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Abstract

Internalizing disorders (depression, anxiety, somatic symptom disorder) are among the most common mental 
health conditions that can substantially reduce daily life function. Early adolescence is an important 
developmental stage for the increase in prevalence of internalizing disorders and understanding specific factors 
that predict their onset may be germane to intervention and prevention strategies. We analyzed ~6,000 candidate 
predictors from multiple knowledge domains (cognitive, psychosocial, neural, biological) contributed by children 
of late elementary school age (9-10 yrs) and their parents in the ABCD cohort to construct individual-level models 
predicting the later (11-12 yrs) onset of depression, anxiety and somatic symptom disorder using deep learning 
with artificial neural networks. Deep learning was guided by an evolutionary algorithm that jointly performed 
optimization across hyperparameters and automated feature selection, allowing more candidate predictors and 
a wider variety of predictor types to be analyzed than the largest previous comparable machine learning studies. 
We found that the future onset of internalizing disorders could be robustly predicted in early adolescence with 
AUROCs ≥~0.90 and ≥~80% accuracy. Each disorder had a specific set of predictors, though parent problem 
behavioral traits and sleep disturbances represented cross-cutting themes. Additional computational 
experiments revealed that psychosocial predictors were more important to predicting early adolescent 
internalizing disorders than cognitive, neural or biological factors and generated models with better performance. 
We also observed that the accuracy of individual-level models was highly correlated to the relative importance 
of their constituent predictors, suggesting that principled searches for predictors with higher importance or effect 
sizes could support the construction of more accurate individual-level models of internalizing disorders. Future 
work, including replication in additional datasets, will help test the generalizability of our findings and explore 
their application to other stages in human development and mental health conditions. 

INTRODUCTION

Depression, anxiety and problematic somatic symptoms (physical symptoms such as headaches and 
stomachaches) are common mental health issues in adolescence. Often collectively referred to as internalizing 
disorders, they have been associated with reduced levels of well-being and daily life function, increased risk of 
self-harm and suicide and are substantial predictors of adult psychopathology. (1) Depression and anxiety are 
among the most common mental illnesses in the population with lifetime prevalence of ~30% and ~20% 
respectively. (2) The incidence of internalizing disorders increases exponentially during the peri-adolescent 
period, with anxiety having an earlier developmental arc. (3) Anxiety disorders emerge during elementary school, 
with the median age of onset being 11 years of age (yrs) and 75% of lifetime illness occurring by 21 yrs. Major 
depression cases begin to onset at 11-12 yrs with median onset at 31-32 yrs and 75% of lifetime illness having 
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onset by 44 yrs. (4)  Problematic somatic symptoms affect up to 40% of youth and increase over peri-
adolescence: one third to a half continue to report symptoms as adults with 5-7% in the general population and 
~17% in the primary care population meeting criteria as adults for Somatic Symptom Disorder (SSD). (5, 6)

Given the considerable personal, societal and economic burdens associated with internalizing disorders, (7, 8, 
9, 10) there is great interest in identifying specific factors that predict their onset, since evidence suggests that 
early intervention improves outcomes (11, 12) and reduces resource use. (13) Isolating key predictors of 
internalizing disorders is challenging since they have been associated with a host of different factors from varied 
domains ranging from biological (neural; genetic; hormonal) and psychological models (fear/threat response) to 
interpersonal relationship function, parent characteristics, the community environment and wider social 
determinants of health such as relative poverty. Historically, an important barrier to disambiguating the relative 
importance of such factors to predicting case onset has been the paucity of appropriate multimodal data in large 
participant samples. Outside the US, national registries or school system data have been available offering large 
sample sizes (n>10,000) but these typically lack physiologic information such as neuroimaging data. (14, 15, 16, 
17)  An alternative strategy is to combine data from multiple studies offering neuroimaging or genomic data to 
boost sample size such as the datasets offered by IMAGEN or ENIGMA, though pooling across heterogenous 
studies may inherently limit features (variables) available for analysis to those that are shared across all studies. 
(18, 19, 20)  Consequently, to promote comparative discovery at scale, federal and other organizations have 
recently sponsored the formation of large, longitudinal cohorts collecting a wide variety of multimodal data types 
with standardized protocols. In peri-adolescence, the flagship initiative of this type is the ongoing population-
level ABCD study (n=11,800) used in the present study. (21, 22, 23)  

Concomitantly, interest has recently grown in applying machine learning (ML) methods to these newly-emerging 
large-scale population cohorts as ML techniques offer advantages in approaching such high-dimension data. 
Firstly, they can generate individual-level case predictions from multidimensional data to bridge extant work 
focused on group-level statistical effects with individual-level discoveries of potential clinical relevance by 
“providing multivariate signatures that are valid at the single-subject level”. (24, 25)   Secondly, ML techniques 
can simultaneously analyze hundreds of candidate predictors and incorporate non-linear relationships among a 
set of predictors. These properties are relevant to the construction of individual-level models since significant 
group-level effects may not be useful at the individual level while a feature with low effect size at the group level 
may prove germane. While a number of ML predictive studies have been performed in youth internalizing 
disorders, these have to date considered <200 candidate predictors and focused largely on prevailing cases of 
depression, rather than new onset cases in adolescence, especially early adolescence. The latter are of 
considerable translational interest since understanding individual-level drivers of illness onset and obtaining 
better visibility into whether future onset can be reliably predicted using ML would potentially inform intervention 
strategies. Extant work is also highly heterogenous with respect to which candidate predictors (input features) 
are considered. In particular, some studies use only psychosocial features and some only neuroimaging features, 
while a few have incorporated both types. Concomitantly, performance has been variable, with accuracy ranging 
over ~50-90% but the achievement of robust precision (positive predictive value) - an important metric for 
translational relevance - typically proving more elusive. Moreover, since obtaining physiologic measures such 
as neuroimaging metrics is complex and uncommon in clinical practice, it is relevant to understand whether they 
improve individual-level case prediction. Finally, few studies have constructed predictive models of anxiety or 
somatic problems in youth using ML classifiers or applied a consistent analytic architecture across the three 
major categories of internalizing disorders simultaneously in the same population and data to enable direct 
comparisons and determine the specificity of predictive models to different internalizing disorders. 

In the present study, we aim to build on prior work by predicting cases of depression, anxiety and SSD in early 
adolescence (9-12 yrs) using deep learning guided by a large-scale AI optimization process. Specifically, we 
aimed to a) identify and rank the most important predictors after analyzing thousands of multidomain candidate 
predictors; b) provide individual-level predictions of future, new onset cases at 11-12 yrs in comparison to all 
prevailing cases at the same age and 9-10 yrs; c) determine the incremental value of using multidomain 
predictors vs neural-only modeling; and d) examine the relationship between predictor importance and accuracy. 
Applying a common analytic architecture to data from the ABCD cohort, we first constructed multimodal 
predictive models by analyzing 5,777 candidate predictors spanning demographics; developmental and medical 
history; white and gray matter brain structure, neural function (cortical and subcortical connectivity, 3 tasks); 
brain volumetrics; physiologic function (e.g. sleep, hormone levels, pubertal stage, physical function); cognitive 
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and academic performance; social and cultural environment (e.g. parents, friends, bullying); activities of 
everyday life (e.g. screen use, hobbies); living environment (e.g. crime, pollution, educational and food 
availability) and substance use. Subsequently, we recapitulated all analytic procedures using multiple types of 
neural candidate predictors. 

To make these case classifications, we used deep learning with artificial neural networks, which incorporates 
non-linear relationships among predictors and is resistant to multicollinearity. While artificial neural networks 
offer powerful predictive capability, their application to translational aims can be limited by the relative difficulty 
of tuning these models (setting hyperparameters that control learning) and their tendency to act as ‘black box’ 
estimators where the features used to make predictions are not interpretable and their relative importance is 
difficult to determine. We enhanced deep learning performance with Integrated Evolutionary Learning (IEL), an 
AI-based form of computational intelligence, to jointly optimize across the hyperparameters and learn the most 
important final predictors and render interpretable predictions. IEL is a genetic algorithm which instantiates the 
principles of natural selection in computer code, typically performing ~40,000 model fits during training before 
testing final, optimized models in a holdout, unseen data partition. All results presented are from testing for 
generalization in this holdout, unseen data.

MATERIALS AND METHODS

Terminology and definitions
Terms used in quantitative analysis may be shared among different fields with variant meanings. Here, we use 
ML conventions throughout. (26, 27, 28) ‘Prediction’ means predicting the quantitative value of a target variable 
by analyzing patterns in input data. We refer to the set of all input data as containing ‘features’ or ‘candidate 
predictors’ and those identified in final, optimized models (presented in Results) as ‘final predictors’. The set of 
observations used to train and validate models is referred to as the ‘training set’ and the unseen holdout set of 
observations is termed the ‘test set’. We use ‘generalizability’ to refer to the ability of a trained model to adapt to 
new, previously unseen data drawn from the same distribution i.e. model fit in the test set. ‘Precision’ refers to 
the fraction of positive predictions that were correct; ‘Recall’ to the proportion of true positives that were correctly 
predicted; and ‘Accuracy’ to the number of correct predictions as a fraction of total predictions. Receiver 
Operating Characteristic curves (ROC Curves) are provided that quantify classification performance at different 
classification thresholds plotting true positive versus false positive rates, where the Area Under the Curve 
(AUROC) is defined as the two-dimensional area under the ROC curve from (0,0) to (1,1). 

Data and data collection in the ABCD study

Data used in the present study comes from the ABCD study, an epidemiologically informed prospective cohort 
study that is the largest study of brain development and child health conducted in the United States to date. 
ABCD recruited 11,880 children (52% male; 48% female) at ages 9-10 years (108-120 months) via 21 sites 
across the United States and will follow this cohort until age 19-20. The cohort is oversampled for twin pairs 
(n=800) and non-twin siblings from the same family may also be enrolled. A wide variety of information is 
collected about participants. This data has been made available to qualified researchers at no cost from the 
National Institute of Mental Health Data Archive since 2018 and is released periodically. This study uses data 
from release 4.0, which includes data up to the 42-month follow-up date. A full explanation of recruitment 
procedures, the participant sample and overall design of the ABCD study may be found in Jernigan et al; Garavan 
et al; and Volkow et al. (29, 30, 31) This study has been reviewed and deemed not human subjects research by 
the University of Utah Institutional Review Board. 

The phenotypic and substance abuse assessment protocol is covered in detail in Barch et al and Lisdahl et al, 
respectively. (32, 33) In brief, phenotypic assessments of physical and mental health, substance use, 
neurocognition and culture and environment are performed for youth and their parents and biospecimen 
collection for DNA, pubertal hormone levels, substance use metabolites (hair) and substance and environmental 
toxin exposure (baby teeth) are collected from youth at 9-10 yrs. A summary description of assessments 
performed and environmental and school-related variables derived from geocoding at age 9-10 yrs surveyed in 
the present study may be inspected in Supplementary Table 1.  
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Brain imaging is collected at 9-10 yrs and every two years thereafter and incorporates optimized 3D T1; 3D T2; 
Diffusion Tensor Imaging; Resting state functional MRI (rsfMRI); and 3 task MRI (tfMRI) protocols that are 
harmonized to be compatible across acquisition sites. The tfMRI protocol comprises the Monetary Incentive 
Delay (MID) and Stop Signal (SST) tasks and an emotional version of the n-back task which collectively measure 
reward processing, motivation, impulsivity, impulse control, working memory and emotion regulation.  The ABCD 
study provides fully-processed metrics from each of these imaging types. Full details of the neuroimaging 
protocol may be inspected in Casey et al and the pre-processing and analytic pipeline used to generate neural 
metrics in Hagler et al. (34, 35) The present study uses all available processed metrics that have passed quality 
control from the diffusion fullshell; cortical and subcortical Gordon correlations (derived from rsfMRI); structural; 
volumetric; and all three tasks as well as corresponding head motion statistics for each modality. For certain 
modalities such as rsfMRI, multiple scans were attempted or completed. In such cases we use variables from 
the first scan.

Study inclusion criteria and sample partitioning for machine learning

Inclusion criteria for the present study were a) participants enrolled in the study at baseline who were still enrolled 
at 2-year follow-up (n=8,085) who had b) complete data passing quality control available for all neural metric 
types (n=6,178) and were c) youth participants unrelated to any other youth participant in the study (n=5,355). If 
a youth had a twin or other sibling(s) present in the cohort, we selected the older or oldest sibling for inclusion in 
our study. We present characteristics of the study sample at 9-10 yrs since these participants correspond to the 
input data used to make predictions.  Demographic characteristics of this sample at age 9-10 yrs are presented 
in Table 1. 

Characteristic Number Percent
Sex 
    Male 2,771 51.7%
    Female 2,584 48.3
Gender Identity
    Male 2,768 51.7%
    Female 2,577 48.1
    Gender non-conforming 7 0.1
    Don’t know/didn’t answer 4 0.1
Race
    Black/African American 873 16.3%
    Asian 353 6.6
    White 4,236 79.1
    Native American/Alaska Native 187 3.5
    Other 334 6.2
Ethnicity
    Hispanic/Latino/Latinx 1,070 20.0%
    Non-Hispanic 4,224 78.9
    Not indicated 62 1.2

Table 1: Demographic characteristics of participant sample at age 9-10 years
Sex refers to sex assigned at birth on the original birth certificate. Gender refers to the youth’s gender identification. Race 
and ethnicity refer to the parents’ view of youth’s race or ethnicity. More than one race or ethnicity identification may be 
selected and therefore percentages sum to >100%. 

Physiologic and cognitive characteristics of the participant sample at 9-10 yrs may be viewed in Table 2. 
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Characteristic Range Mean Median
Age in months 107.0-132.0 119.9 120.0
Pubertal Development Stage
Height (inches)
Weight (pounds)
Waist Circumference (cm)

1-5
36.6-81.0

11.0-255.0
17.0-61.0

2
55.4
82.3
26.4

2
55.4
76.8
25.5

Handedness
    Writing
    Throwing
    Spoon
Vocabulary 
Attention and Inhibition
Working Memory
Executive Function
Processing Speed

-100.0-100.0
-100.0-100.0
-100.0-100.0
51.0-208.0
65.0-171.0
46.0-194.0
68.0-181.0
20.0-185.0

76.5
67.1
62.4

109.0
96.5

102.0
98.0
95.2

100.0
100.0
100.0
109.0
97.0

103.0
94.0
95.0

Table 2: Physiologic and cognitive characteristics of participant sample at age 9-10 years
Characteristics of the study sample at 9-10 yrs. Pubertal development is measured with the Pubertal Development Scale 
(adapted from the Petersen scale) in a sex-specific manner. Height is measured twice with the average of these values 
presented. We note a range of 11.0-255.0 pounds for weight which is the range present in the original ABCD data. is 
assessed with the Edinburgh Handedness Inventory. Cognitive metrics are assessed with the NIH Toolbox and are all age-
corrected scores. Vocabulary is measured with the Picture Vocabulary test; Attention and inhibition with the Flanker 
Inhibitory Control & Attention Task; Executive Function with the Dimensional Change Card Sort Test; and Processing Speed 
with the Pattern Comparison Processing Speed Test. 

The resulting group of 5,356 participants was then randomly partitioned into a training set comprising 70% of the 
sample (n=3,749) and a holdout, unseen test set comprising 30% of the sample (n=1,607, Figure 1). This 
partitioning was performed prior to pre-processing either features or predictive target to minimize bias. 

[FIGURE 1]

Figure 1: Formation of the study participant sample for internalizing disorders
Steps in the formation of the study sample used to construct predictive models of depression, anxiety and somatic symptom 
disorder are shown. After exclusion criteria are applied, the sample was randomly partitioned into training and test sets 
followed by separate pre-processing of targets and features. Subsequently, samples for each experiment were formed as 
described in Preparation of predictive targets and Construction of participant case samples for internalizing 
disorders and controls. 

Preparation of predictive targets

The present study uses predictive targets of depression, anxiety and somatic problems derived from the Child 
Behavior Checklist for youth ages 4-18 years (CBCL) called the ‘ABCD Parent Child Behavior Checklist Scores 
Aseba (CBCL) in the ABCD study. The CBCL is a standardized instrument in widespread clinical and research 
use for the assessment of mental and emotional well-being in youth. It forms part of the Achenbach System of 
Empirically Based Assessment (ASEBA) “designed to facilitate assessment, intervention planning and outcome 
evaluation among school, mental health, medical and social service practitioners who deal with maladaptive 
behavior in children, adolescents and young adults.” (36) During assessment with the CBCL, parents rate their 
child on a 0-1-2 scale on 118 specific problem items such as “Unhappy, sad or depressed” or “Acts too young 
for age” for the prior 6 months. The answers to these questions are aggregated into raw, T and percentile scores 
for 8 syndrome subscales (Anxiety, Somatic Problems, Depression, Social Problems, Thought Problems, 
Attention Problems, Rule Breaking and Aggressive Behavior) derived from principal components analysis of data 
from 4455 children referred for mental health services. The CBCL is normed in a sex/gender-specific manner on 
a U.S. nationally representative sample of 2368 youth ages 4-18 that takes into account differences in problem 
scores for “males versus females”. It exhibits excellent test-retest reliability of 0.82-0.96 for the syndrome scales 
with an average r of 0.89 across all scales. Content and criterion validity is strong with referred versus non-
referred children scoring higher on 113/188 problem items and significantly higher on all problem scales, 
respectively. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.23294377doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.21.23294377
http://creativecommons.org/licenses/by/4.0/


To form binary classification targets for prediction, we thresholded CBCL subscale T scores for Depression, 
Anxiety and Somatic problems using cutpoints established by ASEBA for clinical practice. Specifically, a T score 
of 65-69 (95th to 98th percentile) is considered in the ‘borderline clinical’ range, and scores of ≥70 are considered 
in the ‘clinical range.’ Accordingly, we discretized T scores for each of the 3 subscales under consideration by 
deeming every individual with a T score ≥ 65 as a ‘case’ [1] and every individual with a score <65 as a ‘not case’ 
[0].  This process was performed separately for CBCL scores at baseline and 2-year follow-up in the training and 
test sets.

Construction of participant case samples for internalizing disorders and controls  

To test our hypotheses, we formed 3 different participant samples for each of the internalizing disorders in the 
training and test sets, respectively (Figure 1). The first sample contained cases of depression, anxiety and SSD 
as defined in Preparation of predictive targets at baseline assessment, when youth were 9-10 years of age. 
The second sample contained cases of depression, anxiety and SSD at 2-year follow-up, when youth were 11-
12 years of age. Finally, the third sample contained only new onset cases of depression, anxiety and SSD at 2-
year follow-up. A new onset case was defined as a youth who met criteria for depression, anxiety or SSD 
following the ASEBA threshold in the CBCL who did not meet criteria for the disorder in question at baseline 
assessment. In all samples, we constructed a balanced sample of controls matched for age and sex/gender 
selected from the eligible study population (see: Baseline inclusion criteria and sample partitioning for 
machine learning above) from youth with the lowest possible scores on the relevant syndrome scale. No sample 
in the training sets was <200 participants, a recommended threshold for robust ML analyses. 

Preparation of candidate predictors (input features)

The feature set in the present study comprises the majority of available phenotypic and environmental variables 
derived from baseline assessment at 9-10 years of age (including data collection site) and all available neural 
metrics (including head motion statistics) with the exception of temporal variance measures. For continuous 
phenotypic features where subscale or total scores for assessments were available, these were used. For 
example, subscale scores for different types of sleep-related disorders from the larger Munich Chronotype 
Questionnaire. Any metrics or instruments that directly quantified mental health symptoms were excluded since 
we aimed to predict cases of mental illness without using symptoms. For example, the Youth 7UP Mania scale. 
The feature set was then partitioned into training and test sets that conformed with the partitions detailed above 
in Formation of the study participant sample for internalizing disorders in Figure 1. Pre-processing of 
phenotypic and environmental features was subsequently performed separately in the training and test sets. 
First, features with >35% missing values were discarded.  This threshold was used since prior research shows 
that good results may be obtained with ML methods with imputation up to 50% missing data. (37)  Nominal 
variables were one-hot encoded to transform them into discrete variables. Continuous variables were then 
trimmed to [mean +/- 3] standard deviations to remove outliers and all features scaled in the interval [0,1] with 
the MinMaxScaler. Missing values were imputed using non-negative matrix factorization (NNMF). NNMF is a 
mathematically-proven imputation method that minimizes the cost function of missing data rather than assuming 
zero values. It is effective at capturing both global and local structure in the data and it has been demonstrated 
to perform well regardless of the underlying pattern of missingness. (38, 39, 40) Supplementary Table 2 shows 
the number and percentage of observations which were trimmed and filled with NNMF for the training and test 
sets, respectively. After imputation with NNMF, any variables originating from phenotypic assessments lacking 
summary scores were reduced to a summary metric using feature agglomeration to produce a final set of (n=763) 
phenotypic and environmental features. Neural metrics (n=5,014) were processed and underwent quality control 
by the ABCD study team and were therefore not pre-processed with the exception of scaling, again performed 
separately in the training and test partitions. There were no missing neural features. The final combined feature 
set including neural, phenotypic, environmental, head motion and site features comprised 5,777 features. 

Overview of predictive analytic pipeline

We used deep learning with artificial neural networks (AdamW optimizer) to predict cases of depression, anxiety 
and somatic problems in early adolescence in three scenarios: at 9-10 years of age, at 11-12 years of age and 
in new onset cases at 11-12 years of age. Deep learning models were implemented with k-fold cross-validation 
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and trained by an AI meta-learning algorithm that jointly performed feature selection and optimized across the 
hyperparameters in an automated manner, pursuing ~40,000 model fits for each experiment. Model training was 
terminated based on the Bayes Information Criterion (BIC), an information theoretic metric. Subsequently, final 
optimized models were tested for their ability to generalize in the holdout, unseen test set and performance 
statistics of AUROC, accuracy, precision and recall, and ROC curves are reported for the best-performing 
models. We also report the relative importance of final predictors to making case predictions quantified with two 
techniques: Shapley Additive Explanations (SHAP) and permutation using the eli5 algorithm. Detailed 
explanations of these methods are provided below. Code for the predictive analytics may be accessed at the de 
Lacy Laboratory GitHub: https://github.com/delacylab/integrated_evolutionary_learning

Coarse feature selection

Prior to beginning model training, we performed coarse feature selection for each of the nine experiments i.e. 3 
targets of depression, anxiety and SSD each in 3 participant samples of 9-10 yrs; 11-12 yrs and new onset cases 
at 11-12 yrs. The purpose of this process was to quantify, for each sample, which of the 5,777 features exhibited 
a non-zero relationship with the target in order to reduce the number of features entering the deep learning 
pipeline in a principled manner.  First, a simple filtering process was performed in which 2 (categorical features) 
and ANOVA (continuous features) statistics and mutual information metric (all features) were computed to 
quantify the relationship between all features and the target, where the target (depression, anxiety, SSD) was 
represented by a categorical vector in [0,1]. Any feature with a non-zero relationship (either positive or negative) 
with the target was retained. Subsequently, feature selection was performed on these filtered feature subsets 
using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. The LASSO is a popular 
regularization technique based in linear regression that efficiently selects a reduced set of features by forcing 
certain regression coefficients to zero. The LASSO algorithm has a hyperparameter (commonly called the ) 
that instantiates the amount of penalization (shrinkage) that will be imposed on the features.  We implemented 
the LASSO with our AI meta-learning algorithm Integrated Evolutionary Learning to tune the  hyperparameter 
in the same manner as described below in Integrated Evolutionary Learning for deep learning optimization.  

The number of features retained for each of the 9 experiments after each step in the coarse feature selection 
process may be examined in Table 3. Specific features selected by the LASSO and the resulting univariate 
coefficients between each of these features and the target vectors (depression, anxiety, somatic problems) for 
each participant sample (9-10 yrs; 11-12 yrs and new onset cases at 11-12 yrs) may be viewed in 
Supplementary Table 3a-i. Each feature set selected by the LASSO then entered the deep learning pipeline. 

Number of features after 
filtering

Number of features after 
selection with LASSO

Depression, age 9-10 years 4,271 133
Anxiety, age 9 -10 years 4,338 133
Somatic problems, age 9-10 years 4,357 86

Depression, age 11-12 years 4,261 35
Anxiety, age 11-12 years 4,295 129
Somatic problems, age 11-12 years 4,267 215

Depression, new onset age 11-12 years 4,284 60
Anxiety, new onset age 11-12 years 4,201 85
Somatic problems, new onset age 11-12 years 4,278 124

Table 3: Feature sets after coarse feature selection
The total baseline set of 5,777 features was reduced via coarse feature selection in a two-step process of filtering followed 
by regularization with the LASSO algorithm. This table displays the number of remaining features after each step for each 
target (depression, anxiety and somatic problems) and participant sample (at age 9-10 years, at age 11-12 years and for 
new onset cases at age 11-12 years). Detailed tables showing the univariate coefficients between each feature selected by 
the LASSO and the target vectors for each case sample and controls may be viewed in Supplementary Table 3a-i. 
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Deep learning with artificial neural networks

We used deep learning to predict cases of depression, anxiety and somatic problems in each participant sample 
(at ages 9-10, ages 11-12 and for new onset cases only at ages 11-12 years). In order to determine the relative 
ability of features to predict future cases of internalizing disorders, features collected at baseline assessment 
(ages 9-10 years) were used to predict cases present at ages 11-12 years. We also constructed similar models 
that restricted the cases at 11-12 years of age to only new onset cases, where the participant was not exhibiting 
clinical levels of symptoms at ages 9-10 years. Finally, to quantify any dropoff in predictive power over the two-
year followup period, comparative models predicting cases at 9-10 years of age were also computed. Therefore, 
the feature set comprised only variables collected at 9-10 years of age in all analytic scenarios (Figure 2). 

[FIGURE 2]

Figure 2: Analytic schema
Features assessed at baseline (ages 9-10 years) were used to predict cases of depression, anxiety and somatic problems 
present contemporaneously as well as all cases 2 years in the future (ages 11-12 years) and only new onset cases at ages 
11-12 years. 

We trained artificial neural networks using the AdamW algorithm with 3 layers, 300 neurons per layer, early 
stopping (patience = 3, metric = validation loss) and the Relu activation function. The last output layer contained 
a conventional softmax function. Learning parameters (Table 3) were tuned with IEL as detailed below. Deep 
learning models were encoded with TensorFlow embedded in custom Python code. 

Integrated Evolutionary Learning for optimization across hyperparameters and fine feature 
selection

Many ML algorithms have hyperparameters that control learning. Their settings require ‘tuning’ that can have a 
dramatic effect on performance.  Typically, tuning is performed via ‘rules of thumb’ and ≤50 model fits are 
explored, introducing the possibility of bias and potentially limiting the solution space. (41, 42, 43) To address 
this issue, we previously developed and here applied an AI technique called Integrated Evolutionary Learning 
(IEL) which can improve the performance of ML predictive algorithms in comparable tabular data by up to 20-
25% versus the use of default model hyperparameters and conventional designs. (44) IEL is a form of 
computational intelligence or metaheuristic based on an evolutionary algorithm that instantiates the concepts of 
biological evolutionary selection in computer code. It optimizes across the hyperparameters of the deep learning 
algorithm by adaptively breeding models over hundreds of learning generations by selecting for improvements 
in a fitness function (here, the Bayes Information Criterion, BIC). 

Hyperparameters Range Mutation 
Shift

    
        Learning rate
        Beta 1
        Beta 2

0.00001-0.01
0.9-0.999
0.9-0.999

0.0001
0.001
0.001

Table 4: Hyperparameter settings optimized with Integrated Evolutionary Learning
Optimization across the hyperparameters of learning rate, Beta 1 and Beta 2 was conducted for deep learning with artificial 
neural networks within the ranges shown. 

For each experiment, the deep learning algorithm was nested inside IEL, which initialized the first generation of 
100 models with randomized hyperparameter values or ‘chromosomes’. These hyperparameter settings (Table 
4) were subsequently recombined, mutated or eliminated over successive generations. In recombination, ‘parent’ 
hyperparameters were arithmetically averaged to form ‘children’. In mutation, hyperparameter settings were 
shifted with the range of possible values shown in Table 4. When these first 100 models were trained, the BIC 
was computed for each solution. Of the 80 best models, 40 were recombined by averaging the hyperparameter 
setting after a pivot point at the midpoint to produce 20 ‘child’ models. 20 were mutated to produce the same 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.23294377doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.21.23294377
http://creativecommons.org/licenses/by/4.0/


number of child models by shifting the requisite hyperparameter by the mutation shift value (Table 4). The 
remaining 20 were discarded. The next generation of models was then formed by adding 60 new models with 
randomized settings and adding these to the 40 child models retained from the initial generation. Thereafter, IEL 
continued to recombine, mutate and discard 100 models per generation in a similar fashion to minimize the BIC 
until the latter fitness function plateaued. With 100 models fitted per generation, IEL typically fits ~40,000 models 
per experiment over ~400 generations. 

IEL jointly performs optimization across hyperparameter settings with automated feature selection and mitigate 
the risk of overfitting. For each experiment, IEL has available to it the set of features selected in the two-step 
feature selection process performed with filtering and the LASSO (Coarse feature selection, Supplementary 
Table 3). From each of these sets, a random number of features in the range [2-50] was set for each model in 
the initial generation of 100 models and specific features were randomly sampled from the set of available 
features. After computing the BIC for each model, feature sets from the best-performing 60 models were 
individually allocated to the recombined and mutated child models. Other feature sets were discarded. As with 
hyperparameter tuning, this process was repeated for succeeding generations until the BIC plateaued. 

IEL implements recursive learning to facilitate computationally efficiency. After training until the BIC plateaued, 
we determine the elbow of the fitness function plotted versus number of features and re-start learning with a 
warm start.  The feature set available after this warm start is constrained to that subset of features, thresholded 
by their importance, corresponding to the fitness function elbow. Learning then proceeds by thresholding features 
available for learning at the original warm start feature importance + 2 standard deviations.  In addition, the 
number of models per generation is reduced to 50 and 20 models are recombined and 10 models are mutated. 
Otherwise, training after the warm start uses the same principles as detailed above.  

Cross validation

Deep learning models were fit within IEL using stratified k-fold cross validation i.e. every one of the 100 models 
in each learning generation within IEL was individually trained and validated using cross-validation in the training 
partition.  IEL allows the number of features used to fit each model to differ within each model in every generation. 
Accordingly, k (the number of splits) was set as the nearest integer above [sample size/number of features]. 
Cross validation was implemented with the scikit-learn StratifiedKFold function.

Testing for generalization in holdout, unseen test data and performance measurement

After training was completed, optimized models generated by IEL were tested on the holdout, unseen test set 
for each sample and mental health condition by applying the requisite hyperparameter settings and selected 
features obtained from the 100 best-performing models in the training phase to the test set. The area under the 
receiver operating curve (AUROC), accuracy, precision, and recall were computed for test set models using 
standard Sci-Kit learn libraries and models with the best performance in each statistic selected for presentation 
as the final, optimized models. The threshold for prediction probability was 0.5 and receiver operating 
characteristic (ROC) curves are also provided for each experiment (Supplementary Figures 1 and 2).   

Feature importance determination

Shapley Additive Explanations (SHAP) values were computed using the SHAP toolbox 
(https://shap.readthedocs.io/en/latest/) to determine the relative importance of each feature to predicting cases 
of mental illness. SHAP is a game theoretic approach commonly used in ML to explain the output of any ML 
model including ‘black box’ estimators such as artificial neural networks and is considered resistant to 
multicollinearity. (45)  It unifies prior methods such as LIME, Shapley sampling values and Tree Interpreter. 

RESULTS

Overview
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All results are from testing the final model obtained after optimization with IEL for generalization in the holdout, 
unseen test dataset for each participant sample and experiment. For each condition (depression, anxiety, SSD) 
a parallel set of results is presented for each participant sample of new onset cases at 11-12 yrs; all prevailing 
cases at 9-10 yrs and all prevailing cases at 11-12 yrs. In all experiments only data collected at 9-10 yrs is input 
to deep learning to make predictions. Thus, results obtained for new onset and prevailing cases at 11-12 yrs 
represent predictions of future case status. 

For each disorder and age group, results are presented for the metrics below for a) multimodal models 
constructed using all types of input features; and b) neural-only models. 

 Performance statistics: accuracy, precision, recall and AUROC. ROC curves may be viewed in 
Supplementary Figures 1 and 2. 

 Final predictors ranked in order of importance by their group-level SHAP score (average absolute value 
across the participant sample) and the mean predictor importance for the requisite experiment.

 Individual-level final predictor importance (SHAP scores) across the participant sample. This summary 
plot is also used to determine the directionality of the relationship between the predictor and case status.

Depression

Deep learning optimized with IEL predicted depression in early adolescence with >80% accuracy and recall and 
≥90% AUROC across all experiments (Table 5a), with precision of ~75-80%. Performance was slightly worse 
by a few percentage points in predicting new onset cases in the future (at 11-12 yrs) than either 
contemporaneous or all prevailing cases at 11-12 yrs. When each experiment was recapitulated using only 
neural candidate predictors, we found that final optimized predictive models displayed substantially lower 
performance (Table 5b) than those obtained with multimodal predictors with accuracy of ~60-70% and AUROC 
of ~60-77%, or some 10-25 percentage points lower than with multimodal predictors.  Similar differentials were 
seen in precision and recall. In depression, multimodal models achieved somewhat better performance when 
predicting prevailing cases at 9-10yrs and11-12 vs new onset cases at 11-12 yrs. In neural-only models this was 
reversed, with a substantially stronger model obtained for new onset cases. 

a

Age of case determination Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11-12 years  81.3 75.0 84.0 89.5
All cases at age 9-10 years 85.3 78.4 87.3 92.0
All cases at age 11-12 years 85.7 79.8 89.3 91.1

b

Age of case determination Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11-12 years  69.6 63.5 71.4 76.8
All cases at age 9-10 years 61.3 56.8 66.7 60.6
All cases at age 11-12 years 61.9 58.3 41.7 59.5

Table 5: Performance of deep learning optimized with Integrated Evolutionary Learning in predicting 
cases of depression using multimodal and neural-only feature types
Performance statistics of accuracy, precision, recall and the AUROC are shown for the most accurate model obtained with 
deep learning optimized with Integrated Evolutionary Learning using a) multimodal features and b) only neural features. We 
used features obtained at 9-10 years of age to predict new onset cases of depression at 11-12 years of age as well as all 
prevailing contemporaneous cases (9-10 yrs) and all prevailing cases at 11-12 years of age. Corresponding ROC curves 
may be viewed in Supplementary Figures 1 and 2. 

In interpreting multimodal models (Table 6), we found that parent problem behaviors were the most important 
predictor of early adolescent depression in each participant sample. Specific parental behavioral drivers of youth 
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cases differed by age and case type. In new onset cases at 11-12 yrs, parent externalizing traits were the most 
important predictors vs the total burden of parental behavioral health problems in all prevailing cases at 11-12 
yrs. In contemporaneous cases at 9-10 yrs, parent avoidant and intrusive traits appeared as final predictors. 
Sleep disturbances meeting clinical criteria were important in predicting prevailing cases of depression at 9-10 
and 11-12 yrs, but not in predicting new onset cases. In the latter, acceptance by a secondary caregiver and 
prosocial behaviors had an inverse relationship with depression onset. Interestingly, the second most important 
predictor of new onset cases was whether the child had ever previously received mental health or substance 
abuse services, suggesting these children had already come to clinical attention at or before 9-10 yrs and the 
onset of depression. Group-level importances for multimodal model predictors (averaged across the participant 
sample) were in the range [0.14, 0.21] and the mean importance for each experiment in the range [0.10, 0.16]. 

a

Age of case determination Ranked Final Predictors Importance

New onset at age 11-12 years  

Parent externalizing scale score 
Ever received MH/SU services 
Secondary caregiver acceptance 
Prosocial behaviors 

Mean

0.20
0.12
0.05
0.04

0.10

All cases at age 9-10 years

Parent avoidant personality problems 
Sleep disorder of excessive somnolence
Parent intrusive syndrome score 

Mean

0.21
0.16
0.05

0.14

All cases at age 11-12 years
Parent total problems syndrome score 
Total sleep disturbances scale score 

Mean

0.24
0.08

0.16

b

Neural data type Ranked Final Predictors Importance

New onset at age 11-12 
years  

SST incorrect vs correct go contrast left caudal anterior cingulate ROI
SST any stop vs correct go contrast left pars opercularis ROI
T1 WM intensity for genetic parcel right central hemisphere
SST incorrect stop vs correct go contrast left transverse temporal ROI
T1 GM intensity right precentral ROI
FA in right lateral orbital frontal GM ROI
SST correct go vs fixation contrast in left entorhinal ROI
SST incorrect go vs correct go contrast in left accumbens ROI
SST incorrect stop vs correct go contrast in right parstriangularis ROI

Mean

0.018
0.017
0.014
0.013
0.012
0.009
0.008
0.008
0.006

0.012

All cases at age 9-10 
years

FA in GM in right rostral middle frontal ROI
LD in GM in left banks of superior temporal sulcus ROI
Correlation between dorsal attention and default mode networks
SST correct vs incorrect stop contrast in right transversetemporal ROI
SST average framewise rotation in radians
Correlation between default mode and sensorimotor hand networks
SST maximum framewise rotation in radians

0.011
0.010
0.007
0.005
0.004
0.003
0.003
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Mean 0.006

All cases at age 11-12 
years

 
MID anticipation of small loss vs neutral contrast in right inferior 
temporal ROI
SST average framewise rotation in radians

Mean

0.028
0.006

0.017

Table 6: Final predictors of cases of depression in early adolescence
Final predictors of cases of all prevailing cases of depression at ages 9-10 and 11-12 years as well as new onset cases 
only at 11-12 years of age are shown for the most accurate models obtained using deep learning optimized with IEL obtained 
with a) multimodal features and b) only neural features. Final predictors are ranked in order of importance where the relative 
importance of each predictor is computed with the Shapley Additive Explanations technique and presented here averaged 
across all participants in the sample. Features in blue indicate an inverse relationship with depression verified with the 
Shapley method. MH = mental health; SU=substance use; SST = Standard Stop Signal task; MID = Monetary Incentive 
Delay task; ROI = region of interest; FA = fractional anisotropy; LD = longitudinal diffusivity; WM = white matter; GM = gray 
matter. 

Final predictors of new onset cases at 11-12 yrs obtained in neural-only models (Table 6b) were dominated by 
features derived from the Standard Stop Signal fMRI task, which measures response inhibition. Here, SST ROIs 
emphasized the left hemisphere. Specifically, SST responses in pars opercularis and (right) pars triangularis 
(collectively, Broca’s area), caudal anterior cingulate and entorhinal ROIs exhibited inverse directionality with 
depression where ROIs in the transverse temporal (Heschl’s gyri) and accumbens were positively related to 
depression onset. Certain structural metrics also appeared as final predictors of new onset cases. Specifically, 
right precentral and lateral orbital frontal gray matter ROIs and white matter intensity in a genetically-defined 
right hemisphere parcel. 

Gray matter structural features in right rostral middle frontal and left superior temporal sulcus ROIs were 
prominent in predicting contemporaneous prevailing cases of depression at 9-10yrs as were correlation strengths 
between the dorsal attention and default mode networks and default mode and sensorimotor hand networks. 
While SST contrast in the right transverse temporal ROI had an inverse relationship with cases status at this 
age, we note that head motion during the SST task also appeared.  The final predictive model for all prevailing 
future cases of depression at 11-12 yrs was parsimonious and only comprised contrast differences in the right 
inferior temporal ROI in the Monetary Incentive Delay task, which measures approach and avoidance during 
reward processing, and a metric of head motion (framewise displacement) in the SST task. Group-level 
importances for neural-only model predictors were in the range [0.003,0.028] and the mean importance for each 
experiment in the range [0.006,0.017], both representing lower importance ranges than multimodal models.  

Where Table 6 presents the importance of final predictors as summarized (mean absolute value) across the 
requisite experimental participant sample, we were also interested in predictor importance at the individual 
participant level. We computed and plotted individual-level SHAP values to understand both the dispersion of 
predictor importances across individuals and the directionality of the relationship between final predictors and 
clinical case status (Figure 3). In SHAP summary plots, each data point represents an individual participant and 
the colorization reflects the original value of the predictor as an input feature. Thus, discrete-valued features 
appear as red or blue, whereas a continuous feature appears as a color gradient from low to high. The 
directionality of the relationship between predictors and depression case status obtained in these plots was 
further compared with coefficients obtained during LASSO regression for Coarse Feature Selection 
(Supplementary Table 3) and found to be in agreement. 

[FIGURE 3]

Figure 3: Individual-level importances of depression predictors in multimodal predictive models
Summary plots are presented of the importance of each final predictor (computed with the Shapley Additive 
Explanations technique) on an individual subject level to predicting depression a) with new onset at 11-12 yrs; 
b) in all cases at 9-10 yrs; and c) in all cases at 11-12 yrs.  The color gradient represents the original value of 
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each feature (metric) where red = high and blue = low. Discrete (binary) features appear as red or blue, while 
continuous features appear as a color gradient from low to high. 

Figure 3 reveals that individual-level importance of final predictors in early adolescent depression are typically 
widely dispersed. For example, when predicting new onset cases of depression at 11-12 yrs, the leading 
predictor of parent externalizing traits has a large range of ~[-0.4,0.6] across individual participants. Further, 
dispersion is typically greater for the more important predictors. Overall, these plots also indicate that all final 
predictors obtained have a positive relationship with depression case status, with the exception of secondary 
caregiver acceptance and prosocial behaviors in predicting new onset cases (see also Table 6).  We also 
computed individual-level importances of final predictors for neural-only experiments (Figure 4). Here, the 
dispersion of individual-level predictor importances across participants were consistently smaller in neural-only 
versus multimodal prediction of early adolescent depression. 

[FIGURE 4]

Figure 4: Individual-level importances of depression predictors in neural-only predictive models
Summary plots are presented of the importance of each final predictor (computed with the Shapley Additive 
Explanations technique) on an individual subject level to predicting depression a) with new onset at 11-12 yrs; 
b) in all cases at 9-10 yrs; and c) in all cases at 11-12 yrs.  The color gradient represents the original value of 
each feature (metric) where red = high and blue = low. Discrete (binary) features appear as red or blue, while 
continuous features appear as a color gradient.

Anxiety

Deep learning optimized with IEL performed very well in predicting both new onset and prevailing cases of 
anxiety in early adolescence. In anxiety, ~93% accuracy and ~96% AUROC was achieved in predicting new 
onset cases versus ~85% accuracy and ~91% AUROC in predicting prevailing cases using data obtained at 9-
10 yrs to predict cases at the future time point of 11-12 yrs. The best overall performance was observed using 
data at 9-10 yrs to predict contemporaneous prevailing cases, with ~97% accuracy and nearly 100% AUROC 
achieved (Table 7a). Similar to depression, neural-only models did not perform as well as multimodal models in 
predicting anxiety cases, being ~20-40% less accurate. Best performance was obtained when predicting new 
onset anxiety at 11-12 yrs, where the final, optimized neural-only model achieved 75% accuracy and ~78% 
AUROC. In comparison, neural-only predictive models of all prevailing cases at 9-10 yrs and 11-12 yrs showed 
substantially inferior performance with accuracy of ~58 and ~64% and AUROC of 57 and 63% respectively 
(Table 7b)

a

Age of case determination Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11-12 years  93.3 93.3 86.7 95.9
All cases at age 9-10 years 96.5 95.2 95.6 99.5
All cases at age 11-12 years 84.8 80.2 82.1 90.5

b

Neural data type Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11-12 years  75.0 70.7 63.3 77.6
All cases at age 9-10 years 57.9 54.4 72.8 57.0
All cases at age 11-12 years 63.8 59.2 55.4 63.0

Table 7: Performance of deep learning optimized with IEL in predicting cases of anxiety
Performance statistics of accuracy, precision, recall and the AUROC are shown for the most accurate model obtained with 
deep learning optimized with Integrated Evolutionary Learning using a) multimodal features and b) only neural features. We 
used features obtained at 9-10 years of age to predict new onset cases of anxiety at 11-12 years of age as well as all 
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prevailing contemporaneous cases (9-10 yrs) and all prevailing cases at 11-12 years of age. Corresponding ROC curves 
may be viewed in Supplementary Figures 1 and 2. 

In anxiety, new onset cases were predicted with a relatively complex final model comprising 8 predictors (Table 
8a). Here, the most important predictor was whether the youth had previously come to clinical attention (ever 
received mental health or substance use services), closely followed by the youth’s total burden of clinically-
significant sleep disturbances and whether the child’s mother had received clinical treatment for a mental or 
emotional problem. The degree of parent externalizing and avoidant behavioral problems was also important. 
These were followed by three less important predictors with an inverse relationship with case status: loss contrast 
in the left orbitofrontal ROI in the Monetary Incentive Delay task, whether parent and youth got along very well 
and the youth’s prosocial scale score. The appearance of MID contrast in the left orbitofrontal (OFC) ROI is of 
particular note since this was the only model in which a neural feature survived the large-scale, parallelized 
optimization process to appear as a final predictor in a multimodal analysis. 

We detected overlap between the final predictors of new onset cases of anxiety at 11-12 yrs and those which 
predicted prevailing cases at 9-10 and 11-12 yrs. Sleep disturbance (total and disorders of initiating and 
maintaining sleep) was similarly prominent in predicting contemporaneous cases but here parent behavioral 
factors isolated as final predictors were anxiety traits and the parent total burden of behavioral problems. 
Predictors exhibiting an inverse relationship with case status at 9-10 yrs were how well parent and youth got 
along (as with new onset cases) and whether the youth had >3 friends in their regular group. The model 
predicting all prevailing cases of anxiety at 11-12 yrs was more parsimonious, with three final predictors of parent 
total behavioral problems, the mother’s history of clinical treatment and whether parent and child got along well. 
Group-level importances for multimodal model predictors were in the range [0.02, 0.23] and the mean importance 
for each experiment in the range [0.07, 0.12]. 

a

Age of case determination Ranked Final Predictors Importance

New onset at age 11-12 years  

Ever received MH/SU services 
Total sleep disturbance 
Mother been to a counselor due to mental or emotional problem 
Parent externalizing syndrome score 
Parent avoidant syndrome score 
MID large vs small loss contrast in left orbitofrontal ROI
Parent and youth get along very well 
Prosocial behaviors scale score

Mean 

           
0.12
0.11
0.10
0.08
0.06
0.05
0.05
0.03

0.08

All cases at age 9-10 years

Total sleep disturbances scale score 
Parent total problems syndrome score 
Ever received MH/SU services 
Parent anxiety syndrome score 
Sleep disorders of arousal 
Parent and youth get along very well 
Has more than 3 friends in regular friend group
Disorders of initiating and maintaining sleep 

Mean

0.17
0.10
0.08
0.06
0.05
0.04
0.02
0.02

0.07

All cases at age 11-12 years

Parent total problems syndrome score 
Mother been to a counselor due to mental or emotional problem 
Parent and youth get along very well 

Mean

0.23
0.09
0.05

0.12
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b

Neural data type Ranked Final Predictors Importance

New onset at age 11-12 
years  

 
MID large vs small loss contrast left medial orbitofrontal ROI
MID large vs small loss contrast left ventral diencephalon 
T1 intensity right inferior lateral ventricle ROI
T1 white-gray contrast left precuneus ROI
T1 white-gray contrast right paracentral ROI
Mean cortical sulcal depth in mm for left hemisphere

Mean

0.110
0.075
0.070
0.056
0.051
0.028

0.065

All cases at age 9-10 
years

FA in sub-adjacent WM associated with cortical right temporal pole ROI
FA in GM associated with left fusiform ROI
nBack 2 back condition in left transverse temporal ROI

Mean

0.004
0.003
0.002

0.003

All cases at age 11-12 
years

 
Weighted average for genetic parcellation in right orbitofrontal
FA in sub-adjacent WM associated with right entorhinal ROI
MID anticipation of small loss vs neutral contrast in left lateral ventricle 
ROI
T1 white-gray contrast in right frontal pole ROI
Cortical thickness in mm of right caudal anterior cingulate ROI
MID all loss positive vs negative feedback contrast in left inferior 
temporal ROI

Mean

0.035
0.034
0.027

0.021
0.007
0.004

0.021

Table 8: Final predictors of cases of anxiety in early adolescence
Final predictors of cases of all prevailing cases of anxiety at ages 9-10 and 11-12 years as well as new onset cases only at 
11-12 years of age are shown for the most accurate models obtained using deep learning optimized with IEL obtained with 
a) multimodal features and b) only neural features. Final predictors are ranked in order of importance where the relative 
importance of each predictor is computed with the Shapley Additive Explanations technique and presented here averaged 
across all participants in the sample. Features in blue indicate an inverse relationship with depression verified with the 
Shapley method. MH = mental health; SU=substance use; SST = Standard Stop Signal task; MID = Monetary Incentive 
Delay task; ROI = region of interest; FA = fractional anisotropy; LD = longitudinal diffusivity; WM = white matter; GM = gray 
matter. 
. 
In neural-only models predicting new onset anxiety cases, features from the MID fMRI task and structural metrics 
predominated (Table 8b). The most important final predictors were MID contrast in the left medial OFC ROI and 
ventral diencephalon and T1 intensity in the right inferior lateral ventricle (temporal horn). All had an inverse 
relationship with case status. Further final predictors with a positive relationship with anxiety were all structural: 
white-gray matter contrast in the left precuneus ROI and right paracentral ROI and mean cortical sulcal depth in 
mm for the left hemisphere as a whole. As noted above, neural-only predictive models of prevailing anxiety cases 
at 9-10 yrs and 11-12 yrs were substantially less reliable with smaller mean predictor importances vs new onset 
cases. Final, optimized models predicting prevailing cases at 11-12 yrs emphasized features from the MID task 
and structural metrics. Group-level importances for neural-only model predictors were in the range [0.002, 0.11] 
and the mean importance for each experiment in the range [0.003, 0.065].
                                                   
To probe the dispersion of predictor importances at the individual level, we again developed summary plots of 
individual-level importances (Figures 5 and 6). Similarly to depression, we observed relatively more widely 
dispersed individual-level importances over the participant sample in multimodal vs neural-only models, and the 
trend for wider dispersion of predictor importance in the more important final predictors. The directionality of the 
relationship between predictors and depression case status obtained in these plots was further compared with 
coefficients obtained during LASSO regression for Coarse Feature Selection (Supplementary Table 3) and 
found to be in agreement.
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[FIGURE 5]

Figure 5: Individual-level importances of final predictors of anxiety in early adolescence
Summary plots are presented of the importance of each final predictor (computed with the Shapley Additive 
Explanations technique) on an individual subject level to predicting anxiety a) with new onset at 11-12 yrs; b) in 
all cases at 9-10 yrs; and c) in all cases at 11-12 yrs.  The color gradient represents the original value of each 
feature (metric) where red = high and blue = low. Discrete (binary) features appear as red or blue, while 
continuous features appear as a color gradient. 

Individual-level predictor importances for the best-performing mixed-type neural models of anxiety again showed 
reduced dispersion across the participant group (Figure 6) when compared with multimodal models (Figure 5). 
The widest dispersion was observed when predicting new onset cases of anxiety. 

[FIGURE 6]

Figure 6: Individual-level importances of neural final predictors of anxiety in early adolescence
Summary plots are presented of the importance of each final predictor (computed with the Shapley Additive 
Explanations technique) on an individual subject level to predicting anxiety a) with new onset at 11-12 yrs; b) in 
all cases at 9-10 yrs; and c) in all cases at 11-12 yrs.  The color gradient represents the original value of each 
feature (metric) where red = high and blue = low. Discrete (binary) features appear as red or blue, while 
continuous features appear as a color gradient. 

Somatic Symptom Disorder

Deep learning optimized with IEL performed well using multimodal data in predicting both new onset and 
prevailing cases of SSD in early adolescence. Here, ~84% accuracy and ~89% AUROC was achieved in 
predicting future, new onset cases at 11-12 yrs with data obtained at 9-10 yrs. The best overall performance was 
observed using data at 9-10 yrs to predict contemporaneous prevailing cases, with ~95% accuracy and ~98% 
AUROC. Predictive performance of all prevailing cases at 11-12 yrs using data from 9-10yrs was comparable to 
new onset predictions, with accuracy of ~84% and AUROC of ~92% (Table 9a). As with depression and anxiety, 
neural-only models did not perform as well as multimodal models (Table 9b), being ~10-25% less accurate. The 
best performance was seen in predicting new onset cases at 11-12 yrs with accuracy of ~67% and AUROC of 
~66% and all prevailing cases at 9-10 yrs with accuracy of ~67% and AUROC of ~72%. Accuracy in the model 
predicting prevailing cases at 11-12 yrs dropped to ~63% with a similar AUROC. 

a.

Age of case determination Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11-12 years  83.6 78.8 80.6 88.7
All cases at age 9-10 years 94.5 93.8 90.6 98.4
All cases at age 11-12 years 83.5 77.2 87.1 91.5

b.

Neural data type Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11-12 years  67.2 65.0 40.3 65.8
All cases at age 9-10 years 67.2 63.1 50.0 71.7
All cases at age 11-12 years 62.5 58.9 41.9 63.7

Table 9: Performance of deep learning optimized with Integrated Evolutionary Learning in predicting 
cases of Somatic Symptom Disorder
Performance statistics of accuracy, precision, recall and the AUC are shown for the most accurate model obtained with 
deep learning optimized with Integrated Evolutionary Learning using a) multimodal features and b) only neural features. We 
used features obtained at 9-10 years of age to predict new onset cases of somatic symptom disorder at 11-12 years of age 
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as well as all prevailing contemporaneous cases (9-10 yrs) and all prevailing cases at 11-12 years of age. Corresponding 
ROC curves may be viewed in Supplementary Figures 1 and 2.

In interpreting optimized multimodal predictive models for early adolescent SSD we observed that new onset 
cases were predicted by the level of total sleep disturbance, parent somatization score on the adult CBCL and 
whether the child had ever received mental health clinical services (Table 10a). While sets of specific predictors 
were not the same, overlap was observed among age groups. Of note, parental level of somatization predicted 
both new onset cases and contemporaneous prevailing cases at 9-10 yrs. In addition, sleep disturbances of 
various types were a common theme across all three age groups. The highly accurate model predicting cases 
at 9-10 yrs was also interesting in featuring whether the child had seen a clinician for a medical issue other than 
a regular checkup and whether parent and child got along very well. The latter was the only final predictor with 
an inverse relationship with SSD. Group-level importances for multimodal model predictors were in the range 
[0.02, 0.27] and the mean importance for each experiment in the range [0.09, 0.16].
 
a

Age of case determination Ranked Final Predictors Importance

New onset at age 11-12 years  

Total sleep disturbance 
Parent somatic syndrome score 
Ever received MH/SU services

Mean
 

0.16
0.14
0.09

0.13

All cases at age 9-10 years

Parent total problems syndrome score 
Total sleep disturbances scale 
Sleep disorder of arousal 
Child has seen clinician for medical issue other than regular checkup 
Parent and youth get along very well 
Parent somatic syndrome score 

Mean

0.27
0.11
0.06
0.03
0.03
0.02

0.09

All cases at age 11-12 years
Parent internalizing syndrome score 
Disorder of excessive somnolence 

Mean

0.25
0.07

0.16

b

Neural data type Ranked Final Predictors Importance

New onset at age 
11-12 years  

 
MID loss positive vs negative feedback contrast in left inferior temporal ROI
MID anticipation small loss vs neutral contrast in right middle temporal ROI
MID loss positive vs negative feedback contrast in left middle temporal ROI
MID reward positive vs negative feedback contrast in right accumbens ROI
MID anticipation large vs small reward contrast in left isthmus cingulate ROI
T1 intensity WM voxels 0.2 mm from WM surface in left cuneus ROI
MID anticipation large vs small loss contrast in right insula ROI
MID anticipation of small reward vs neutral contrast in right parahippocampal ROI
T1 white-gray contrast in left lingual ROI

Average

0.035
0.031
0.016
0.016
0.013
0.008
0.005
0.003
0.003

0.015

All cases at age 
9-10 years

 
Correlation between retrosplenial temporal and default mode networks
Correlation between retrosplenial temporal and visual networks
Correlation between sensorimotor hand and dorsal attention networks
T1 intensity corpus callosum mid anterior ROI

0.053
0.038
0.029
0.028
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Correlation between sensorimotor mouth and dorsal attention network
Correlation between visual and cingulo-opercular networks
Correlation between sensorimotor hand and ventral attention networks
FA in GM associated with cortical left inferior temporal ROI
Correlation between cingulo-opercular and visual networks

Average

0.025
0.013
0.011
0.010
0.008

0.024

All cases at age 
11-12 years

MID anticipation of loss vs neutral contrast in right inferior temporal ROI
MID anticipation of small reward vs neutral contrast in right insula ROI
SST correct vs incorrect stop contrast in left lateral ventricle
Cortical thickness in mm of right lingual ROI
Weighted average depth for genetic parcellation in right orbitofrontal

Average

0.028
0.027
0.017
0.003
0.003

0.016

Table 10: Final predictors of cases of somatic symptom disorder in early adolescence
Final predictors of cases of all prevailing cases of SSD at ages 9-10 and 11-12 years as well as new onset cases only at 
11-12 years of age are shown for the most accurate models obtained using deep learning optimized with IEL obtained with 
a) multimodal features and b) only neural features. Final predictors are ranked in order of importance where the relative 
importance of each predictor is computed with the Shapley Additive Explanations technique and presented here averaged 
across all participants in the sample. Features in blue indicate an inverse relationship with depression verified with the 
Shapley method. MH = mental health; SU=substance use; SST = Standard Stop Signal task; MID = Monetary Incentive 
Delay task; ROI = region of interest; FA = fractional anisotropy; LD = longitudinal diffusivity; WM = white matter; GM = gray 
matter. 

In neural-only models, we found that MID fMRI task features were emphasized in predicting new onset cases. 
Interestingly, all MID features from the left hemisphere (inferior and middle temporal, isthmus cingulate ROIs) 
had a positive relationship with case status while those from the right hemisphere (middle temporal, accumbens, 
insula and parahippocampal ROIs) showed an inverse relationship with SSD (Table 10b, Figure 8). Other 
structural predictors of new onset cases were white matter intensity in the left cuneus ROI and white-gray 
contrast in the left lingual ROI. As with new onset cases, final predictors of prevailing cases of SSD at 11-12 yrs 
centered on the MID and structural neural features. Specific neural predictors of all prevailing cases at 11-12 yrs 
showed some commonality with new onset cases, with inverse relationships between MID contrast in the right 
inferior temporal and insula ROIs and case status. In contrast, the final, optimized model predicting all prevailing 
cases at 9-10 yrs was dominated by connectivity metrics derived from rsfMRI, evenly split between connectivity 
features with positive and inverse relationships with case status (Figure 8). 

When examined at the individual level, final predictors of SSD in each participant sample showed the same 
patterns as we observed in depression and anxiety. Individual-level predictor importances were widely dispersed, 
where typically the more important predictors exhibited wider dispersions (Figures 7 and 8). Further, the 
dispersion of individual-level importances was greater in the more accurate multimodal models. 

[FIGURE 7]

Figure 7: Individual-level importances of final predictors of somatic disorder in early adolescence
Summary plots are presented of the importance of each final predictor (computed with the Shapley Additive Explanations 
technique) on an individual subject level to predicting SSD a) with new onset at 11-12 yrs; b) in all cases at 9-10 yrs; and 
c) in all cases at 11-12 yrs.  The color gradient represents the original value of each feature (metric) where red = high and 
blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. 

Similarly to depression and anxiety, individual-level importances of final predictors of somatic symptom 
disorder were less widely dispersed than multimodal models, being in the range [0.001, 0.025] and the more 
important predictors were more widely dispersed (Figure 8). The directionality of the relationship between 
predictors and SSD case status obtained in these plots was further compared with coefficients obtained during 
LASSO regression for Coarse Feature Selection  (Supplementary Table 3) and found to be in agreement.
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[FIGURE 8]

Figure 8: Individual-level importances of neural final predictors of somatic symptom disorder in early 
adolescence
Summary plots are presented of the importance of each final predictor (computed with the Shapley Additive Explanations 
technique) on an individual subject level to predicting SSD a) with new onset at 11-12 yrs; b) in all cases at 9-10 yrs; and c) 
in all cases at 11-12 yrs.  The color gradient represents the original value of each feature (metric) where red = high and blue 
= low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. 

The relationship between accuracy and final predictor importance

We investigated the relationship between accuracy and final predictor importance by computing the mean 
predictor importance for each experiment. For example, the average importance of final predictors of new 
onset depression at 11-12 years in testing in held-out, unseen data (Table 6). This data may be inspected in 
Supplementary Table 3. We then computed the correlation and R2 of the relationship between accuracy and 
mean predictor importance across all experiments. Across all the experiments described in the present study, 
the correlation between accuracy and predictor importance in final, optimized models tested in held-out, 
unseen data was 78.4% and the R2 was 61.5%. Interestingly, the two outliers observable in Figure 9 were 
both multimodal predictive models of Anxiety (new onset cases at 11-12 yrs and contemporaneous prevailing 
cases at 9-10 yrs), where the very high accuracy of these models placed them off the trendline. 

[FIGURE 9]

Figure 9: The relationship between accuracy and final predictor importance
Average variable importance computed with the Shapley Additive Explanations technique is shown plotted against the log 
of prediction accuracy in testing in held-out data for each experiment in the study. The line of best fit obtained with a linear 
regression is also displayed. Underlying data for this chart may be inspected in Supplementary Table 4. 

DISCUSSION

Common and specific themes across internalizing disorders

We analyzed ~6,000 candidate predictors from multiple knowledge domains (cognitive, psychosocial, neural, 
biological) contributed by children of late elementary school age (9-10 yrs) and their parents and constructed 
robust, individual-level models predicting the later (11-12 yrs) onset of depression, anxiety and SSD. Leveraging 
an optimization pipeline that included AI-guided automated feature selection allowed us to extend prior work by 
analyzing a wider variety of predictor types and ~40x more candidate predictors than previous comparable ML 
studies. A common pre-processing and analytic design across all three internalizing disorders in the same youth 
cohort allows the direct comparison of results to elicit their diagnostic specificity and identify common themes. In 
addition, we wanted to quantify the relative predictive performance of multimodal vs neural features and examine 
the relationship between predictor importance and model accuracy. To our knowledge, this is the first ML study 
in adolescent internalizing disorders to include multiple types of neural predictors (rsfMRI connectivity; task fMRI 
effects; diffusion and structural metrics), analyze >200 multimodal features and quantify the relationship between 
predictor importance and accuracy.

Comparing across results, we found that the relative predictive performance of our models varied according to 
the specific disorder and type of predictor (psychosocial vs neural). Deep learning optimized with IEL rendered 
robust individual-level predictions of all three internalizing disorders with AUROCs of ~0.90-0.99% and 81-97% 
accuracy.  Precision and recall were also consistently ≥~80% with scattered exceptions in precision (new onset 
depression: 75% and prevailing SSD at 11-12 yrs: 77%). Our primary focus was in predicting future, new onset 
cases of each internalizing disorder in early adolescence. We found that new onset cases of anxiety could be 
most reliably predicted (AUROC ~0.96), followed by depression (AUROC ~0.90) and SSD (AUROC ~0.89). A 
similar differential was also present when predicting contemporaneous prevailing cases at 9-10 yrs but 
disappeared when considering all prevailing cases at 11-12 yrs. Depression proved a more challenging condition 
to predict when taken across all experiments, perhaps reflecting its later median age of onset and less-
differentiable diagnostic phenotype in adolescence. (46, 47) 
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Overall, we found that predicting early adolescent internalizing disorders with multimodal features resulted in 
substantially better performance than exclusively neural-based models, and that psychosocial predictors were 
preferentially selected in multimodal modeling. Our pipeline includes automated feature selection with a genetic 
algorithm (IEL) that progressively selects among features as it learns how to optimize predictive models over a 
principled training process (typically ~40,000 models). Cognitive, neural and biological features failed to 
outcompete psychosocial features in training with multimodal features -- with a single notable exception in new 
onset anxiety. Further targeted experiments specifically assessed the standalone predictive ability of multiple 
neural feature types derived from MRI. These experiments demonstrated that neural-only models sacrifice 10-
25% performance across statistics (accuracy, AUROC, precision, recall) with smaller discrepancies in new onset 
depression and anxiety, where neural-only features achieved moderately robust 0.77 AUROC and 70% and 75% 
accuracy, respectively. While little extant research has directly compared psychosocial to neural features in youth 
internalizing disorders, our results are congruent with studies that have used multimodal feature types including 
MRI metrics. (18, 19) Our design extended prior work by allowing us to examine more and wider feature types 
and disorders and the prediction of new onset vs prevailing cases. Neural-only models of new onset cases 
achieved superior performance to other participant samples and selectively comprised task fMRI and structural 
metrics, though more neural feature types (rsfMRI connectivity, diffusion-based) were available for selection, 
suggesting structural and task fMRI neural features may have particular promise in predicting adolescent onset 
of internalizing disorders. 

Specific sets of final predictors for each disorder and participant sample were unique and differentiated both a) 
depression, anxiety and SSD from each other and b) future new onset from all prevailing cases. However, 
parental levels of various types of problem behaviors and youth sleep disturbances appeared as cross-cutting, 
higher-level themes. Depression and anxiety showed closer commonality, with parent externalizing, avoidant 
and intrusive traits and total problem burden assorting as predictors across different participant samples. Notable 
disorder-specific predictors included parent level of somaticizing to their child’s SSD and parental anxiety level 
to their child’s anxiety. Taken together, our results demonstrate that parent problem behavioral traits are 
important drivers of internalizing disorders in early adolescence and that the specific parental traits observed 
when their child is 9-10 yrs may be useful in discriminating whether their child will go on to develop depression, 
anxiety or SSD. This phenomenon suggests intergenerational transmission, though our design cannot determine 
whether this is underpinned by inheritance, parent-youth styles of relating or other factors, though the presence 
of externalizing parental behaviors in predicting the later onset of depression and anxiety suggests that more 
than inheritance is at work. Here, our results congruent with the small number of comparable ML studies that 
have included parental traits as candidate predictors, where parent total behavioral problems and poor maternal 
relationships were leading predictors of depression. (15, 48)  Sleep disturbances may affect up to ~40% of 
elementary school age children and youth with both internalizing and externalizing disorders are at elevated risk. 
(49, 50) We found that sleep disturbances in the late elementary school age group (9-10yrs) predicted the later 
(11-12 yrs) onset (anxiety, SSD) and prevalence (depression) of internalizing disorders, congruent with recent 
research showing that disturbed or short duration sleep predicts later internalizing symptoms. (51, 52, 53, 54) 
Here, our findings add to a growing body of work suggesting sleep disturbances may be important intervention 
targets in elementary school age youth to reduce the later burden of internalizing symptoms. (51) 

Recent research in association-based studies has suggested that effect sizes in neuroimaging studies of 
psychopathology and cognitive traits are often inflated, particularly in smaller participant samples, resulting in 
generalization failure. (55) Accordingly, we investigated predictor importance at both the group and individual 
level and its relationship with model performance in generalization testing, observing a strong relationship 
between predictor importance and accuracy across experiments. In individual experiments, psychosocial 
predictors in multimodal models exhibited larger importances with wider inter-individual importance dispersions 
than those in neural-only experiments, even after extensive optimization and principled feature selection. 
Collectively, these results suggest that the smaller importances of neural features - and perhaps their more 
restricted variability among individuals - were at least related to their weaker performance in predicting cases 
using artificial neural networks. Future work will be required to determine whether these phenomena are seen in 
other disorders and participant samples (particularly other developmental periods) and if other types of neural 
features (for example, connectivity features obtained from data-driven rather than ROI methods) could fare better 
in predicting cases of internalizing disorders.
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Depression

Depression is a common and growing problem in adolescence which elevates later risk for suicide, poor 
educational outcomes and substance use. (56) In the present study, we focus on early onset cases of depression 
i.e. those which onset or are present at 11-12 yrs. Most prior work in early onset depression has examined 
psychosocial predictors at the group level, linking it to sleep disturbances, childhood adverse events (neglect, 
abuse, loss of parent), familial depression and pubertal changes (57, 58, 59, 60, 61, 62, 63) Longitudinal 
neuroimaging studies of the onset or course of depression in adolescence are relatively plentiful and have ranged 
across a variety of MRI modalities. (64)  Similarly, these have typically been group-level studies employing 
traditional multivariate predictive methods in a single neuroimaging modality and small number of ROIs, 
sometimes in small samples.  Results have been inconsistent. In structural MRI, subcortical regions (especially 
hippocampal) have been most intensively studied with mostly negative results, though there is some evidence 
for smaller accumbens and insula volume and equivocal results for OFC regions. (65, 66, 67, 68, 69, 70) In fMRI, 
reward and emotion processing have been most intensively studied. A number of studies have demonstrated 
differential reward-related activity in the ventral striatum, (71, 72, 73, 74, 75) though these studies are nearly all 
from later adolescence. In early adolescence, Morgan et al found the inverse was the case. (76) In emotion 
processing, increases or decreases in ACC activity have predicted adolescent depression onset. (77, 78, 79) 

More recently, a number of ML studies have performed prospective prediction of adolescent depression 
incorporating larger numbers of candidate predictors, either psychosocial and/or neuroimaging.  To our 
knowledge, our study represents only the second time multimodal (including neuroimaging) candidate predictors 
have been analyzed at the individual level using ML to prospectively predict depression onset in adolescents, 
and the first time in early adolescence. With an AUC of ~0.90, we achieved performance comparable with a 
single prior deep learning study and superior to that obtained using logistic regression or support vector machines 
(SVM). (18, 48, 70, 80, 81) We are not aware of other prior ML studies that have directly compared the ability of 
multimodal vs neuroimaging predictors in adolescent depression or incorporated more than one type of 
neuroimaging metric. 

Our AI-guided optimization pipeline preferentially selected psychosocial features to predict early onset 
adolescent depression after analyzing thousands of multimodal candidate predictors. Multimodal models 
achieved 10-15% better performance over all metrics than neural-only models. However, at ~0.77 AUROC, our 
neural-only deep learning model achieved performance similar or better to multimodal models in other studies 
using different ML methods (logistic regression, SVM).  Several recent large-scale ML prospective predictive 
studies of youth depression have examined the predictive performance of nonlinear combinations of candidate 
predictors at the individual level. In youth aged 15 yrs, Rocha et al trained penalized logistic regression models 
with 11 psychosocial metrics finding that school failure, social isolation, involvement in physical fights, drug use, 
running away from home, and maltreatment predicted depression onset at 18 yrs, achieving AUROC 0.79 in the 
baseline dataset and 0.59 and 0.63 in external validation datasets.  Foland-Ross et al used cortical thickness 
metrics to predict new onset adolescent depression with 70% accuracy, with thickness of the right precentral 
and medial OFC and left ACC and insula representing the most important features. Most recently, two important 
large scale ML studies utilized multimodal candidate predictor sets. Toenders et al applied penalized logistic 
regression to 69 phenotypic and 76 structural MRI metrics in youth aged 14 yrs from the IMAGEN dataset, testing 
for generalization in a held-out set to achieve 0.72 AUROC and 66% accuracy. Depressive symptoms at 
baseline, neuroticism, cognition, supramarginal gyrus surface area, and stressful life events were most predictive 
of later new onset depression. Xiang et al surveyed 188 psychosocial and rsfMRI connectivity candidate 
predictors collected at 9-10 yrs and empirically selected based on prior literature to predict depression 
trajectories (computed with latent class analysis) through 11-12 yrs in the ABCD cohort, with deep learning 
achieving best performance. This study is perhaps the most comparable to our own methodologically and 
achieved similar AUROC (~0.90) and accuracy (87% vs ~82, ~86%), though precision (0.45) and recall (0.44) 
were lower. Total sleep disturbance, parent total behavioral problems, financial adversity, ventral attention-left 
caudate and dorsal attention-left putamen connectivity and school disengagement were the most important 
predictors of depression trajectories. Thus, we obtained thematically concordant results with prior research in 
identifying parental problem behaviors of various types and sleep disturbances being important predictors of 
early adolescent depression. However, our work differs in not identifying other types of childhood adverse 
experiences, cognitive traits and pubertal status as being as important to final, optimized models. In new onset 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.23294377doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.21.23294377
http://creativecommons.org/licenses/by/4.0/


depression, we found that parent externalizing behaviors were the most important predictor followed by whether 
the child had come to clinical attention prior to 9-10 yrs and inverse relationships with secondary caregiver 
acceptance and degree of prosocial behaviors. In contrast, parent avoidant and intrusive behaviors and sleep 
disorder of excessive somnolence drove the prediction of all prevailing cases at 11-12 yrs.

We believe that this is the first time that multiple neuroimaging feature types have been used to predict new 
onset depression in adolescence in a neural-only model. Thus, it is particularly intriguing to note that the onset 
of early adolescent depression was predicted by multiple task fMRI effects – but that these centered on the SST 
(which measures response inhibition) rather than the MID (reward processing). We found rather that MID effects 
were emphasized in predicting anxiety and SSD -- and it has been previously noted that almost no longitudinal 
fMRI studies in adolescent depression directly compare anxiety and depression in the same sample. (64) In our 
neural-only models, early onset depression was predicted by SST effects in the left caudal anterior cingulate, 
pars opercularis, entorhinal and right parstriangularis (inverse relationships) and left transverse temporal and 
accumbens (positive directionality) ROIs. As well, structural gray matter features in the right OFC and precentral 
ROIs were important predictors. Thus, our results are concordant with existing literature in highlighting OFC and 
accumbens ROIs but our algorithms preferentially selected effects from the SST over the MID. The SST is a test 
of inhibition of prepotent responses and has been extensively studied in externalizing disorders (where there is 
a positive relationship) but less in the internalizing disorders, where we identified it has a negative relationship 
with depression. However, ex-scanner studies in children with internalizing behaviors and adults with depression 
using the SST show longer reaction time in patients with recent work associating response inhibition deficits in 
children with rumination traits. (82, 83, 84)  Future work may consider exploring SST task-related effects in 
response inhibition further in adolescent depression. Lastly, we note that metrics of head motion in the SST 
appeared as final predictors in depression. Because our intent was to perform large-scale data-driven ML 
prediction and all MRI metrics had passed quality control, we treated head motion metrics pari passu with other 
feature types and did not exclude participants based on head motion thresholds (as is commonly done in 
specialist neuroimaging studies). While head motion metrics were included in all analyses, they only appeared 
as final predictors in depression. While this could be considered a nuisance, we also note that response inhibition 
in the SST has been previously associated with bursts of antagonistic neck muscle activity due to a 
compensatory vestibular-ocular reflex consistent with the saccadic race model, and the latter may be worth 
investigating further in the context of adolescent depression. (85, 86) 

Anxiety

Anxiety is among the most common mental health disorders affecting adolescents and adults. Among the 
internalizing disorders, it is the condition most clearly centered on early adolescence, with a median age of onset 
of 11 yrs. Many psychosocial, demographic and cognitive risk factors have been associated with the 
development of clinical anxiety including early life temperamental traits such as anxiety sensitivity, neuroticism 
and anxious temperament. Thus, the formulation of prospective predictive models that can discriminate among 
these factors and provide reliable, individual-level predictions of anxiety onset in early adolescence is of 
particular relevance. However, few ML studies have predicted future anxiety in adolescence. To our knowledge, 
this is the first ML study to predict future anxiety in early adolescence and the first to use multiple neural features 
types. In important prior multimodal work, Chavanne et al compared the ability of psychosocial vs neural features 
to predicting anxiety cases at 18-23 yrs in the IMAGEN cohort with 14 gray matter volumetric measures and 13 
clinical metrics measured at 14 yrs using a majority voting algorithm comprising Logistic Regression, SVM and 
Random Forest classifiers. In the multimodal model, an AUROC of 0.68 was obtained with neuroticism, 
hopelessness, emotional symptoms and family factors contributing most to the prediction and volumetric 
differences in the periaqueductal gray, amygdala, ACC and subcortical regions making lesser contributions. With 
neural features alone, AUROC dropped to 0.52 whereas with psychosocial features alone it improved to 0.69.

Here, we demonstrate that new cases of anxiety at 11-12 yrs can be very reliably (AUROC ~96%; accuracy and 
precision ~93%) predicted with deep learning optimized with IEL and that these predictive models differ from 
depression and SSD. As in the developmentally older IMAGEN cohort, our analysis in the younger ABCD cohort 
found that multimodal features predict the onset of anxiety better than neural-only features with a substantial 
differential of 15-20% across performance statistics. However, the neural-only model achieved respectable 
performance in the context of the literature as a whole, with AUROC of ~78% and accuracy of 75%. We found 
that new onset cases of anxiety in early adolescence were predicted by the child having received clinical services 
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prior to 9-10 yrs, total sleep disturbance, mother’s mental health clinical history and parent levels of problem 
externalizing and avoidant behaviors. There were inverse relationships with MID large vs small loss contrast in 
the left OFC, whether parent and youth got along well, and prosocial behaviors. This is a particularly interesting 
result since it is the only one among our experiments where a neural feature ‘outcompeted’ thousands of other 
candidate predictors in the AI-guided optimization process to survive into the final, optimized model. While the 
MID is perhaps best known for measuring reward seeking, it also measures the avoidance of punishment and 
loss anticipation. Activations in ventro-lateral prefrontal regions, median cingulate cortex and the amygdala are 
specific to loss events. (87) The ventro-lateral prefrontal cortex and OFC are localized sub-regions of the ventral 
prefrontal cortex that both underpin social flexibility, with the OFC being well-associated with responses to the 
positive and negative valence of social stimuli. (88) Structural OFC changes have been associated with 
adolescents who experienced negative interactions with their mother. (89) Our results are congruent with this 
literature and suggest that aversive parent-child factors (externalizing and avoidant styles, tenor of the parent-
child relationship, poor maternal mental health), sleep disturbances, social withdrawal and pre-existing 
differences in the anticipation of loss in the OFC in childhood (before or at ages 9-10 yrs) interact in a nonlinear 
manner to predict the onset of later clinical anxiety in early adolescence. While there was thematic overlap among 
our different anxiety models (parent problem behaviors, sleep disturbances, social/peer relationship factors) this 
particular set of factors was specific to new onset cases. While parent anxiety problem behaviors were a final 
predictor of contemporaneous cases at 9-10 yrs, they did not predict new onset cases at 11-12 yrs. Similarly, no 
neural predictors appeared in the multimodal models predicting prevailing cases at either 9-10 yrs or 11-12 yrs. 

Somatic Symptom Disorder

Somatic behavioral problems refer to the presence of one or more physical symptoms accompanied by 
excessive investment (time, emotion, behaviors) in the symptom(s) that results in significant distress or 
dysfunction. The diagnosis of SSD emphasizes symptom-based impairment in daily life. Peri-adolescence is an 
important period when SSD onsets and rises towards higher adult rates. Prior research, including prospective 
studies, has frequently implicated family functioning including parents’ own levels of physical and mental health 
complaints and parent somatic problems as well as parental divorce, illness or death, childhood traumatic 
experiences and insecure attachment. (90, 91, 92, 93, 94, 95) Work examining adolescent predictors of 
subsequent trajectories of somatic symptoms have identified the quality of parent-youth relationships, parenting 
stress and youth bullying, school dissatisfaction and lower intelligence level symptoms as important predictors. 
(96, 97, 98, 99, 100)  The genetic component appears to be small, albeit studies are limited. (101) Research 
focused on the cognitive-affective neural basis of somatic problems using task fMRI has linked group-level 
differences in para/hippocampal, ACC, insula, brainstem and lateral prefrontal regions to effects in negative 
expectancy, attentional bias and pain catastrophizing. (102, 103, 104, 105, 106, 107, 108) Fewer neuroimaging 
studies have investigated circuit abnormalities in somatic problems, though rsfMRI studies have implicated 
increased brainstem, caudate, thalamus and ACC activity and decreased lateral prefrontal activity in adults. (109, 
110) In a cross-sectional study in the ABCD cohort, Dhamala et al found disrupted temporo-parietal, default 
mode, dorsal attention and control-limbic functional connections using rsfMRI data from 9-10 yrs to predict CBCL 
somatic problem scores at the same age. (111)

Our findings contribute to this growing body of work in several ways. Firstly, prospective predictive studies of 
somatic problems have typically focused on either psychosocial (particularly family- or adversity-related 
measures) or neural predictors. In the present study we analyzed nearly 6,000 multimodal predictors of many 
types (including cognitive and non-neural biological metrics), allowing us to assess their relative predictive ability 
holistically. In these multimodal models, we found that psychosocial predictors were preferred over neural, 
cognitive and biological metrics. Secondly, the richness of parent and family-related metrics in the ABCD sample 
allowed us to consider a larger range of psychosocial predictors than has typically been available to earlier 
studies of somatic problem symptoms in youth. We found that parent level of somatic problem behaviors (new 
onset cases, 9-10 yr prevailing cases) and internalizing traits (11-12 yr prevailing cases) were preferentially 
selected as predictors over other family-, school- or peer-related candidate predictors such as bullying, parent 
stress or early adverse experiences. In all participant samples, parent somatic or internalizing problem behaviors 
interacted with sleep disturbances. Of note, whether a youth had come to clinical attention for a mental health 
issue predicted the later onset of somatic problems and a specific predictor of somatic problems in cases at 9-
10 yrs was whether the child was seen for a medical issue other than a regular checkup. These findings comport 
with earlier work and further suggest that childhood patterns of clinical use and sleep disturbances and elevated 
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levels of parent somatic traits may be helpful in assessing youth risk for somatic problem behaviors. Similarly, 
the wide range of neuroimaging measures available allowed us to assess nearly 5,000 different neuroimaging 
metrics over multiple modalities to predict somatic problem behaviors in youth. While these models were not as 
robust as multimodal models (AUROC ~0.64-0.70), they are congruent with extant research in centering on 
parahippocampal, temporo-parietal, cingulate ROIs and default mode and attentional network connectivity. Our 
work additionally highlighted the insula, a region long known to be involved in interoception and pain processing. 
Interestingly, effects in these regions during the MID task involving reward processing and loss anticipation were 
emphasized in predicting new onset cases of somatic problems in contrast to anxiety, where they centered on 
loss anticipation only. While we are not aware of prior work using the MID task in somatic problem behaviors, 
this may be an interesting line of future inquiry given a cardinal feature of somatization is the amount of valence 
and/or investment given to physical symptoms. Overall, we found that structural, task and rsfMRI were useful 
modalities in predicting somatic problems in early adolescence but diffusion imaging made less of a contribution.

LIMITATIONS

This study uses secondary data from the ABCD study and we were therefore unable to control for any bias during 
data collection. While the ABCD study strived for population representation, there is a mild bias toward higher-
income participant families of white race in the early adolescent cohort. Data is not available prior to baseline 
(age 9-10 years) assessment and we cannot conclusively rule out that youth participants met criteria for 
depression, anxiety or somatic problems prior to this age but not at baseline assessment at 9-10 years of age. 
Thus, it is possible that certain cases coded as ‘new onset’ at 11-12 years of age in our analysis could have met 
clinical criteria ≤8 yrs but were in remission at 9-10 yrs. In the present study, we defined cases as any individual 
meeting ASEBA clinical thresholds in the CBCL subscale scores of interest and did not exclude participants who 
thereby met criteria for other conditions. Thus, co-morbidity may be present in the experimental samples as is 
common in clinical populations and in most research studies in early adolescence. While we used nearly 6,000 
variables available in the ABCD dataset, our study is not exhaustive. It is possible that different results could 
have been obtained if more or different candidate predictors were included. For example, rsfMRI data includes 
metrics from ROI-based parcellations but not a data-driven method such as ICA.  We tested for generalization 
in a holdout, unseen test set obtained by partitioning the data, a gold standard method in ML. However, methods 
and results should also be tested for replication in an external dataset other than ABCD.  
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