Public Health, Hengyang Medical School, University of South China,
- 8 Hengyang 421001, China
- 9 ³ Department of Cardiovascular Surgery, Fujian Medical University Union Hospital,
- 10 Fuzhou, Fujian, China.
- ⁴ Fujian Provincial Clinical Research Center for Cardiovascular Diseases Heart Center
- 12 of Fujian Medical University, Fuzhou, Fujian, China.
- 13 *Corresponding author: Wuqing Huang & Jun Xiao
- 14 Fujian Medical University,
- 15 No 1, Xue Yuan Road, University Town, 350108
- 16 Fuzhou City, Fujian Province, China.
- 17 Email: <u>wuqing.huang@fjmu.edu.cn & xiaojun@fjmu.edu.cn</u>
- 18 Telephone: +8617338896101
- 19 [#]These authors contributed equally to this work.
- 20 *These authors also contributed equally to this work.
- 21 Short title: Atrial fibrillation and heart failure
- 22 Abbreviations: BMI, body mass index; CI, confidence interval; GWAS,

- 23 Genome-Wide Association Studies; HbA1C, Glycosylated hemoglobin type A1C;
- 24 IVW-MR, inverse-variance weighted mendelian randomization; MR, Mendelian
- 25 randomization; MR-PRESSO, MR-pleiotropy residual sum and outlier; OR, odds
- 26 ratio; PM2.5, Particulate matter 2.5; SNPs, single nucleotide polymorphisms.

27 Abstract

Background: Atrial fibrillation and heart failure are closely related and share
multiple risk factors. We aimed to apply the mendelian randomization (MR) analysis
to explore the bidirectional causal link between atrial fibrillation and heart failure, and
the independent effect of potential risk factors on the risk of both conditions.

Methods: This is a two-sample MR study using publicly available summary-level statistics of genome-wide association studies (GWAS). Bidirectional MR was performed to explore the relation between atrial fibrillation and heart failure. A total of 14 factors were selected as potential risk factors, univariable MR analyses were used to identify shared risk factors, and then the multivariable MR analyses were further used to investigate the independent effect of these factors on both conditions.

38 Inverse-variance-weighted MR (IVW-MR) were used to obtain the effect estimates.

39 **Results:** MR analysis found evidence of causal relationship between atrial fibrillation 40 and heart failure (odds ratio [OR], 1.24; 95% confidence interval [CI], 1.19–1.29), as 41 well as between heart failure and atrial fibrillation (OR, 3.88; 95% CI, 1.45–10.37). 42 Univariable MR analyses identified several shared risk factors for both conditions, including body mass index (BMI), blood pressure, smoking, coronary heart disease 43 44 and myocardial infarction. After adjusting for atrial fibrillation, the observed 45 associations between shared factors and heart failure kept stable, such as BMI, 46 smoking, coronary heart disease and myocardial infarction. However, after adjusting 47 for heart failure, the relationships between most risk factors and atrial fibrillation attenuated to null. 48

- 49 Conclusions: This two-sample MR study found a bidirectional relationship between
- 50 atrial fibrillation and heart failure, and identified several shared risk factors of both
- 51 conditions, which had an independent effect on the risk of heart failure while probably
- 52 affected the risk of atrial fibrillation via cardiac impairment.
- 53 Funding: Start-up Fund for high-level talents of Fujian Medical University (grant
- 54 no.XRCZX2021026) and Natural Science Foundation of Fujian Province (grant no.

55 2022J01706).

56 Key words: atrial fibrillation, heart failure, mendelian randomization

57 Introduction

58 Atrial fibrillation and heart failure have emerged as a dual epidemic, together 59 resulting in substantial public health burden (Anter E et al., 2009). Atrial fibrillation 60 is the most common clinical arrhythmia with an estimation of 4.7 million incident 61 cases and 60 million prevalent cases globally in 2019. And the number of atrial 62 fibrillation cases is expected to double by 2060, showing that atrial fibrillation 63 remains a major public health concern (Dong XJ et al., 2023). And the prevalence of 64 heart failure in adults was reported to increase from 1-2 percent in adults to more than 65 10 percent in elderly population over 70 years of age (Jia Q et al., 2019). With the 66 increasing life-expectancy of the general population, heart failure becomes currently 67 the fastest-growing cardiovascular disease worldwide with a rough estimation of more 68 than 64.3 million cases globally in 2017, which has been defined as a global pandemic 69 (Savarese G et al., 2023).

70 The coexistence of atrial fibrillation and heart failure has been appreciated for 71 several decades (Turagam MK et al., 2019). Previous studies have shown that 72 persistent or frequent atrial fibrillation would lead to irreversible cardiac structural 73 changes, resulting in impairment of systolic and diastolic function, and further increasing the incidence of heart failure (Carlisle MA et al., 2019). Most patients 74 75 with heart failure suffered atrial enlargement, mitral regurgitation, and changes in 76 neurohumoral balance, all of which are related to higher risk of atrial fibrillation 77 (Verhaert DVM et al., 2021). However, it is unclear regarding the causative 78 relationship between atrial fibrillation and heart failure. In addition, as reported in

79	previous observational studies, atrial fibrillation and heart failure share a range of risk
80	factors, including hypertension, diabetes, structural heart disease, smoking, alcoholic
81	drinking, obesity and so on (Kornej J et al., 2021; Young LJ et al., 2022; Meijers
82	WC et al., 2019; Roger VL, 2021). While lack of studies distinguished the
83	independent effect of these common risk factors on the risk of atrial fibrillation or
84	heart failure, and mediated role of one condition between common risk factor and the
85	other condition.

86 Therefore, in this study, we aimed to apply the mendelian randomization (MR) 87 analysis to explore the bidirectional causal link between atrial fibrillation and heart 88 failure, and the independent effect of potential risk factors on the risk of both conditions. MR study use genetic variation closely related to the exposure as 89 90 instrumental variables to infer causal associations between exposure and outcome 91 events (Zheng J et al., 2017). Using genetic variation as a tool can effectively reduce 92 the impact of confounding factors and avoid reverse causality. In this study, 93 bidirectional MR analysis was first conducted to explore the bidirectional association 94 between atrial fibrillation and heart failure; next, univariable MR analysis was 95 performed to identify the potential shared risk factors of both conditions, and 96 multivariable MR analysis including each shared risk factor and both conditions was 97 further applied to explore the effect of shared risk factors on the risk of one condition 98 independent of the other one, as well as assess the mediated role of one condition between the factor of interest and risk of the other one. 99

Methods 100

6

101 **Data sources**

102	Publicly available summary statistics for genetic variants related to exposures and
103	outcomes were obtained from large-scaled genome-wide association studies (GWAS)
104	of European participants and used to perform two-sample MR study (Supplementary
105	File-Table 1). All these studies had been approved by the relevant institutional review
106	boards and informed consent had been obtained for all participants per the original
107	study protocols.

108 Summary-level GWAS data for atrial fibrillation were derived from a 109 meta-analysis consisting of six large cohorts: The Nord-Trøndelag Health Study, 110 deCODE, the Michigan Genomics Initiative, DiscovEHR Collaboration Cohort, UK 111 Biobank and AFGen Consortium. This study included 60,620 individuals with atrial 112 fibrillation and 970,216 controls (Nielsen JB et al., 2018). Cases of atrial fibrillation 113 were mainly identified by ICD-9 (427.3) or ICD-10 (I48) codes (Nielsen JB et al., 114 2018). Summary-level GWAS data for heart failure were obtained from the Heart 115 Failure Molecular Epidemiology for Therapeutic Targets (HERMES) Consortium 116 consisting of 26 European population cohorts, including 47,309 cases of heart failure 117 and 930,014 controls (Shah S et al., 2018).

Based on the previous literature, this study summarized several potential common risk factors for atrial fibrillation and heart failure, and classified these risk factors into three categories: metabolic trait (waist circumference, body mass index [BMI], systolic blood pressure, diastolic blood pressure, glycosylated hemoglobin

122	type A1C [HbA1C], fasting glucose, fasting insulin), environmental or behavior factor
123	(smoking, alcoholic drinking, physical activity, particulate matter 2.5 [PM2.5]
124	exposure) and comorbidity (coronary heart disease, myocardial infarction). Summary
125	statistics were obtained from GIANT consortium for waist circumference (n=245,746)
126	and body mass index (n=681,275), from ICSB consortium for blood pressure
127	(n=757,601) , from MAGIC consortium for HbA1C (n=46,368), fasting glucose
128	(n=58,074) and fasting insulin (n=51,750), from GSCAN consortium for smoking
129	(ncases=311,629; ncontrols=321,173) and alcoholic drinking (n=335,394), from UK
130	Biobank for physical activity (n=440,512) and PM2.5 exposure (n=423,796), from
131	CARDIoGRAMplusC4D consortium for coronary heart disease (ncases=60,801;
132	ncontrols=123,504) and myocardial infarction (ncases=43,676; ncontrols=128,199).
133	Detailed information of data sources used in the analysis are provided in
134	Supplementary File-Table 1.

135 Selection of genetic instrumental variables

Single nucleotide polymorphisms (SNPs) which met genomic significance threshold 136 $(p < 5*10^{-8})$ were selected from the GWAS pooled database as genetic instruments 137 138 corresponding to the exposure of interest (Sanna S et al., 2019). Linkage disequilibrium was estimated by R²<0.001 (clumping window size=10,000kb) using 139 140 genomic data from the European population in the 1000 Genomes Project as the reference dataset, and SNP with strongest association with the exposure was retained 141 142 if linkage disequilibrium was present. For SNPs unavailable in the GWAS dataset of 143 outcome, suitable proxies were used as substitutes, SNPs without suitable proxies and

144 palindromic SNPs were removed. Then remaining independent SNPs with statistically

145 significance were used as genetic instruments.

146 **Statistical analysis**

147 **Primary analyses**

148 As shown in flowchart in Fig 1, bidirectional MR analysis was first performed to 149 explore the causal association between atrial fibrillation and heart failure. Next, we 150 performed a univariable MR analysis to estimate the causal effect of potential factors 151 on the risk of atrial fibrillation and heart failure respectively, then identified the shared 152 risk factors between atrial fibrillation and heart failure. Finally, multivariable MR 153 analysis was conducted to investigate the impact of each shared risk factor on one 154 outcome independent of the other outcome. The random-effect inverse-variance 155 weighted mendelian randomization (IVW-MR) was used as the main method 156 (Burgess S et al., 2013). In MR analysis, we used the F-statistic to assess the strength 157 of exposed genetic tools, and F-statistic >10 was not considered to be biased by weak 158 genetic tools (Sanderson E et al., 2015; Burgess S et al., 2011).

To account for multiple testing, Bonferroni correction was used to adjust the thresholds of significance level, thus a strong evidence was suggested for p<0.002 (thirteen exposures and two outcomes) and a suggestive evidence of $0.002 \le p < 0.05$ in univariable MR. And a strong evidence was suggested for p<0.004 (six exposures and two outcomes) and a suggestive evidence of $0.004 \le p < 0.05$ in multivariable MR.

164 Sensitivity analyses

9

165	Several MR methods were used to examine the robustness of the main results,
166	including simple mode, MR-Egger, weighted median, weighted mode. Sensitivity
167	analyses, including the leave-one-out analysis, Cochran's Q statistic, MR-Egger
168	intercept and MR-pleiotropy residual sum and outlier (MR-PRESSO), were applied to
169	assess the possible heterogeneity and horizontal pleiotropy in the primary analyses.
170	The leave-one-out analysis refers to evaluate the consistency of observed associations
171	by removing one SNP from analysis in turn and identify whether the results were
172	driven by any individual SNP. The Cochrane Q statistic was used for heterogeneity in
173	this study, and a Cochran's Q-derived P<0.05 was deemed as a marker of the presence
174	of heterogeneity. The MR-Egger intercept and MR-PRESSO analysis were used to
175	evaluate the horizontal pleiotropy of the instrumental variables. The MR-PRESSO
176	analysis consists of three components (Verbanck M et al., 2018): (1) Detection of
177	horizontal pleiotropy; (2) Correction of pleiotropy by removing detected outliers
178	(genetic variants with horizontal pleiotropy); (3) Comparison of the differences in
179	causal correlation before and after correction.

All statistical analyses were performed using R version 4.2.2 (R Foundation for
Statistical Computing, Vienna, Austria). MR analyses were performed using the
TwosampleMR, MRPRESSO and MRInstruments R packages.

183 **Results**

Bidirectional MR analysis of atrial fibrillation and heart failure

10

186	We used a two-way two-sample MR study to explore the bidirectional relationship
187	between atrial fibrillation and heart failure. The F-statistic for atrial fibrillation and
188	heart failure were all greater than 10 (Supplementary File-Table 1 and Table 2). We
189	found evidence of causal relationship between atrial fibrillation and heart failure
190	(odds ratio [OR], 1.24; 95% confidence interval [CI], 1.19-1.29; P<0.001), as well as
191	between heart failure and atrial fibrillation (OR, 3.88; 95% CI, 1.45–10.37; P=0.007)
192	(Fig 2). Four complementary methods yielded similar results between atrial
193	fibrillation and heart failure, and consistent evidence for the causal relationship of
194	heart failure with atrial fibrillation was found across these methods (Fig 2). The
195	scatterplot provides an estimate of one condition for each genetic variant to the other
196	one (Supplementary File-Fig 1). The leave-one-out analysis of the MR association
197	did not find any SNP that had a significant impact on the estimated effect
198	(Supplementary File-Fig 2). The Cochrane Q statistic showed an evidence of
199	heterogeneity (P<0.001), thus random-effect IVW-MR was used as the main method
200	(Supplementary File-Table 4). Potential horizontal pleiotropy was not found in the
201	genetic instruments of atrial fibrillation (MR-Egger intercept P=0.171; MR-PRESSO
202	P=1.000) and heart failure (MR-Egger intercept P=0.090; MR-PRESSO P=0.675;
203	Supplementary File-Table 4).

204 Univariable MR analysis for risk factors on atrial 205 fibrillation and heart failure

As shown in Fig 3, a strong evidence was found between several factors and both
conditions, including BMI (heart failure: OR, 1.74; 95% CI, 1.63–1.85; P<0.001;

208	atrial fibrillation: OR, 1.41; 95% CI, 1.33-1.50; P<0.001), systolic blood pressure
209	(heart failure: OR, 1.02; 95% CI, 1.02–1.03; P<0.001; atrial fibrillation: OR, 1.02; 95%
210	CI, 1.01-1.02; P<0.001), diastolic blood pressure (heart failure: OR, 1.03; 95% CI,
211	1.02-1.04; P<0.001; atrial fibrillation: OR, 1.03; 95% CI, 1.02-1.04; P<0.001),
212	smoking (heart failure: OR, 1.27; 95% CI, 1.15-1.39; P<0.001; atrial fibrillation:
213	OR, 1.09; 95% CI, 1.01-1.18; P=0.0308), coronary heart disease (heart failure:
214	OR, 1.34; 95% CI, 1.27-1.41; P<0.001; atrial fibrillation: OR, 1.11; 95% CI, 1.05-
215	1.17; P<0.001) and myocardial infarction (heart failure: OR, 1.35; 95% CI, 1.26–1.44;
216	P<0.001; atrial fibrillation: OR, 1.11; 95% CI, 1.06-1.16; P<0.001). Heterogeneity
217	may be present in the instrumental variables for most exposures, thus random-effect
218	IVW-MR was used as the main method (Supplementary File-Table 4). And the
219	MR-Egger intercept and the MR-PRESSO analysis showed the presence of potential
220	horizontal pleiotropy in the instrumental variables for myocardial infarction
221	(MR-Egger intercept P=0.039), while there was no horizontal pleiotropy in other
222	exposure factors (Supplementary File-Table 4).

Univariable MR analysis also found a suggestive evidence for the association of fasting glucose with the higher risk of heart failure (OR, 1.17; 95% CI, 1.03–1.33; P=0.0145); a strong evidence for waist circumference (OR, 1.38; 95% CI, 1.18–1.60; P<0.001) and HbA1C (OR, 1.51; 95% CI, 1.31–1.73; P<0.001) were correlated with the higher risk of atrial fibrillation; and no evidence for between fasting insulin, alcoholic drinking, physical activity and PM2.5 exposure were correlated with both heart failure and atrial fibrillation (**Fig 3**). The Cochrane Q statistic showed an

230	evidence of heterogeneity among the instrument SNP effects except for fasting
231	glucose (P=0.718) and fasting insulin (P=0.316; Supplementary File-Table 4). And
232	the MR-PRESSO analysis showed the presence of potential horizontal pleiotropy in
233	the instrumental variables of waist circumference (P=0.008), physical activity
234	(P=0.029) and PM2.5 exposure (P<0.001; Supplementary File-Table 4).

Multivariable MR analysis for shared risk factors on atrial fibrillation and heart failure

237 To obtain the independent effect of shared risk factors on each condition, we used the 238 multivariable MR approach to adjust for the effect from the other condition. As shown 239 in Fig 4, after adjusting for atrial fibrillation, the observed associations between 240 shared factors and heart failure kept stable, such as BMI (OR, 1.58; 95% CI, 1.49-241 1.68), smoking (OR, 1.24; 95% CI, 1.10–1.41), coronary heart disease (OR, 1.29; 95% 242 CI, 1.23–1.36) and myocardial infarction (OR, 1.30; 95% CI, 1.22–1.38). However, 243 after adjusting for heart failure, the relationships between most risk factors and atrial 244 fibrillation attenuated to null, even a negative association was found between 245 coronary heart disease (OR, 0.72; 95% CI, 0.59–0.88) or myocardial infarction (OR, 246 0.69; 95% CI, 0.55–0.88) and atrial fibrillation.

247 **Discussion**

In the present study, a significant bidirectional association was found between atrial fibrillation and heart failure, in which atrial fibrillation were related to 1.24 times higher risk of heart failure, and heart failure associated with 3.88 times higher risk of

251 atrial fibrillation. BMI, blood pressure, smoking, coronary heart disease and 252 myocardial infarction were identified as shared risk factors of atrial fibrillation and 253 heart failure. The observed associations between shared risk factors and heart failure 254 remained stable after adjusting for atrial fibrillation, suggesting that these shared risk 255 factors were independently related to heart failure risk. However, after adjusting for 256 heart failure, the observed associations between most shared risk factors and atrial 257 fibrillation attenuated to null, indicated that heart failure played an important 258 mediated role between shared risk factors and risk of atrial fibrillation. These findings suggested that weight control, blood pressure control and smoking quitting might 259 260 reduce the risk of heart failure, and individuals with cardiac impairment were likely to 261 benefit from these strategies in reducing atrial fibrillation risk.

262 A number of epidemiological studies suggested a link between atrial fibrillation 263 and heart failure (Anter E et al., 2009), as reported, the incidence of atrial fibrillation 264 in heart failure patients was as high as 20% to 60% (Ponikowski P et al., 2021; 265 Muser D et al., 2019; Zakeri R et al., 2013; Prabhu S et al., 2017), and the risk of 266 developing heart failure in atrial fibrillation patients increased by five to six times 267 (Ruddox V et al., 2017; Vermond RA et al., 2015). However, due to the chronic 268 nature of both conditions, it is difficult to avoid the impact of reverse causality in the 269 observational studies when estimating the causative relationship between atrial 270 fibrillation and heart failure. In recent years, some MR studies have explored the role 271 of atrial fibrillation on the risk of heart failure (Shah S et al., 2020; Kwok MK et al., 272 2021; Hu M et al., 2023), but there is a dearth of evidence from MR study fully

exploring the bidirectional causal relationship between these two conditions. The present bidirectional MR study provided additional evidence for the link between both conditions, showing that atrial fibrillation was related to 1.24 times higher risk of heart failure, and heart failure associated with 3.88 times higher risk of atrial fibrillation, further confirming the important influence of atrial fibrillation and heart failure on each other's occurrence and development.

279 A series of common risk factors have been related to both atrial fibrillation and heart failure (Kornej J et al., 2021; Young LJ et al., 2022; Meijers WC et al., 2019; 280 281 Roger VL, 2021), the coexistence of both conditions may be explained by the 282 presence of these common risk factors to some extent, but lack of studies 283 comprehensively investigated how these risk factors independently affect each 284 condition, respectively. In this study, univariable MR analyses identified several 285 shared risk factors for both diseases, including BMI, blood pressure, smoking, 286 coronary heart disease and myocardial infarction. The results are consistent with those 287 of Susanna et al. who found a causal relationship between BMI and smoking with 288 atrial fibrillation and heart failure (Larsson SC et al., 2020; Larsson SC et al., 2020), 289 and Nhu et al. who found a causal relationship between blood pressure with atrial 290 fibrillation and heart failure (Le NN et al., 2022). Due to the bidirectional relationship 291 between atrial fibrillation and heart failure, we further performed multivariable MR 292 analyses to investigate the effect of these shared factors on each disease independent 293 on the other one in this study, in which we have found a strong evidence that BMI, 294 blood pressure, smoking, coronary heart disease and myocardial infarction were

295 independent risk factors for heart failure, but not for atrial fibrillation. After adjusting 296 for heart failure, the relationship of most shared factors (eg, BMI, blood pressure, 297 smoking) with atrial fibrillation was basically not significant, indicating that these 298 shared risk factors probably increased the risk of atrial fibrillation via impairment in 299 cardiac structure and function. These findings suggested that individuals with cardiac 300 impairment were likely to benefit from weight control, blood pressure control and 301 smoking quitting in reducing atrial fibrillation risk. Interestingly, after adjusting for 302 heart failure, this study found a negative correlation between coronary heart disease or 303 myocardial infarction and atrial fibrillation. Similarly, Bouwe et al. previously 304 reported a negative correlation between myocardial infarction and atrial fibrillation in 305 women (hazard ratio [HR], 0.92; 95%CI, 0.59–1.44) (Krijthe BP et al., 2013), the 306 underlying reason of which remained to be clarified.

307 This study has several advantages. To our knowledge, this is the first study to 308 explore the bidirectional relationship between atrial fibrillation and heart failure from 309 a genetic perspective, identify shared risk factors of both conditions and the 310 independent effect of shared risk factors on each outcome. The bidirectional causal 311 relationship between atrial fibrillation and heart failure was determined through MR 312 analysis, minimizing confounding impact and reverse causal relationships. In addition, 313 this study is the first to simultaneously explore the possible effect of metabolic trait, 314 environmental or behavior factor and comorbidity in the occurrence of atrial 315 fibrillation and heart failure at the genetic level, comprehensively exploring whether 316 there are differences in the strength of the impact of different risk factors on atrial

317 fibrillation and heart failure. To ensure the reliability of the results, we have adopted a

318 series of supplementary methods and sensitivity analyses.

319 However, this study also has some limitations. Firstly, in the GWAS study of 320 atrial fibrillation and heart failure, the aggregated data come from multiple different 321 cohorts, and their definitions of atrial fibrillation and heart failure vary, which to some 322 extent weakens the causal effects of related genetic tools. However, the studies 323 provide a comparison of the direction of genetic variation effects significantly 324 associated with previous heart failure and atrial fibrillation, and the large sample size 325 also ensures consistency in the direction of genetic effects (Shah S et al., 2020; 326 Nielsen JB et al., 2018). Secondly, the GWAS summary data used in this study were 327 obtained from relevant studies based on European populations, so the generalization 328 of the research results is limited and further testing is needed in other ethnic groups. 329 Third, potential pleiotropy cannot be ruled out, which might have biased the results. 330 Nonetheless, several approaches were performed to minimize the probability of 331 pleiotropy bias, including identifying pleiotropy with MR-Egger intercept and 332 detecting outliers by the MR-PRESSO analysis. Fourthly, the MR analysis of this 333 study is based on aggregated data and cannot further explore whether there are 334 differences in associations among different subgroups of the population at the 335 individual level.

336 **Conclusions**

337 In summary, this two-sample MR study found a bidirectional relationship between

atrial fibrillation and heart failure, and identified several shared risk factors of both
conditions, including BMI, blood pressure, smoking, coronary heart disease and
myocardial infarction, all of which were independently related to heart failure but
affected the risk of atrial fibrillation probably via impairment in cardiac structure and
function.

343 Acknowledgments

We thank the patients and investigators who contributed to the UK Biobank, GIANT

345 Consortium, HERMES Consortium, ICBP consortium, MAGIC consortium, GSCAN

346 Consortium, CARDIoGRAMplusC4D Consortium.

347 Author Contributions

348 All authors were responsible for the study concept and design. WH obtained funding.

349 HL and ZG did the statistical analysis and drafted the manuscript. WH and JX 350 critically revised the manuscript. All authors gave the final approval and agreed to be 351 accountable for all aspects of work ensuring integrity and accuracy.

352 Data Availability Statement

353 All raw summary-level data are available in the referenced public datasets, the detailed 354 information of which could be found in Supplementary File-Table 1. The codes and 355 curated data for the analysis available current are at 356 https://github.com/WH57/Atrial-fibrillation-and-heart-failure.

357 Funding Information

This work was supported by the Start-up Fund for high-level talents of Fujian Medical
University (grant no.XRCZX2021026) and the Natural Science Foundation of Fujian

- 360 Province (grant no. 2022J01706) to Dr. Wuqing Huang. The funder had no role in
- 361 study design, data collection and interpretation, or the decision to submit the work for
- 362 publication.

363 Declaration of Competing Interest

364 The authors declare no competing interests.

365 **References**

- 366 Anter E, Jessup M, Callans DJ. Atrial fibrillation and heart failure: treatment
- 367 considerations for a dual epidemic. Circulation. 2009;119(18):2516-25. doi:
- 368 10.1161/CIRCULATIONAHA.108.821306, PMID: 19433768
- 369 Dong XJ, Wang BB, Hou FF, Jiao Y, Li HW, Lv SP, Li FH. Global burden of atrial
- 370 fibrillation/atrial flutter and its attributable risk factors from 1990 to 2019. Europace.
- 371 2023;25(3):793-803. doi: 10.1093/europace/euac237, PMID: 36603845
- 372 Jia Q, Li H, Zhou H, Zhang X, Zhang A, Xie Y, Li Y, Lv S, Zhang J. Role and
- 373 Effective Therapeutic Target of Gut Microbiota in Heart Failure. Cardiovasc Ther.
- 374 2019;2019:5164298. doi: 10.1155/2019/5164298, PMID: 31819762
- 375 Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global
- 376 burden of heart failure: a comprehensive and updated review of epidemiology.
- 377 Cardiovasc Res. 2023;118(17):3272-3287. doi: 10.1093/cvr/cvac013, PMID:
- 378 35150240
- 379 Turagam MK, Garg J, Whang W, Sartori S, Koruth JS, Miller MA, Langan N, Sofi A,
- 380 Gomes A, Choudry S, Dukkipati SR, Reddy VY. Catheter Ablation of Atrial
- 381 Fibrillation in Patients With Heart Failure: A Meta-analysis of Randomized Controlled

382	Trials. Ann Intern Med. 2019;170(1):41-50. doi: 10.7326/M18-0992, PMID:
383	30583296
384	Carlisle MA, Fudim M, DeVore AD, Piccini JP. Heart Failure and Atrial Fibrillation,
385	Like Fire and Fury. JACC Heart Fail. 2019;7(6):447-456. doi:
386	10.1016/j.jchf.2019.03.005, PMID: 31146871
387	Verhaert DVM, Brunner-La Rocca HP, van Veldhuisen DJ, Vernooy K. The
388	bidirectional interaction between atrial fibrillation and heart failure: consequences for
389	the management of both diseases. Europace. 2021;23(23 Suppl 2):ii40-ii45. doi:
390	10.1093/europace/euaa368, PMID: 33837758
391	Kornej J, Börschel CS, Benjamin EJ, Schnabel RB. Epidemiology of Atrial
392	Fibrillation in the 21st Century: Novel Methods and New Insights. Circ Res.
393	2020;127(1):4-20. doi: 10.1161/CIRCRESAHA.120.316340, PMID: 32716709
394	Young LJ, Antwi-Boasiako S, Ferrall J, Wold LE, Mohler PJ, El Refaey M. Genetic
395	and non-genetic risk factors associated with atrial fibrillation. Life Sci.
396	2022;299:120529. doi: 10.1016/j.lfs.2022.120529, PMID: 35385795
397	Meijers WC, de Boer RA. Common risk factors for heart failure and cancer.
398	Cardiovasc Res. 2019;115(5):844-853. doi: 10.1093/cvr/cvz035, PMID: 30715247
399	Roger VL. Epidemiology of Heart Failure: A Contemporary Perspective. Circ Res.
400	2021;128(10):1421-1434. doi: 10.1161/CIRCRESAHA.121.318172, PMID:
401	33983838
402	Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, Evans DM, Smith
403	GD. Recent Developments in Mendelian Randomization Studies. Curr Epidemiol Rep.

404 2017;4(4):330-345. doi: 10.1007/s40471-017-0128-6, PMID: 29226067

405	Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW, Graham SE, Herron
406	TJ, McCarthy S, Schmidt EM, Sveinbjornsson G, Surakka I, Mathis MR, Yamazaki M,
407	Crawford RD, Gabrielsen ME, Skogholt AH, Holmen OL, Lin M, Wolford BN, Dey
408	R, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation
409	biology. Nat Genet. 2018;50(9):1234-1239. doi: 10.1038/s41588-018-0171-3, PMID:
410	30061737
411	Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, Hedman ÅK,
412	Wilk JB, Morley MP, Chaffin MD, Helgadottir A, Verweij N, Dehghan A, Almgren P,
413	Andersson C, Aragam KG, Ärnlöv J, Backman JD, Biggs ML, Bloom HL, et al.
414	Genome-wide association and Mendelian randomisation analysis provide insights into
415	the pathogenesis of heart failure. Nat Commun. 2020;11(1):163. doi:
416	10.1038/s41467-019-13690-5, PMID: 31919418
417	Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, Mujagic
418	Z, Masclee AAM, Jonkers DMAE, Oosting M, Joosten LAB, Netea MG, Franke L,
419	Zhernakova A, Fu J, Wijmenga C, McCarthy MI. Causal relationships among the gut

- 420 microbiome, short-chain fatty acids and metabolic diseases. Nat Genet.
- 421 2019;51(4):600-605. doi: 10.1038/s41588-019-0350-x, PMID: 30778224
- Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with
 multiple genetic variants using summarized data. Genet Epidemiol.
 2013;37(7):658-65. doi: 10.1002/gepi.21758, PMID: 24114802
- 425 Sanderson E, Windmeijer F. A weak instrument [Formula: see text]-test in linear IV

21

426 models with multiple endogenous variables. J Econom. 2016;190(2):212-221. doi:

- 427 10.1016/j.jeconom.2015.06.004, PMID: 29129953
- 428 Burgess S, Thompson SG; CRP CHD Genetics Collaboration. Avoiding bias from
- 429 weak instruments in Mendelian randomization studies. Int J Epidemiol.
- 430 2011;40(3):755-64. doi: 10.1093/ije/dyr036, PMID: 21414999
- 431 Verbanck M, Chen CY, Neale B, Do R. Publisher Correction: Detection of widespread
- 432 horizontal pleiotropy in causal relationships inferred from Mendelian randomization
- 433 between complex traits and diseases. Nat Genet. 2018;50(8):1196. doi:
- 434 10.1038/s41588-018-0164-2, PMID: 29967445
- 435 Ponikowski P, Alemayehu W, Oto A, Bahit MC, Noori E, Patel MJ, Butler J,
- 436 Ezekowitz JA, Hernandez AF, Lam CSP, O'Connor CM, Pieske B, Roessig L, Voors
- 437 AA, Westerhout C, Armstrong PW; VICTORIA Study Group. Vericiguat in patients
- 438 with atrial fibrillation and heart failure with reduced ejection fraction: insights from
- 439 the VICTORIA trial. Eur J Heart Fail. 2021;23(8):1300-1312. doi: 10.1002/ejhf.2285,
- 440 PMID: 34191395
- 441 Muser D, Liang JJ, Castro SA, Lanera C, Enriquez A, Kuo L, Magnani S, Birati EY,
- Lin D, Schaller R, Supple G, Zado E, Garcia FC, Nazarian S, Dixit S, Frankel DS,
- 443 Callans DJ, Marchlinski FE, Santangeli P. Performance of Prognostic Heart Failure
- 444 Models in Patients With Nonischemic Cardiomyopathy Undergoing Ventricular
- 445 Tachycardia Ablation. JACC Clin Electrophysiol. 2019;5(7):801-813. doi:
- 446 10.1016/j.jacep.2019.04.001, PMID: 31320008
- 447 Zakeri R, Chamberlain AM, Roger VL, Redfield MM. Temporal relationship and

- 448 prognostic significance of atrial fibrillation in heart failure patients with preserved
- 449 ejection fraction: a community-based study. Circulation. 2013;128(10):1085-93. doi:
- 450 10.1161/CIRCULATIONAHA.113.001475, PMID: 23908348
- 451 Prabhu S, Voskoboinik A, Kaye DM, Kistler PM. Atrial Fibrillation and Heart Failure
- 452 Cause or Effect? Heart Lung Circ. 2017;26(9):967-974. doi:
 453 10.1016/j.hlc.2017.05.117, PMID: 28684095
- 454 Ruddox V, Sandven I, Munkhaugen J, Skattebu J, Edvardsen T, Otterstad JE. Atrial
- 455 fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure:
- 456 A systematic review and meta-analysis. Eur J Prev Cardiol. 2017;24(14):1555-1566.
- 457 doi: 10.1177/2047487317715769, PMID: 28617620
- 458 Vermond RA, Geelhoed B, Verweij N, Tieleman RG, Van der Harst P, Hillege HL,
- 459 Van Gilst WH, Van Gelder IC, Rienstra M. Incidence of Atrial Fibrillation and
- 460 Relationship With Cardiovascular Events, Heart Failure, and Mortality: A
- 461 Community-Based Study From the Netherlands. J Am Coll Cardiol.
- 462 2015;66(9):1000-7. doi: 10.1016/j.jacc.2015.06.1314, PMID: 26314526
- 463 Kwok MK, Schooling CM. Mendelian randomization study on atrial fibrillation and
- 464 cardiovascular disease subtypes. Sci Rep. 2021;11(1):18682. doi:
- 465 10.1038/s41598-021-98058-w, PMID: 34548541
- 466 Hu M, Tan J, Yang J, Gao X, Yang Y. Use of Mendelian randomization to evaluate the
- 467 effect of atrial fibrillation on cardiovascular diseases and cardiac death. ESC Heart
- 468 Fail. 2023;10(1):628-636. doi: 10.1002/ehf2.14237, PMID: 36404673
- 469 Larsson SC, Bäck M, Rees JMB, Mason AM, Burgess S. Body mass index and body

470	composition in relation to 14 cardiovascular conditions in UK Biobank: a Mendelian
471	randomization study. Eur Heart J. 2020;41(2):221-226. doi: 10.1093/eurheartj/ehz388,
472	PMID: 31195408
473	Larsson SC, Mason AM, Bäck M, Klarin D, Damrauer SM; Million Veteran Program;
474	Michaëlsson K, Burgess S. Genetic predisposition to smoking in relation to 14
475	cardiovascular diseases. Eur Heart J. 2020;41(35):3304-3310. doi:
476	10.1093/eurheartj/ehaa193, PMID: 32300774
477	Le NN, Tran TQB, Lip S, McCallum L, McClure J, Dominiczak AF, Gill D,
478	Padmanabhan S. Unravelling the Distinct Effects of Systolic and Diastolic Blood
479	Pressure Using Mendelian Randomisation. Genes (Basel). 2022;13(7):1226. doi:
480	10.3390/genes13071226, PMID: 35886009
481	Krijthe BP, Leening MJ, Heeringa J, Kors JA, Hofman A, Franco OH, Witteman JC,
482	Stricker BH. Unrecognized myocardial infarction and risk of atrial fibrillation: the
483	Rotterdam Study. Int J Cardiol. 2013;168(2):1453-7. doi:
484	10.1016/j.ijcard.2012.12.057, PMID: 23332895
485	Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW, Graham SE, Herron

- 486 TJ, McCarthy S, Schmidt EM, Sveinbjornsson G, Surakka I, Mathis MR, Yamazaki M,
- 487 Crawford RD, Gabrielsen ME, Skogholt AH, Holmen OL, Lin M, Wolford BN, Dey
- 488 R, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation
- 489 biology. Nat Genet. 2018;50(9):1234-1239. doi: 10.1038/s41588-018-0171-3, PMID:
- 490 30061737

491 Figure Legends:

- 492 Fig 1: A flow chart of the study design.
- 493 Fig 2: Bidirectional MR analysis between atrial fibrillation and heart failure.
- 494 Fig 3. Univariable MR analysis of potential shared risk factors with atrial fibrillation
- 495 and heart failure.
- 496 Fig 4. Multivariable MR analysis of identified shared risk factors with atrial
- 497 fibrillation and heart failure.

498 Supporting information

499 Supplementary File. Contents of Table 1-4 and Fig 1-2.

Category Metabolic trait	Exposures Waist circumference	
	Body mass index	
	Systolic blood pressure	
	Diastolic blood pressure	
	HbA1C	
medRxiv preprint doi: https://doi.org/10.1101/2023.08.21.23294384; this version posted August 22, 2023. The copyright hole (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the prepri It is made available under a CC-BY 4.0 International license .	Fasting glucose	
	Fasting insulin	•
Environmental or behavior factor	Smoking	
	Alcoholic drinking	
	Physical activity	
	PM2.5 exposure	•
Comorbidity	Coronary heart disease	
	Myocardial infarction	٢

OR(95%CI)	P-value
1.03(0.92,1.14)	6.41E-01
1.38(1.18,1.60)	4.43E-05
1.74(1.63, 1.85)	1.95E-68
1.41(1.33,1.50)	5.55E-29
1.02(1.02,1.03)	4.16E-24
1.02(1.01,1.02)	5.86E-14
1.03(1.02,1.04)	4.25E-16
1.03(1.02,1.04)	1.46E-15
0.94(0.82,1.06)	3.12E-01
1.51(1.31,1.73)	7.09E-09
1.17(1.03,1.33)	1.45E-02
0.97(0.84,1.11)	6.34E-01
1.22(0.56,2.64)	6.12E-01
0.81(0.52,1.24)	3.31E-01
1.27(1.15,1.39)	9.90E-07
1.09(1.01,1.18)	3.08E-02
1.14(0.89,1.46)	2.87E-01
1.14(0.94,1.38)	1.97E-01
1.05(0.82,1.36)	6.85E-01
1.01(0.79,1.29)	9.55E-01
3.53(0.69,18.07)	1.30E-01
1.49(0.69,3.21)	3.10E-01
1.34(1.27,1.41)	2.09E-26
1.11(1.05,1.17)	8.12E-05
1.35(1.26,1.44)	1.03E-18
1.11(1.06,1.16)	2.03E-05
♦ Heart failure	

art ranger

Atrial fibrillation

Exposures

Body mass index

Systolic blood pressure

Diastolic blood pressure

Environmental or behavior factor

Smoking

Comorbidity

Coronary heart disease

Myocardial infarction

Table of contents

Supplementary File-Table 1. Information of data sources used in the MR study.

Supplementary File-Table 2. SNPs used to construct the instruments for MR analysis atrial fibrillation and heart failure (nSNPs=112).

Supplementary File-Table 3. SNPs used to construct the instruments for MR analysis heart failure and atrial fibrillation (nSNPs=11).

Supplementary File-Table 4. Sensitivity analysis of association between atrial fibrillation, heart failure and common risk factors.

Supplementary File-Fig 1. Individual estimates of a bidirectional MR analysis of atrial fibrillation and heart failure.

Supplementary File-Fig 2. Leave-one-out method analysis results of bidirectional MR association between atrial fibrillation and heart failure.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	apprendentary i ne i abie it informat			<i></i>	
Traits	Data sources	Sample size	Number	Ancestry	Reference
		(cases/controls)	of SNPs		
Atrial fibrillation	Meta analysis of six cohort studies	60,620/970,216	33,519,037	European	[1]
Heart failure	HERMES consortium	47,309/930,014	7,773,021	European	[2]
Waist circumference	GIANT consortium	245,746	2,547,573	Mixed (76% European)	[3]
Body mass index	GIANT consortium	681,275	2,336,260	Mixed (76% European)	[4]
Systolic blood pressure	ICBP consortium	757,601	7,088,083	European	[5]
Diastolic blood pressure	ICBP consortium	757,601	7,160,619	European	[5]
HbA1C	MAGIC consortium	46,368	2,529,804	European	[6]
Fasting glucose	MAGIC consortium	58,074	2,625,495	European	[7]
Fasting insulin	MAGIC consortium	51,750	2,624,472	European	[7]
Smoking	GSCAN consortium	311,629/321,173	11,802,365	European	[8]
Alcoholic drinking	GSCAN consortium	335,394	11,887,865	European	[8]
Physical activity	UK Biobank	440,512	9,851,867	European	[9]
PM2.5 exposure	UK Biobank	423,796	9,851,867	European	[10]
Coronary heart disease	CARDIoGRAMplusC4D consortium	60,801/123,504	9,455,779	Mixed (77% European)	[11]
Myocardial infarction	CARDIoGRAMplusC4D consortium	43,676/128,199	9,289,492	Mixed (77% European)	[11]

Supplementary File-Table 1. Information of data sources used in the MR study.

 Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW, Graham SE, Herron TJ, McCarthy S, Schmidt EM, Sveinbjornsson G, Surakka I, Mathis MR, Yamazaki M, Crawford RD, Gabrielsen ME, Skogholt AH, Holmen OL, Lin M, Wolford BN, Dey R, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet. 2018;50(9):1234-1239. doi: 10.1038/s41588-018-0171-3, PMID: 30061737

2. Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, Hedman ÅK, Wilk JB, Morley MP, Chaffin MD, Helgadottir A,

Verweij N, Dehghan A, Almgren P, Andersson C, Aragam KG, Ärnlöv J, Backman JD, Biggs ML, Bloom HL, et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun. 2020;11(1):163. doi: 10.1038/s41467-019-13690-5, PMID: 31919418

- Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, Strawbridge RJ, Pers TH, Fischer K, Justice AE, Workalemahu T, Wu JMW, Buchkovich ML, Heard-Costa NL, Roman TS, Drong AW, Song C, Gustafsson S, Day FR, Esko T, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187-196. doi: 10.1038/nature14132, PMID: 25673412
- Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, Frayling TM, Hirschhorn J, Yang J, Visscher PM; GIANT Consortium. Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641-3649. doi: 10.1093/hmg/ddy271, PMID: 30124842
- Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, Ng FL, Evangelou M, Witkowska K, Tzanis E, Hellwege JN, Giri A, Velez Edwards DR, Sun YV, Cho K, Gaziano JM, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50(10):1412-1425. doi: 10.1038/s41588-018-0205-x, PMID: 30224653
- Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, Bouatia-Naji N, Langenberg C, Prokopenko I, Stolerman E, Sandhu MS, Heeney MM, Devaney JM, Reilly MP, Ricketts SL, Stewart AF, Voight BF, Willenborg C, Wright B, Altshuler D, Arking D, et al. Common variants at 10 genomic loci influence hemoglobin A₁(C) levels via glycemic and nonglycemic pathways. Diabetes. 2010;59(12):3229-39. doi: 10.2337/db10-0502, PMID: 20858683
- Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, Rybin D, Liu CT, Bielak LF, Prokopenko I, Amin N, Barnes D, Cadby G, Hottenga JJ, Ingelsson E, Jackson AU, Johnson T, Kanoni S, Ladenvall C, et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44(6):659-69. doi: 10.1038/ng.2274, PMID: 22581228
- Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, Datta G, Davila-Velderrain J, McGuire D, Tian C, Zhan X; 23andMe Research Team; HUNT All-In Psychiatry; Choquet H, Docherty AR, Faul JD, Foerster JR, Fritsche LG, Gabrielsen ME, Gordon SD, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019;51(2):237-244. doi: 10.1038/s41588-018-0307-5, PMID: 30643251

- Klimentidis YC, Raichlen DA, Bea J, Garcia DO, Wineinger NE, Mandarino LJ, Alexander GE, Chen Z, Going SB. Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. Int J Obes (Lond). 2018;42(6):1161-1176. doi: 10.1038/s41366-018-0120-3, PMID: 29899525
- Eeftens M, Beelen R, de Hoogh K, Bellander T, Cesaroni G, Cirach M, Declercq C, Dèdelè A, Dons E, de Nazelle A, Dimakopoulou K, Eriksen K, Falq G, Fischer P, Galassi C, Gražulevičienė R, Heinrich J, Hoffmann B, Jerrett M, Keidel D, et al. Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. Environ Sci Technol. 2012;46(20):11195-205. doi: 10.1021/es301948k, PMID: 22963366
- Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, Saleheen D, Kyriakou T, Nelson CP, Hopewell JC, Webb TR, Zeng L, Dehghan A, Alver M, Armasu SM, Auro K, Bjonnes A, Chasman DI, Chen S, Ford I, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121-1130. doi: 10.1038/ng.3396, PMID: 26343387

	Chuomo a	0-5	Fffect	Other	Expos	ure: Atrial fi	brillation	Out			
SNP	Chromo-s	Position	Ellect	other	Data	Standard	Develope	Data	Standard	Develope	<b>F-statistic</b>
	ome		aneie	aneie	вета	error	P value	Beta	error	P value	
rs284277	1	10790797	А	С	-0.0422	0.0069	1.25E-09	-0.0139	0.0082	0.0905191	868.0021
rs10753933	1	203026214	G	Т	-0.0609	0.0067	9.84E-20	-0.0106	0.0078	0.1767	1894.542
rs2540949	2	65284231	Т	А	-0.0659	0.0068	2.95E-22	-0.0067	0.008	0.4041	2123.697
rs10520260	4	174447349	G	А	-0.0457	0.0073	3.36E-10	0.002	0.0085	0.8136	939.9542
rs10741807	11	20011445	С	Т	-0.0729	0.0079	1.59E-20	0.0048	0.0093	0.6076	2030.119
rs28439930	5	173393111	С	G	-0.0458	0.0068	1.19E-11	-0.0134	0.0092	0.146	1080.997
rs6891790	5	172670745	Т	G	-0.0729	0.0076	4.53E-22	-0.033	0.0088	1.81E-04	2227.054
rs11598047	10	105342672	G	А	0.1537	0.009	8.95E-66	0.0188	0.0107	0.0774105	6657.906
rs74910854	7	74110705	G	А	0.09	0.0164	4.31E-08	0.0587	0.0207	4.59E-03	1078.203
rs60902112	3	194800853	Т	С	0.0445	0.0079	1.72E-08	0.0056	0.0094	0.5483	715.0909
rs8088085	18	48708548	С	А	-0.0365	0.0067	4.79E-08	-0.0253	0.0078	0.00121	683.6754
rs72811294	17	12618680	С	G	-0.072	0.0106	9.67E-12	-0.0239	0.0146	0.1015	1073.181
rs133885	22	26159289	А	G	0.0405	0.0068	2.22E-09	0.0136	0.008	0.0872208	832.9601
rs1458038	4	81164723	Т	С	0.0434	0.0072	1.74E-09	0.0165	0.0085	0.0530994	829.3745
rs10520002	5	127819132	А	G	0.0626	0.0113	2.85E-08	0.0325	0.0135	0.01595	719.8611
rs6580277	5	142818123	G	А	0.067	0.0079	1.64E-17	0.0307	0.0093	9.59E-04	1675.793
rs4965430	15	99268850	G	С	-0.0441	0.0069	1.26E-10	-0.0135	0.0081	0.0942106	951.5225
rs2834618	21	36119111	G	Т	-0.0944	0.0112	3.41E-17	-0.0236	0.013	0.0697493	1738.161
rs73366713	6	16415751	А	G	-0.1035	0.0099	1.53E-25	-0.0012	0.0116	0.9145	2659.526
rs1545300	1	112464004	Т	С	-0.0558	0.0073	1.48E-14	-0.0135	0.0085	0.1116	1372.711
rs146518726	1	51535039	А	G	0.1605	0.0207	8.27E-15	0.0836	0.0238	4.50E-04	1687.599
rs35544454	2	213266003	Т	А	-0.0589	0.0087	1.10E-11	-0.02	0.0101	0.0468997	1109.901

Supplementary File-Table 2. SNPs used to construct the instruments for MR analysis atrial fibrillation and heart failure (nSNPs=112).

rs7696743	4	114393950	G	А	0.041	0.0069	2.21E-09	0.0293	0.0081	2.89E-04	808.3896
rs6854883	4	111607315	T	C	0.2822	0.0093	1.00E-200	0.0594	0.0108	3.67E-08	21355.49
rs62254082	3	69417585	С	Т	0.0404	0.007	6.34E-09	0.0117	0.0082	0.152	798.5127
rs67969609	2	145760353	G	С	0.0711	0.0126	1.71E-08	0.0374	0.015	0.0128	687.8943
rs7574892	2	175512820	А	G	0.0552	0.0067	1.98E-16	0.0057	0.0078	0.4633	1571.418
rs117984853	6	149399100	Т	G	0.1228	0.012	1.34E-24	0.0027	0.0137	0.8437	2838.139
rs7612445	3	179172979	Т	G	0.0493	0.0084	4.81E-09	0.0047	0.0101	0.642899	765.1932
rs7529220	1	22282619	С	Т	0.0621	0.0098	1.98E-10	-0.0051	0.0115	0.6555	1031.915
rs6665642	1	154802139	Т	С	-0.062	0.0112	3.06E-08	-0.0167	0.013	0.2	823.0411
rs74832855	1	170171598	G	А	0.1216	0.018	1.43E-11	0.0052	0.0212	0.8068	1084.527
rs72926475	2	86594487	А	G	-0.0683	0.0102	2.37E-11	-0.0151	0.012	0.2074	1037.036
rs17060733	8	21866933	С	Т	-0.061	0.0103	2.64E-09	-0.0236	0.0121	0.0511199	815.4107
rs62521286	8	124551975	G	А	0.1202	0.0135	4.50E-19	0.0227	0.0159	0.1518	1847.252
rs60212594	10	75414344	С	G	-0.1176	0.0096	9.20E-35	-0.0642	0.0113	1.19E-08	3522.484
rs55734480	7	14372009	А	G	0.0548	0.0078	2.20E-12	0.0098	0.0092	0.2877	1160.308
rs2860482	12	57105938	С	А	-0.054	0.0076	1.21E-12	-0.0256	0.009	4.46E-03	1197.285
rs2359171	16	73053022	А	Т	0.1746	0.0086	4.65E-91	0.0259	0.0102	0.01119	9196.112
rs10773657	12	123327900	А	С	-0.0575	0.0103	2.54E-08	-0.0283	0.0123	0.0209802	811.4888
rs6560886	12	133150210	С	Т	0.051	0.009	1.49E-08	-0.0152	0.0104	0.1443	895.3615
rs9506925	13	23368943	Т	С	0.0449	0.0075	2.72E-09	0.0041	0.0089	0.643899	813.8905
rs2738413	14	64679960	G	А	-0.0778	0.0067	2.55E-31	-0.0034	0.0078	0.6624	3128.905
rs74022964	15	73677264	Т	С	0.1132	0.009	3.51E-36	-0.0019	0.0108	0.8563	3508.443
rs464901	22	18597502	С	Т	-0.0508	0.0072	1.53E-12	-0.0026	0.0085	0.758	1187.149
rs12426679	12	76237987	Т	С	-0.0391	0.0067	4.95E-09	-8.00E-04	0.0079	0.92	786.1378
rs4963776	12	24779491	Т	G	-0.0913	0.0088	1.84E-25	-0.0214	0.0102	0.0364502	2565.962
rs12245149	10	65321147	А	С	-0.047	0.0067	1.66E-12	-0.0143	0.0079	0.0693506	1136.706

rs80056983	10	105509902	Т	С	0.1287	0.0101	1.68E-37	0.0113	0.0121	0.3542	3516.334
rs6994744	8	141740868	С	А	0.0405	0.0066	1.09E-09	0.011	0.0078	0.1597	846.035
rs883079	12	114793240	Т	С	0.0981	0.0074	2.84E-40	0.0176	0.0087	0.0439097	4123.156
rs10141892	14	35184323	С	Т	-0.0452	0.0068	2.95E-11	0.0215	0.008	6.98E-03	1024.808
rs55985730	7	128417044	G	Т	0.0867	0.0149	5.24E-09	0.0094	0.0169	0.579499	874.7912
rs337705	5	113737062	G	Т	0.0564	0.0068	1.63E-16	0.005	0.0082	0.5424	1539.182
rs34969716	6	18210109	А	G	0.0702	0.0078	1.60E-19	0.0012	0.0092	0.8961	2158.569
rs34080181	3	66454191	А	G	-0.0446	0.0069	1.28E-10	-0.0028	0.0083	0.734301	966.1089
rs12188351	5	168386089	А	G	0.0865	0.0145	2.52E-09	0.0222	0.0171	0.1923	821.6067
rs1563304	17	44874453	Т	С	0.0644	0.0092	2.56E-12	0.0277	0.0108	0.0102601	1252.592
rs9953366	18	46474192	С	Т	0.049	0.0073	1.82E-11	0.0259	0.0086	2.50E-03	1107.024
rs140185678	16	2003016	А	G	0.1659	0.0218	2.43E-14	0.0759	0.0245	1.95E-03	1925.357
rs77316573	16	2265271	Т	С	0.0529	0.0089	3.26E-09	-0.0039	0.0104	0.708	920.8044
rs7225165	17	1309850	А	G	-0.0655	0.0111	3.20E-09	-0.0342	0.013	8.34E-03	889.37
rs6838973	4	111765495	Т	С	-0.1514	0.0067	1.03E-111	-0.0284	0.008	3.67E-04	11780.74
rs6747542	2	70106832	С	Т	-0.0554	0.0067	1.10E-16	-0.0278	0.0079	3.94E-04	1576.194
rs4073778	1	116297758	А	С	0.0486	0.0067	4.96E-13	-0.006	0.008	0.4558	1198.904
rs11264280	1	154862952	Т	С	0.1347	0.0071	3.07E-79	0.0252	0.0084	2.64E-03	8376.037
rs3820888	2	201180023	С	Т	0.0684	0.0068	5.75E-24	0.0366	0.008	4.71E-06	2304.25
rs10804493	3	111554426	А	G	0.0558	0.007	1.63E-15	0.0126	0.0082	0.1242	1461.494
rs6771054	3	89489529	С	Т	-0.0457	0.0068	2.42E-11	-0.0014	0.0081	0.8584	1037.39
rs1838747	5	114426668	G	А	0.0391	0.0067	4.13E-09	0.0149	0.0078	0.0571202	788.5107
rs10213171	4	148937537	G	С	0.091	0.0134	1.32E-11	0.0362	0.0159	0.0230701	977.3322
rs1278493	3	135814009	А	G	-0.0389	0.0068	8.77E-09	-0.0146	0.0079	0.0638102	767.5263
rs9997349	4	111473366	А	G	-0.0668	0.0086	5.40E-15	-0.0231	0.0102	0.0244901	1494.406
rs73041705	3	24463235	С	Т	-0.0443	0.0073	1.55E-09	-0.0148	0.0086	0.0860498	847.9208

				-							
rs11102343	1	112382671	А	G	0.0663	0.0111	2.23E-09	0.0191	0.0131	0.1452	791.4734
rs56201652	7	92278116	А	G	-0.0531	0.0075	1.74E-12	-0.0257	0.0089	3.73E-03	1138.945
rs6462079	7	28415827	А	G	0.0466	0.0076	8.79E-10	0.0025	0.0091	0.785301	901.7798
rs3951016	6	118559658	А	Т	0.0648	0.0067	2.15E-22	-0.0144	0.0079	0.0671104	2154.197
rs13195459	6	122403559	А	G	-0.0623	0.007	4.15E-19	-0.0043	0.0082	0.6023	1850.303
rs72700114	1	170193825	С	G	0.2021	0.013	3.29E-54	0.0591	0.0152	9.48E-05	5918.607
rs76097649	11	128764570	А	G	0.1151	0.0124	1.26E-20	0.0083	0.0145	0.566301	2315.737
rs71454237	12	70013415	А	G	-0.062	0.0084	1.78E-13	-0.0119	0.0099	0.2269	1311.829
rs7578393	2	26165528	Т	С	0.0614	0.0088	2.42E-12	-0.0035	0.0102	0.7323	1263.662
rs10458660	10	77936576	G	А	0.0537	0.0087	6.78E-10	0.0121	0.0104	0.2448	849.731
rs10821415	9	97713459	А	С	0.0821	0.0067	2.92E-34	0.0294	0.0079	2.18E-04	3380.472
rs4935786	11	121661507	А	Т	-0.0463	0.0079	4.85E-09	-0.0191	0.0094	0.0413	866.3047
rs28631169	14	23888183	Т	С	0.0522	0.0084	5.35E-10	-0.0016	0.01	0.8752	893.523
rs2759301	15	80994288	А	G	0.039	0.0067	5.04E-09	0.0287	0.0092	1.78E-03	777.9582
rs12604076	17	76773638	С	Т	-0.0365	0.0066	3.63E-08	-0.0306	0.0078	9.25E-05	685.7543
rs2274115	9	139094773	G	А	0.0487	0.0076	1.69E-10	0.0202	0.009	0.0254203	1027.259
rs35963991	8	11495702	Т	G	0.0525	0.0095	2.80E-08	0.0288	0.0112	0.0100099	722.6328
rs7789146	7	150661409	А	G	-0.0584	0.0087	2.12E-11	-0.0322	0.0103	1.78E-03	1033.013
rs79187193	1	147255831	А	G	-0.1162	0.0153	3.15E-14	-0.0178	0.0172	0.301	1495.997
rs6689306	1	154395946	G	А	-0.046	0.0068	1.36E-11	-0.0234	0.008	3.51E-03	1058.537
rs577676	1	170587340	Т	С	-0.0923	0.0067	1.62E-43	-0.0146	0.0079	0.0655194	4342.338
rs2885697	1	41544279	Т	G	-0.0439	0.007	2.88E-10	-0.0129	0.0082	0.1165	906.848
rs6596717	5	106427609	А	С	-0.0404	0.0068	3.00E-09	0.0037	0.008	0.6446	804.8427
rs2040862	5	137419989	Т	С	0.1084	0.0087	1.08E-35	0.0269	0.0103	8.81E-03	3548.985
rs2031522	6	87821501	G	А	-0.0436	0.0068	1.47E-10	-0.0325	0.0081	6.04E-05	920.7361
rs6790396	3	38771925	G	С	0.0627	0.0068	2.40E-20	0.0116	0.0079	0.1433	1955.416

179411665 127433465 17913970 116191301 103555611	G T A A T	A C G C	0.0919 0.0741 0.0711 0.1054	0.0089 0.0113 0.0075	7.26E-25 6.25E-11 1.69E-21	0.0019 0.029 0.012	0.0107 0.0131	0.8596 0.02618	2302.46 1065.813
127433465 17913970 116191301	T A A T	C G C	0.0741 0.0711 0.1054	0.0113 0.0075	6.25E-11 1.69E-21	0.029 0.012	0.0131	0.02618	1065.813
17913970 116191301 103555611	A A T	G C	0.0711 0.1054	0.0075	1.69E-21	0.012	0 0000		
116191301	A T	С	0 1054			<b>-</b>	0.0088	0.171	2146.436
102555611	т		0.1004	0.0067	2.39E-55	0.0227	0.0079	4.19E-03	5588.159
1055555011	1	С	-0.041	0.007	4.42E-09	0.0119	0.0083	0.1516	786.9456
70071513	G	А	0.0423	0.0074	1.05E-08	0.003	0.0087	0.7304	743.8983
73249419	Т	С	-0.0493	0.0078	3.48E-10	-0.0153	0.0092	0.0977305	939.1377
113872712	С	Т	-0.0452	0.008	1.38E-08	-0.0242	0.0095	0.01048	730.3467
32990437	С	Т	0.0719	0.0077	6.94E-21	0.029	0.009	1.27E-03	2177.803
	А	G	-0.0626	0.0085	1.42E-13	-0.0577	0.0102	1.33E-08	1285.519
36647289		0	-0.0921	0.0127	4 29E-13	-0.0091	0.0144	0.527	1235.479
	36647289	36647289 A	36647289 A G 174642789 T G	36647289 A G -0.0626 174642789 T G -0.0921	36647289 A G -0.0626 0.0085 174642789 T G -0.0921 0.0127	36647289 A G -0.0626 0.0085 1.42E-13 174642789 T G -0.0921 0.0127 4.29E-13	36647289 A G -0.0626 0.0085 1.42E-13 -0.0577 174642789 T G -0.0921 0.0127 4.29E-13 -0.0091	36647289 A G -0.0626 0.0085 1.42E-13 -0.0577 0.0102 174642789 T G -0.0921 0.0127 4.29E-13 -0.0091 0.0144	36647289         A         G         -0.0626         0.0085         1.42E-13         -0.0577         0.0102         1.33E-08           174642789         T         G         -0.0921         0.0127         4.29E-13         -0.0091         0.0144         0.527

Supplementary File-Table 5. Sivi's used to construct the instruments for Wik analysis heart failute and atrial normation (hSiVFS-11).											
	Chromo s		Effort	Other allele	Exp	osure: heart	failure	Outco			
SNP	ome	Position	allele		Beta	Standard error	P value	Beta	Standard error	P value	F-statistic
rs660240	1	109817838	С	Т	0.0611	0.0097	3.25E-10	0.013	0.008	0.1062	1208.621467
rs11745324	5	137012171	А	G	-0.0528	0.0095	2.34E-08	-0.0687	0.0081	1.52E-17	995.4338026
rs4746140	10	75417249	С	G	-0.0666	0.0109	1.10E-09	-0.11	0.0092	5.14E-33	1101.979218
rs17617337	10	121426884	Т	С	-0.0561	0.0095	3.65E-09	0.0093	0.008	0.2485	1027.226956
rs1510226	6	160816409	С	Т	0.162	0.0285	1.27E-08	0.0714	0.0256	5.24E-03	912.0373006
rs1556516	9	22100176	С	G	0.0622	0.0078	1.57E-15	0.0248	0.0066	1.82E-04	1762.756616
rs4766578	12	111904371	А	Т	-0.0433	0.0079	4.90E-08	-0.0037	0.0068	0.582	916.9233925
rs4135240	6	36647680	С	Т	-0.0486	0.0084	6.84E-09	-0.0251	0.0071	3.76E-04	1061.954529
rs55730499	6	161005610	Т	С	0.1058	0.0157	1.83E-11	0.0578	0.0139	3.45E-05	1259.661928
rs56094641	16	53806453	G	А	0.0454	0.008	1.21E-08	0.0291	0.0067	1.53E-05	987.4982561
rs17042102	4	111668626	А	G	0.1103	0.0121	5.71E-20	0.4222	0.0103	0	3384.637208

Supplementary File-Table 3. SNPs used to construct the instruments for MR analysis heart failure and atrial fibrillation (nSNPs=11).

Supplem	chitary rine rable 1. Se	instanting	unary 515 01 uss	celution cetwe		nation, neuri ia		IIIOII IISK Iu	01015.
Outcomes	Exposures	nSNPs	beta	se	P value	Cochrane Q test pvalue	MR-Egger intercept pvalue	Global test pvalue	Distortion test pvalue
Heart failure	Atrial fibrillation	99	0.2153007	0.01924315	4.65E-29	5.93E-10	0.090	< 0.001	0.675
Atrial fibrillation	Heart failure	9	1.3547512	0.50191937	6.95E-03	1.28E-215	0.171	< 0.001	1
Heart failure	Waist circumference	59	0.02550309	0.05473641	0.6412688	0.008	0.516	0.008	NA
	Body mass index	448	0.5518767	0.03156728	1.95E-68	1.48E-09	0.153	< 0.001	0.874
	Systolic blood pressure	398	0.02107779	0.002081169	4.16E-24	8.78E-23	0.391	< 0.001	0.437
	Diastolic blood pressure	391	0.02960439	0.003640814	4.25E-16	7.12E-27	0.484	< 0.001	0.815
	HbA1C	188	-0.06584305	0.06512364	0.311994	1.41E-06	0.310	< 0.001	0.829
	Fasting glucose	19	0.1582335	0.06474746	0.01453122	0.718	0.618	0.745	-
	Fasting insulin	4	0.19998547	0.3942165	0.6119453	0.016	0.723	0.062	-

Supplementary File-Table 4. Sensitivity analysis of association between atrial fibrillation, heart failure and common risk factors.

	Smoking	73	0.2372768	0.0484872	9.90E-07	0.005	0.863	0.001	0.754
	Alcoholic drinking	30	0.133789	0.1255667	0.28665816	3.03E-04	0.971	< 0.001	0.521
	Physical activity	11	0.0529421	0.1304013	0.6847473	0.028	0.901	0.029	NA
	PM2.5 exposure	6	1.26083038	0.8335022	0.1303584	1.05E-09	0.536	< 0.001	< 0.001
	Coronary heart disease	38	0.2909573	0.02736351	2.09E-26	3.03E-07	0.336	< 0.001	0.767
	Myocardial infarction	23	0.300232	0.03399264	1.03E-18	1.67E-06	0.339	< 0.001	0.746
Atrial fibrillation	Waist circumference	63	0.3196562	0.07827214	4.43E-05	3.76E-30	0.301	< 0.001	0.689
	Body mass index	491	0.3453513	0.03091049	5.55E-29	7.80E-41	0.892	< 0.001	0.425
	Systolic blood pressure	438	0.01608193	0.00214104	5.86E-14	1.67E-92	0.919	< 0.001	0.838
	Diastolic blood pressure	442	0.02904597	0.003639805	1.46E-15	7.19E-98	0.188	< 0.001	0.691
	HbA1C	225	0.4113814	0.07106406	7.09E-09	6.95E-49	0.078	< 0.001	0.933
	Fasting glucose	22	-0.034893326	0.07319565	0.6335664	1.79E-04	0.212	0.001	0.442
	Fasting insulin	3	-0.21556932	0.2216626	0.3307964	0.316	0.419	NA	NA
	Smoking	85	0.08767079	0.04059599	0.03080424	0.005	0.863	< 0.001	0.639
	Alcoholic drinking	33	0.1280652	0.09928672	0.19710177	0.001	0.906	0.001	0.582
	Physical activity	11	0.007033304	0.125875	0.9554412	0.028	0.901	0.003	0.709
	PM2.5 exposure	7	0.3981797	0.3918176	0.3095163	1.05E-09	0.536	0.003	0.943
	Coronary heart disease	39	0.10563334	0.02680572	8.12E-05	3.03E-07	0.336	< 0.001	0.826
	Myocardial infarction	24	0.1030076	0.02417212	2.03E-05	0.001	0.039	0.004	0.652



**Supplementary File-Fig 1**. Individual estimates of a bidirectional MR analysis of atrial fibrillation and heart failure.

(A: Genetic variation of atrial fibrillation in individual estimates of heart failure;

B: Genetic variation of heart failure to individual estimates of atrial fibrillation)



Supplementary File-Fig 2. Leave-one-out method analysis results of bidirectional MR association between atrial fibrillation and heart failure.

(A: Atrial fibrillation  $\rightarrow$  Heart failure; B: Heart failure  $\rightarrow$  Atrial fibrillation)