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Abstract	

Background	18 
Metabolite abundance is a dynamic trait that is not only variable in a fasting state, but also 

varies in response to environmental stimuli, such as food consumption. Postprandial 

abundance and response to a meal are emergent traits in studies of disease and which 21 

themselves may be subject to specific risk factors. We investigated body mass index (BMI) as 

a recognized risk factor for numerous health outcomes that may influence metabolite response 

to feeding. Here we use the Netherlands Epidemiology of Obesity (NEO) study to examine 24 

associations between BMI and metabolite response to a liquid meal and extend this by using 

Mendelian randomization (MR) to estimate potential causal effects.  

Methods	and	findings	27 
The NEO study conducted a liquid meal challenge and collected metabolite profiles using the 

Nightingale metabolomics platform in 5744 study participants. Observational and one-sample 

MR analysis were conducted to estimate the effect of BMI on metabolites and ratios of 30 

metabolites (n = 229) in the fasting, postprandial and response (or change in abundance) 

states. After an appropriate multiple testing correction, we observed 473 associations with 

BMI (175 fasting, 188 postprandial, 110 response) in observational analyses. In MR analyses, 33 

we observed 20 metabolite traits (5 fasting, 12 postprandial, 3 response) to be associated with 

BMI. In both the fasting and postprandial state, this included citrate and the ratios of linoleic 

acid, omega-6 fatty acid and polyunsaturated fatty acids to total fatty acids. In addition, the 36 

glucogenic amino acid alanine was inversely associated with BMI in the response state, 

suggesting that as alanine increased in postprandial abundance, that increase was attenuated 

with increasing BMI.  39 

Conclusions		
Overall, MR estimates were strongly correlated with observational effect estimates suggesting 

that the broad associations seen between BMI and metabolite variation in fasting, postprandial 42 

and response states have a causal underpinning. Specific effects in previously unassessed 

postprandial and response states were detected and these may likely mark novel life course 

risk exposures driven by regular nutrition.  45 
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Introduction	48 
 

The excess accumulation of body fat and obesity are an established global health burden, the 

prevalence of which is increasing. The incidence and cost in life and dollars was estimated to 51 

be 1.9 billion cases in 2016, 4 million attributed deaths in 2015 and two trillion US dollars in 

2014, respectively (1–3). Body mass index (BMI), or the ratio of one’s weight and height 

squared (kg/m2), is a common metric for measuring excess weight or fat and BMI thresholds 54 

of greater than or equal to a value of 25 and 30 are used to designate the conditions of 

overweight and obesity, respectively (4,5). While the use of BMI as an obesity metric – one 

that varies with age, sex, and ethnicity/genetic ancestry - may underestimate the true global 57 

burden of excess body fat, it has been an important and easily derived anthropometric and 

diagnostic metric in the study of obesity (6–9). Increases in BMI have been associated with 

decreased life expectancy (10–13), some cancers (14–16) and with cardiometabolic diseases 60 

including cardiovascular disease, and type 2 diabetes (17). 

 

Despite the scale of the BMI related health burden, there remains a need to elucidate how and 63 

by what intermediate physiological traits excess body fat increases disease risk. Possible 

intermediates are metabolites and lipoproteins, some of which – like low density lipoprotein 

(LDL) or its’ crucial protein apolipoprotein B - have been previously associated with both 66 

BMI and disease risk (18–26). In a recall-by-genotype framework, previous work supports a 

causal role of body mass index on metabolite variation (27,28). Other work demonstrated a 

broad observational and consistent causal association between BMI and metabolites or 69 

specifically lipoprotein subclasses, branch-chain amino acids, and inflammatory markers in a 

young adult cohort (18).  

 72 

In 1950, John Moreton illustrated the presence of intra-individual variability in chylomicrons 

after a high fat food (cream) challenge (29). More recent work has illustrated additional 

metabolite variation postprandially that could prove informative in evaluating disease risk and 75 

informing precision medicine (30–35). Yet, Schutte et al, building on the work of others (18), 

has illustrated that observational effect estimates between BMI and metabolite abundances are 

strongly, but not uniformly, consistent between fasted and postprandial metabolite abundance 78 

measurements (36). This observation suggests that for some metabolites fasting versus 

postprandial status may not be critically important for meta-analyses that aim to estimate the 
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association between BMI and metabolite abundance. It also suggests that for other metabolites 81 

there is novelty in postprandial measurements and their association with BMI. 

 

In this context and with most individuals spending much of their waking hours in a non-fasted 84 

or postprandial state, it is important to understand both the variation in postprandial 

metabolite abundance and the association and influence BMI may have on dynamic ranges in 

metabolomic response. Similar to an oral glucose tolerance test (OGTT), whose postprandial 87 

abundance is informative about an individuals’ insulin sensitivity and diabetic state, 

postprandial metabolite abundances may prove informative in the study of disease traits (37).  

Consequently, a comprehensive assessment of postprandial variation and response is essential 90 

in the study of adiposity, metabolites, and disease. 

 

Response, defined as the change in metabolite abundance between fasted and postprandial 93 

states, has received little to no attention in disease risk research. In contrast to fasting status, 

response can be assessed either through a basic measurement of postprandial metabolite 

profile after a standardized feed (assuming that baseline variability is essentially random in a 96 

large enough sample), or through the explicitly modelling of response accounting 

appropriately for pre-feed variation. Either way, there is evidence that this dynamic state is 

different and potentially informative versus classically measured fasting levels. For example, 99 

a recent genome-wide association analysis identified genetic variants uniquely associated with 

metabolite response traits that did not share associations with fasting or postprandial 

abundances (38). Moreover, estimates of genotype heritability for some response traits such as 102 

the (branched-chain) amino acids, glucose and extremely large VLDL are as large or larger 

than those observed for fasting and postprandial estimates. Taken together, results suggest that 

such state specific traits are likely to be qualitatively different and may prove informative in 105 

explaining the aetiology of disease.  

 

Currently missing from the literature are studies explicitly assessing the potentially causal 108 

relationship between variation in the commonly recognized risk factor BMI and the dynamic 

response of the metabolome to feeding. This is potentially difficult to examine given the 

strongly confounded nature of BMI as a risk factor, however Mendelian randomization (MR) 111 

is a framework using instrumental variable (IV) analysis to deploy genetic variants as 

exposure proxies in efforts to obtain evidence of causal relationships (39,40). It has been 

increasingly possible to exploit an increasing collection of confirmed genetic associations 114 
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with BMI for the purpose of estimating likely downstream consequences in variation (41–49) 

and aggregate genetic scores have become useful in their capacity to capture heritable 

variance in exposures of interest (like BMI) despite potential complexities (50). There is, 117 

therefore, an opportunity to apply this approach to the examination of potential relationships 

between BMI and metabolite profiles.  

 120 

We aimed to bring together data measuring the metabolic response to a liquid mixed meal and 

measures of the exposure, BMI, in observational and MR frameworks. These analyses, 

undertaken in the Netherlands Epidemiology of Obesity (NEO) study, sought to estimate 123 

relationships between variation in BMI and metabolite abundance in both a fasted and 

postprandial states, and to assess metabolite response – or change in abundance between a 

fasted and postprandial states.126 
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Materials and Methods 

Study	Sample	
The sample population was 6,671 participants of The Netherlands Epidemiology of Obesity 129 

(NEO) study, a prospective cohort study (51). The NEO study was conducted at the Leiden 

University Medical Center (LUMC) and approved by the LUMC Medical Ethical Committee. 

All participants gave written informed consent.  132 

 

The NEO sample population is derived from two populations. First, all individuals between 

the ages of 45 and 65 years, living in the greater Leiden area, with a self-reported BMI of 27 135 

kg/m2 or higher. Second, all individuals in the municipality of Leiderdorp of the same age 

range, regardless of BMI (S1 Fig.). We will refer to these two sample populations as Leiden 

and Leiderdorp respectively, and the entire study sample as NEO. Here our study sample 138 

population has a size of 5,744 defined by those participants who have genotype data, 

metabolite data, and other phenotype or covariable data available. Further details of the NEO 

study and study design are previously published (52). 141 

Meal	challenge	
An overnight fast was requested of all participants who subsequently visited the LUMC NEO 

study center and given a food challenge (38). During the visit an initial baseline, fasted blood 144 

sample was drawn. Second, within 5 minutes of the initial blood draw participants were given 

a liquid mixed meal. The meal was 400mL in volume with 600 kcal of energy. Sixteen 

percent of that energy (En%) was derived from protein, 50 En% from carbohydrates, and 34 147 

En% was from fat. Third, following completion of the food challenge a blood sample was 

drawn at 30 minutes and again at 150 minutes. The NEO meal challenge occurred between the 

months of September 2008 and September 2012, with participants from Leiden sampled 150 

throughout this period of time. Those participants from Leiderdorp were sampled, non-

exclusively, during the months of June 2011 and September 2012. 

 153 

The meal challenge sampling of Leiderdorp and Leiden population participants was structured 

by sampling date and as a product BMI was structured by sampling date. Specifically, BMI 

was associated with the date of measurement (univariable linear model F-test p-value = 156 

4.7x10-229), explaining 20.3% of the total variation in BMI (S2 Fig.). Despite this, the BMI-

PGS had a smaller proportion (2.0%) of its variation explained by sampling date (univariate 
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linear model F-test p-value = 3.9x10-7). As a product of this structure, sampling date is 159 

included as a covariate in all observational and MR analyses. 

Metabolite	data	
NEO participants had plasma derived metabolite profiles measured using the Nightingale 162 

Health (Helsinki, Finland) 1H nuclear magnetic resonance (NMR) platform (53). For each 

participant both their fasting and 150 minutes postprandial samples were assayed. We note 

here that metabolites are commonly defined as biological molecules less than 1.5 kilodaltons 165 

in size and that many of the molecules (lipids) assayed here are larger than this threshold. For 

simplicity we will refer to them all here as metabolites. At the time of sampling this 

metabolomics platform provided 229 measurements for 149 metabolites including 80 derived 168 

ratio measurements (Table S1 in S1 File) from 14 substance classes: amino acids (n=8), 

apolipoproteins (n=3), cholesterol (n=9), fatty acids (n=11), fatty acids ratios (n=8), fluid 

balance (n=2), glycerides and phospholipids (n=9), glycerides and phospholipid ratios (n=2), 171 

glycolysis related metabolites (n=3), inflammation (n=1), ketone bodies (n=2), lipoprotein 

particle size (n=3), lipoprotein subclasses (n=98), lipoprotein subclass ratios (n=70). 

Data	quality	control	174 
Prior to data analysis, metabolites and covariable quality control and data filtering steps were 

implemented. First, a single individual who self-described themselves as “other” rather than 

“white” was excluded from the analysis. Second, any non-metabolite covariable with less than 177 

1000 observations (n=1), with no variation (n=1), or binary covariables with fewer than 10 

observations in either of the two binary classes (n=1) were removed. A complete list of 

evaluated non-metabolite covariables is available in Table S2 in S1 File.  180 

 

The initial metabolite data set consisted of 5,744 individuals, 229 fasting metabolites, 229 

postprandial metabolites, and 148 previously derived (38) orthogonal nonlinear least squares  183 

(ornls) response metabolite traits. Data quality control of this data set was performed with the 

R package metaboprep (54). A complete description of the procedure and parameters used 

with metaboprep can be found in S1 Text. After data QC 226 samples and 3 metabolites (all 186 

ornls response traits) were filtered from the data set (S1 Log). The log file (S1 Log) and 

report (S1 Report) generated by metaboprep are provided. After running metaboprep we also 

performed the following steps on the fasted and postprandial data. First, all zero values were 189 

converted into NAs. Second, for each metabolite (in the fasting and postprandial state, 

individually) all values 10 interquartile distances from the median were also turned into NAs. 
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Third, we used the expected correlated nature of the fasting and postprandial data to identify 192 

outliers of that relationship, and turned them into NAs, in both dietary states. Further details 

on this procedure can be found in S1 Text and pre- and post-QC scatter plots for each 

metabolite can be found in S2 File.  195 

Response	trait	
A response trait, or a measure of change between the postprandial and fasting dietary state, 

was derived for each of the 229 metabolites traits by univariable Deming regression. A 198 

Deming regression was used here as it allows for error in both independent (fasting) and 

dependent (postprandial) variables of the model and as such is a type of total least squares 

regression. Following the QC steps described above we fit a Deming regression of 201 

postprandial on fasting data, for each metabolite. After model fitting the residuals were 

extracted and used as the response trait. The function deming() from the deming (v1.4) R 

package was used in the analysis. The intercept and slope of Deming regression were recorded 204 

and are provided in Table S1 in S1 File, along with trait annotations and population summary 

statistics for all metabolite traits. 

 207 

The residuals of the Deming regressions derived here were used as metabolite traits of 

response. These response traits effectively mirror those of a simple delta, in that positive 

values indicate an increase in metabolite abundance in the postprandial state and negative 210 

values would indicate a decrease. Effect estimates from an association analysis with BMI, 

described below, therefore suggests whether response is associated with BMI. Positive effect 

estimates suggest that as BMI increases, so too does the change in metabolite abundance. 213 

Negative effect estimates suggest that as BMI increases the change in metabolite abundance 

decreases.  

 216 

Deming regressions residuals were taken to be the most appropriate way to summarize 

response for second stage analyses - observational and MR. However, in addition to the 

Deming regression, we also used two alternative methods to derive response. The first was a 219 

simple delta estimate (postprandial minus fasting abundance) and the second was an 

orthogonal nonlinear least squares (ornls) regression. We note that simple delta values and 

Deming residuals correlate with a mean Pearson’s r of 0.94 (95% CI 0.65-0.99). The ornls 222 

response traits were derived and used previously in a genome wide association study of 

metabolite response and was used in our metabolite quality control steps described above 
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(38). Our result and discussion will focus exclusively on the Deming response traits, but all 225 

effect estimates for the delta and ornls response traits are provided in S3 File.  

Effective	number	of	tested	metabolites	
Whilst there are 687 metabolite traits (fasting = 229, postprandial = 229, response = 229) 228 

these are not independent (S3 Fig.). We used the R package iPVs 

(https://github.com/hughesevoanth/iPVs) to estimate the effective number of metabolites in 

the data set (55–57). This allows us to ensure that we are not over correcting for the number 231 

tests we are performing in the study. We estimated 43 representative variables in the NEO 

metabolite data set. The data reduced, study-wide Bonferroni (BF) corrected p-value was set 

to 0.05/43 or 1.163x10-3. A full description of the iPVs procedure and parameters can be 234 

found in S1 Text.  

Metabolite	data	description	
Two analyses were carried out to describe this Nightingale Health metabolomics data set. 237 

First, given the abundance of lipoproteins and their lipids in this data set we estimated the 

mean abundance of each lipid for each lipoprotein in both the fasting and postprandial dietary 

states. Second, a paired Student’s t-test was performed to determine if mean abundances 240 

differed between the fasting and postprandial states. Our threshold for declaring a change in 

mean abundance was 0.05/229, where 229 is the number of metabolites tested. We also 

estimated the change as a delta value between the postprandial and fasting states and then 243 

derived estimates for average change and the 95% confidence interval of the change 

distribution.  

Rank	normal	transformation	of	metabolite	traits	246 
Each metabolite trait distribution was tested for normality with a Shapiro-Wilk test. All W-

statistics (untransformed distributions and model residuals) are reported in S3 File. In total 

55.56% of all metabolite traits had a W-statistics less than 0.95, a threshold used here to 249 

define an inconsistency with normality. A total of 43.94% of all log-transformed metabolite 

traits had a W-statistics less than 0.95. Consequently, for the purpose of signal discovery and 

to allow for parametric analysis, each metabolite was rank normal transformed (tied values 252 

randomly ranked), prior to linear modelling. These steps resulted in the residuals from all 

observational and MR models to have a W-statistic greater than 0.9 and 0.99, respectively.  

 255 
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Covariables	
Variables from 14 categories were compiled and available to identify possible confounders by 

evaluating associations with BMI, BMI polygenic score (BMI-PGS), and metabolite traits 258 

(Table S2 in S1 File). These 14 categories are: anthropomorphic (n = 8), education (n = 5), 

income (n = 2), smoking (n = 3), diet including alcohol intake in grams (n = 24), medication 

including glucose and lipid lowering (n = 10), systolic and diastolic blood pressure (n = 2), 261 

health including diabetes, glucose, hypertension and cancer status (n = 4), physical exercise (n 

= 18), basal metabolic rate (n = 1), indirect calorimetry (n = 5), genotype principal 

components (n = 4). In addition, seven metrics of biological sample quality (n = 7) and the 264 

sampling information (visit date and sub-population, n = 2) were included in the study to 

assess influence on metabolites. During quality control, described above, 3 variables were 

filtered. As performed with metabolites above we estimated the effect number of covariables 267 

in the data set. After running an iPVs analysis with a tree cut height of 0.5 we estimated that 

there are 54 representative or independent covariables. As a product any test performed across 

all covariables was corrected for multiple testing at a p-value of 0.05/54 or 9.29x10-4. 270 

Genotype	data	
The NEO participants were genotyped on the Illumina HumanCoreExome-24 BeadChip 

(Illumina Inc., San Diego, California, United States of America), at the Centre National de 273 

Génotypage (Evry Cedex, France). Following genotype quality control steps, as previously 

described (58), sample were imputed to the Haplotype Reference Consortium (HRC) release 

1.1 (59), with further details in Li-Gao et al (38).  276 

Construction	of	the	BMI	polygenic	score	
A polygenic score for BMI (BMI-PGS) was derived for each individual using variants 

previously and independently associated with BMI (n=656) at a p-value less than 1x10-8 from 279 

the study by Yengo et al (60). To ensure the integrity of the PGS only those genetic variants, 

in the NEO genotype dosage data set, where the effect allele, the alternative allele, and the 

minor allele frequency (+/- 0.1) matched the data from Yengo et al were retained. If a match 282 

could not be made, then that SNP was dropped. All effect estimates were aligned to be 

positive, such that the effect allele was always that which increased an individual’s genotype 

predicted BMI. Finally, a weighted PGS was constructed by weighting the number of BMI 285 

increasing alleles, at each SNP (n=646, after data harmonization), by the effect estimate for 

that SNP and then summing across all values (60). The R script “01_generate_bmi_grs.R” for 
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deriving the PGS can be found in the github repository 288 

https://github.com/hughesevoanth/NEO_BMI_Metabolite_MR. 

Observational	and	Mendelian	randomization	analysis	
Two observational association analyses were undertaken in cross-section. The first was an 291 

association analysis between individual metabolite traits and BMI. The second uses a PGS as 

a proxy instrument for the exposure in a Mendelian randomization framework to provide an 

estimate of the causal effect of the exposure on outcome (here dietary state specific metabolite 294 

values). We will refer to the first as an observational analysis and the later as an MR analysis.   

 

Observational analyses were performed by a multivariable generalized linear regression with 297 

sampling data, sub-population, age, and sex as additional covariables - taking the form of 

glm(metabolite ~ visit date + sub-population + age + sex + BMI). For each generalized linear 

model we also perform a Breusch-Pagan test of homoskedasticity using the bptest() function 300 

from the lmtest R package (61). In addition, for each association analysis we performed a 

Type I analysis of variance or ANOVA producing a table of deviances and estimated an eta-

squared statistic (h2), providing an estimate of the variance explained, for the model and for 303 

the primary exposure, BMI (S3 File).  

 

One-sample Mendelian randomization analyses were performed using the ivreg R package 306 

(https://cran.r-project.org/web/packages/ivreg/), which implements a two-stage least squares 

instrumental variable analysis. In all instances and given the relative viability of BMI 

instruments versus reciprocal metabolite instrumentation, BMI was defined as our exposure, 309 

the PGS described above is our instrument for BMI and each metabolite trait was iteratively 

defined as the outcome. The same model and covariables as described in the association 

analysis paragraph above was used here. Along with MR effect estimates, we also report the 312 

Breusch-Pagan test of homoskedasticity, the F-statistic and F-test p-value testing for weak 

instruments, and summary statistics for the Durbin-Wu-Hausman endogeneity test (S3 File).  

 315 

Unless stated otherwise - because our outcomes are rank normal transformed (zero centered 

with a standard deviation of one) - the effect estimates (beta) and standard errors (se) are 

reported as rank normalized standard deviation units change per unit increase in BMI in 318 

kilograms per meter-squared (kg/m2).  
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Study	structure	321 
In all observational and MR analyses, four (sub-)population analyses were performed. The 

primary analysis, in all instances, was a weighted NEO (wNEO) analysis using data from all 

available samples. The wNEO analyses included weights for each sample that were previously 324 

derived to have the Leiden sub-population BMI distribution emulate that of the randomly 

sampled Leiderdorp sub-population (62). Sensitivity analyses include (1) a Leiderdorp sub-

population analysis, (2) an un-weighted NEO analysis, and (3) a Leiden sub-population 327 

analysis. In addition, sex specific analyses were carried out using the primary weighted NEO 

framework and the Leiderdorp sub-population, as neither have a sampling bias in there BMI 

distributions.   330 

Code	availability	
All statistical analysis were conducted in the R language (v 4.0.2, Taking Off Again), and all 

bespoke functions and analytical code for the study can be found in the github repository 333 

https://github.com/hughesevoanth/NEO_BMI_Metabolite_MR. 

Results	

NEO	cohort	description	336 
Following quality control and derivation of the response trait the data set consisted of 5517 

individuals (51.6% female), 687 metabolite traits (229 fasting, 229 postprandial, 229 

response) and 85 covariables. The average age of participants was 56 years, with an average 339 

BMI of 29.98 kg/m2 (Table 1).  

 

The NEO cohort is made up of two distinct sub-samples, (1: “Leiderdorp”) a randomly 342 

sampled population of 1,406 individuals from the municipality of Leiderdorp (mean BMI = 

26.24 kg/m2, 95% quantile interval (QI)19.94-37.2), and (2: “Leiden”) a sample population of 

4,111 participant from the city of Leiden who were oversampled for individuals with a BMI 345 

greater than 27 kg/m2 (mean BMI = 31.26 kg/m2, 95% QI 26.02-42.18). BMI distributions 

differed between the two sub-populations (generalized linear model (glm) Student’s t test p-

value = 3.66x10-280, S1 Fig.). In addition, the two sub-populations also differ in sex ratio, 348 

alcohol intake (g/day), smoking (packyears), educational attainment and BMI polygenic score 

(BMI-PGS; generalized linear model Student’s t test p-value < 1.95x10-2), but not in age or 

height (Table 1). Whilst the variance explained by sub-populations is large for BMI (20.7%) 351 

and closely related traits (weight, hip and waist circumference), it is an order smaller for other 
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variables like BMI-PGS, packyears, and educational attainment (variance explained by sub-

population < 2%, Table 1).  354 

Description	of	metabolite	data	
Of the 229 assayed metabolites 98 are lipoproteins and their particle concentrations and an 

additional 70 are lipoprotein ratios. The expected lipid concentrations were observed across 357 

lipoprotein classes (S4 Fig.). Namely, triglycerides dominate VLDLs, cholesterol dominates 

IDL and LDLs, and phospholipids and cholesterol dominate HDLs, on average. This remains 

true in both the fasting and postprandial data. All bar 14 metabolites differed in mean 360 

concentration or ratio between the fasted and postprandial states (paired t-test, P < 0.05/229, 

Table S3 in S1 File). These 14 include the concentration of particles: total lipids, total 

cholesterol, cholesterol esters, and free cholesterol in medium LDL. It also includes total 363 

cholesterol in LDL, large LDL, and small LDL, and cholesterol esters in small LDL. Overall, 

126 metabolites increased in abundance, and 89 decreased postprandially (Table S3 in S1 

File). Those with the largest scaled and centred, mean increase were the amino acids tyrosine, 366 

leucine, valine, isoleucine, and phenylalanine (S5 Fig.). Those with the largest mean decrease 

were the ratio of saturated fatty acids to total fatty acids, the ratio of triglycerides to total 

lipids in very large VLDL, the ratio of phospholipids to total lipids in small VLDL and the 369 

ketone body 3-hydroxybutyrate (Table S3 in S1 File). For all metabolites, 150-minute 

postprandial change was not in the same direction for all participants (S5 Fig.).  
 372 

The	observational	effect	of	BMI	on	metabolite	trait	variation	
wNEO observational analyses suggested broad association between BMI and metabolite 

traits, with 473 metabolite traits (across fasting, postprandial, and response states) showing 375 

evidence of association with BMI (P < 1.163x10-3, Fig. 2, S6 Fig, and S3 File). Effect 

estimates correlated between sexes (Pearson’s r = 0.965), but more associations were 

observed in women (426 total: 162 fasting, 175 postprandial, 89 response) than men (369 378 

total: 161 fasting, 168 postprandial, 40 response, Fig. 3A). A total of 333 associations were 

shared between men and women, with 93 specific to women, 36 specific to men, and 225 

metabolite traits having no association with BMI in either sex (S3 File). Among the 381 

associated traits all but 10 are directionally consistent among men and women (Fig. 3A). 

Larger effect sizes were observed in men (mean absolute beta = 0.0356) than women (mean 

beta = 0.0291), across all traits on average (Fig. 3A), but the variance explained by BMI, 384 
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across all traits on average was similar among men and women (h2: men = 1.737%, women = 

1.734%).  

 387 

Observational	results	-	fasting	
A total of 175 or 76% of fasting traits showed evidence of association with BMI. The 

strongest association observed was with the inflammation marker glycoprotein acetyls (beta = 390 

0.081, se = 0.0037, P = 2.89x10-101). This was followed closely by the branched chain amino 

acids isoleucine (beta = 0.072, se = 0.0033, P = 4.18x10-101), leucine (beta = 0.066, se = 

0.0031, P = 1.16x10-94) and valine (beta = 0.067, se = 0.0032, P = 8.70x10-92). The strongest 393 

inverse associations were observed for average diameter of HDL particles (beta = -0.071, se = 

0.0035, P = 6.74x10-95), the ratio of free cholesterol to total lipids in IDL (beta = -0.078, se = 

0.0036, P = 1.04x10-100) and large HDL (beta = -0.077, se = 0.0037, P = 8.09x10-95). If data is 396 

summarized by metabolite annotation class (Table S1 in S1 File), we find that the classes 

with the largest average absolute BMI effect are inflammation (average absolute beta = 

0.081), amino acids (0.051), lipoprotein particle size (0.049) and glycolysis related 399 

metabolites (0.049). Those with the smallest average absolute effect are ketone bodies 

(0.021), fluid balance (0.019) and fatty acids (0.018) (S6 Fig.). 
 402 

Observational	results	-	postprandial	
A total of 188 or 82% of postprandial traits showed evidence of association with BMI. Fasting 

and postprandial point estimates correlate strongly (Pearson’s r = 0.976) with each other, with 405 

no mean difference in their distributions (t-test P = 0.83) and 166 shared associations. 

However, 31 associations are unique to one of the two dietary states, with nine associations 

specific to fasting and 22 specific to postprandial data (Fig. 3C). We tested for a difference in 408 

effect estimates between the dietary states and observed 14 estimates to differ (z-test, 

P<0.05/229, Fig. 3C). Eight of those 14 are amino acids (tyrosine, alanine, phenylalanine, 

histidine, valine, leucine, glutamine, and isoleucine). The other six that differ between dietary 411 

states include four very large HDL ratios, the ketone beta-hydroxybutyrate (bohbut) and the 

glycolysis related metabolite lactate (lac).  

 414 

Observational	results	-	response	
A total of 70 response traits showed evidence of a positive association with BMI and 40 traits 

had an inverse association. Response and fasting (Pearson’s r = 0.34, P = 1.39x10-7), and 417 

response and postprandial (Pearson’s r = 0.514, P = 7.96x10-17) point estimates modestly 
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correlate with each other, indicative of the relative independence of the response trait. The 

strongest associations were all amino acids, which (ordered by association P-value: tyrosine, 420 

alanine, phenylalanine, leucine valine, glutamine, histidine, and leucine) were all inversely 

associated with BMI (S6 Fig.). For example, while alanine levels (fasting mean = 0.359 

mmol/L) were elevated after a liquid mixed meal (postprandial mean = 0.376 mmol/L, paired 423 

t-test P = 2.53x10-181) the effect attenuated as BMI increased (beta = -0.056, se = 0.004, P = 

5.72x10-51, Fig. 4a) such that the effect of BMI on alanine response was negative (Fig. 4b). 

This relationship was observed for all amino acids in the data set (Fig. 2).  426 

 

The strongest positive response association was observed for triglycerides in very large HDL 

(xlhdltg: beta = 0.037, se = 0.004, P = 5.88x10-21). This was followed closely by the ratio of 429 

(1) cholesterol esters, (2) triglycerides, and (3) total cholesterol to total lipids in very large 

HDL. Conversely, the response trait ratio of phospholipids to total lipids in very large HDL 

decreased as BMI increased. This suggests that following a liquid mixed meal the increase of 432 

phospholipids relative to total lipids in very large HDL is attenuated by BMI and conversely, 

the ratio of cholesterol and triglycerides to total lipids in very large HDL increased as BMI 

increased (Fig. 2).  435 

 

Outside of amino acids and lipoproteins, other metabolite response traits that had a positive 

association with BMI included 3-hydroxybutyrate (ketone body), creatinine (fluid balance), 438 

linoleic acid, and total fatty acids (fatty acids). Others with an inverse association with BMI 

included glucose and lactate (glycolysis), the ratio of linoleic acid to total fatty acids, and the 

ratio of omega-6 fatty acids to total fatty acids (fatty acid ratios; S3 File).  441 

 

Possible	confounders		
The instrumental variable used, BMI-PGS, explains 4.7% of the variation in BMI, and for 444 

each unit increase in BMI-PGS there is a 3.26 (se = 0.20) unit (kg/m2) increase in BMI (P = 

3.61x10-60, wNEO analysis, Table 1). An assessment of the correlation between BMI and 

BMI-PGS with study covariables was performed to identify possible confounders, specifically 447 

those that would violate the second MR assumption (exchangeability). Of the 91 tested 

covariables, 60 were associated with BMI (wNEO, P < 9.26x10-4; Table S4 in S1 File and S7 
Fig.), and 17 were associated with BMI-PGS (S8 Fig.). Those 17 that associated with BMI-450 

PGS included other adiposity traits (n = 5), sub-population, visit date, genetic principal 
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component 3, (imputed) smoking packyears, on a weight loss diet, type of diet, on a diet last 

month, a food rule, mean CO2 production, and a peroxidation sample quality flag. The 17 453 

covariables associated the BMI-PGS were tested for an association with each metabolite trait 

(the outcomes) in a univariable linear model. Results illustrated broad association across all 

traits and covariables, defining each covariable as a confounder in MR analysis leading to 456 

sensitivity analyses discussed below (S9 Fig.). A more comprehensive description of these 

analyses is in S1 Text.  

 459 

Estimating	the	causal	effect	of	BMI	on	metabolite	trait	variation	
MR analyses (wNEO) support broad associations between BMI and metabolites as suggested 

by the overall strong correlation between observational and MR estimates (Pearson’s r = 462 

0.852, P = 1.02x10-194, intercept = 1.54x10-03, slope = 0.911). The correlation was strongest 

for postprandial traits (Pearson’s r = 0.921, P = 4.44x10-95, intercept = 3.59x10-03, slope = 

0.922) and weaker for fasting (Pearson’s r = 0.871, P = 7.71x10-72, intercept = 7.62x10-03, 465 

slope = 0.855) and response traits (Pearson’s r = 0.62, P = 1.11x10-25, intercept = -6.36-03, 

slope = 1.08, Figure 3D). Forty-two observational and MR effect estimates showed evidence 

of being different from each other (z-test P< 0.05), yet none remain so after correcting for 468 

multiple tests (P < 0.05/687). Overall, these observations indicate that cross-sectional 

estimates have reasonable power at predicting MR estimates for these exposure-outcome 

analyses, consistent with previous work (18).  471 

 

A total of 201 metabolite traits (across fasting, postprandial, and response states; Figure 5, S3 
File) showed nominal evidence of association (P < 0.05) with BMI and 20 (Table 2, Figure 474 

6) showed evidence of association with BMI (P < 1.16x10-3; S10 Fig.). MR effect estimates 

varied more between sexes (Pearson’s r = 0.368, p = 1.93x10-23) than observed in 

observational results, with 86 showing evidence of being different from each other (z-test P< 477 

0.05), yet none remaining so after correcting for multiple tests (P < 0.05/687). Nine metabolite 

traits (7 fasting, 2 response) showed evidence of association with BMI in females, eight of 

which were unique to females (Figure 6). This included fasting small HDL triglycerides 480 

(shdltg_f) and fasting very small VLDL triglycerides (xsvldltg_f), both of which increased 

with increases in BMI.  In contrast, five metabolites were associated with BMI in men, one of 

which was unique to men – postprandial glutamine, which had an inverse relationship with 483 

BMI (gln_p; Figure 6). The other four metabolites shared an association with the general 
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population. They are, fasting and postprandial citrate (cit_f, cit_p), and the ratio of linoleic 

acid to total fatty acids in both the fasting and postprandial state (lafa_f, lafa_p). Each of 486 

which were also inversely associated with BMI. On average MR effect estimates were larger 

in females (absolute mean beta = 0.047) than males (absolute mean beta = 0.026, paired t-test 

P = 1.43x10-45).  489 

 

MR	results	-	fasting	
A total of 87 fasting traits exhibited nominal evidence of an association with BMI in the 492 

general population, five remained after correction for multiple testing (Table 2, Figure 6, S3 

File). The strongest association observed was with the ratio of linoleic acid to total fatty acids 

(lafa; beta = -0.106, se = 0.025, P = 1.80x10-5). This was followed closely by 4 other inverse 495 

associations: the ratio polyunsaturated fatty acids (pufafa; beta = -0.081, se = 0.024, P = 

6.80x10-4) to total fatty acids, the ratio omega-6 to total fatty acids (faw6fa; beta = -0.081, se 

= 0.024, P = 6.97x10-4) and the abundance of citrate (cit; beta = -0.079, se = 0.024, P = 498 

8.63x10-4). In addition, one fasting metabolite showed evidence of a positive association with 

BMI, the branched-chain amino acid leucine (leu; beta = 0.068, se = 0.020, P = 5.62x10-4). If 

data is summarized by metabolite annotation class (Table S1 in S1 File), we find that the 501 

classes with the largest average absolute BMI effect are ketone bodies (average beta = -0.047, 

n = 2), amino acids (0.036, n = 8), inflammation (0.029, n = 1), glycerides and phospholipids 

(0.027, n = 9) and lipoprotein subclasses (0.023, n = 98). Those with the smallest average 504 

absolute effect are lipoprotein particle size (0.009, n = 3), lipoprotein subclass ratios (0.003, n 

= 70), and cholesterol (0.002, n = 9) (S10 Fig.). 
 507 

MR	results	-	postprandial	
A total of 96 postprandial metabolites exhibited nominal evidence of an association with BMI, 

12 remained after correcting for multiple testing (Table 2, Figure 6, S3 File). Like the fasting 510 

metabolite traits the fatty acid ratios linoleic acid (lafa; beta = -0.092, se = 0.025, P = 2.0x10-

4), omega-6 (faw6fa; beta = -0.080, se = 0.024, P = 7.83x10-4), polyunsaturated fatty acids 

(pufafa; beta = -0.077, se = 0.024, P = 1.10x10-3) and citrate (cit; beta = -0.105, se = 0.022, P 513 

= 2.83x10-6), who had the largest effect, each also had an inverse relationship with BMI 

(Figure 5-6). In addition, the amino acid histidine (his), large HDL cholesterol (l.hdl.c) and 

free cholesterol (l.hdl.fc) decreased with increases in BMI. Further, the ratio of cholesterol 516 

(l.hdl.c.pct), cholesterol esters (l.hdl.ce.pct), and free cholesterol (l.hdl.fc.pct) to total lipids in 

HDL decreased with increases in BMI. Finally, the ratio of free cholesterol to total lipids in 
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IDL (idl.fc.pct) and the ratio of phospholipids to total lipids in medium VLDL (m.vldl.pl.pct) 519 

decreased with increases in BMI. If data is summarized by metabolite annotation class (Table 
S1 in S1 File), we find that the classes with the largest average absolute BMI effect are 

glycolysis related metabolites (average beta = -0.046, n = 3), inflammation (0.40, n = 1) and 522 

lipoprotein subclasses (0.02, n = 98). The average effect among amino acids is not negative (-

0.019, n = 8) in opposition to that seen in fasting data (S10 Fig.).  
 525 

MR	results	-	response	
A total of 18 response metabolites exhibited nominal evidence of an association with BMI, 

three remained after correcting for multiple testing (Table 2, Figure 6, S3 File). The largest 528 

effect was observed for the amino acid alanine (ala: beta = -0.081, se = 0.023, P = 5.91x10-04). 

Data suggested that increases in BMI attenuates the increase in abundance of the amino acid 

alanine after a liquid mixed meal (Figure 5-6) – consistent with observational analyses above 531 

(Figure 4). The other two response traits that associated with BMI are the ratio of 

phospholipids in medium VLDL to total lipids in medium VLDL (m.vldl.pl.pct; beta = 0.091, 

se = 0.027, P = 6.75x10-4) and the ratio of free cholesterol in small VLDL to total lipids in 534 

small VLDL (s.vldl.fc.pct; beta = 0.082, se = 0.025, P = 1.11x10-3). As a class, amino acids 

(average beta = -0.059, n=8) had the largest average BMI response effect estimate (S10 Fig.). 
This was followed by the ketone bodies acetate and beta-hydroxybutyrate (mean beta = 0.048, 537 

n = 2) and the glycolysis related metabolites citrate, glucose, and lactate (mean beta = -0.042, 

n = 3). 

 540 

Sub-population	and	sensitivity	analyses	
 
All observational and MR analyses were repeated in each of the two sub-populations and in 543 

the NEO cohort without the inclusion of weights. These analyses allowed us to evaluate the 

variability in effect estimates measured in a random (Leiderdorp) and biased (Leiden) 

population sample as well as the effectiveness of the weights in our primary analyses 546 

(wNEO). We found that effect estimates from the Leiderdorp and the wNEO frameworks are 

strongly correlated (observational Pearson’s r = 0.983, MR = 0.855) and correlation 

coefficients weakened when compared to the un-weighted NEO and the Leiden frameworks 549 

(S11 Figure). Decreases in agreement between analyses as the sample population mean BMI 

shifts would indicate that there are either un-accounted confounders influencing the results or 

that the relationship between BMI and metabolite trait variation is not always linear. 552 
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To evaluate the influence of confounders on MR effect estimates we reran the association 

analysis in the wNEO data set. Three additional covariates were included in the model 555 

(smoking, on a weight loss diet, and PC3) and 101 sample with a peroxidation sample quality 

flag, a sample quality metric identified by Metabolon, were removed. Overall primary 

(wNEO) observational (Pearson’s r = 0.998) and MR (Pearson’s r = 0.963) effect estimates 558 

correlate strongly with those from the sensitivity analysis (S7 File). A more comprehensive 

description of these analyses is in S1 Text.  

Discussion	561 
 
This study provides effect estimates for observational and MR associations between BMI and 

metabolites in a (1) fasted, (2) postprandial, and (3) response state, using individual level data 564 

from a middle-aged cohort of 5517 individuals of Northern European ancestry including a 

liquid mixed meal challenge. Each dietary state provides a unique examination at metabolite 

variation, the value of which are actively being explored. Broad observational associations 567 

were observed between BMI and metabolites (69% of tested traits). In addition, MR estimates 

were largely concordant with the observational estimates (Figure 3D).  This is consistent with 

previous research and suggests that, at least for this lipidomic platform, observational 570 

estimates are reasonably well aligned to MR effect estimates (18). This generalization holds 

less true for response traits than for postprandial and fasting trait (Figure 3D). After 

correcting for multiple testing, 20 metabolite traits maintain evidence of a causal BMI effect 573 

(Figure 6). This includes the inverse association with fasting and postprandial ratios of 

linoleic acid (lafa), omega-6 (faw6fa), and polyunsaturated fatty acids (pufafa) to total fatty 

acids and fasting and postprandial citrate (cit) abundance. In addition, the amino acid leucine 576 

has a positive MR association with BMI in the fasting state, histidine has an inverse MR 

association with BMI in the postprandial state and alanine has an inverse MR association with 

BMI in the response state.  579 

	
We compared our observational effect estimates to fifty-seven matching fasting metabolites 

measured using the same platform, in a young adult cohort (18). Overall effect estimates 582 

correlated well (Pearson’s r = 0.82), with the caveat that estimates cannot be directly 

compared given differences in data transformations between the studies. However, there are 
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37 shared associations, 6 unique to this study, 12 unique to the other and 2 yielding no 585 

association in either study (Figure 3B). Five of the shared associations were different across 

studies (total cholesterol, sphingomyelins, phosphatidylcholines, phosphoglycerides, and 

linoleic acid). Among the 12 metabolites unique to existing work before that presented here, 588 

are 10 metabolites that previously exhibited a strong positive effect but showed no evidence 

for an association or negative point estimates here (total lipids in IDL, large LDL, medium 

LDL and small LDL, total cholesterol in IDL and LDL, and four fatty acid metabolites 591 

omega-3, omega-6, polyunsaturated fatty acids, and docosahexaenoic acid). These differences 

may be the product of non-linear associations between these metabolites and BMI in 

combination with age effects and differences in the distribution of BMI between these studies. 594 

Despite these difference, 57 fasting MR estimates that did overlap with previous work showed 

strong correlation between the two studies (Person’s r = 0.862, P = 7.99x10-18; S12 Fig.), with 

one shared fasting MR association – the amino acid leucine.  597 

 

Given the prevalence of lipoproteins and their lipids on this platform we looked for the 

expected atherogenic lipoprotein profile – that is decreases in HDL and increases in non-HDL 600 

lipoproteins with increase in BMI (63–66). Both observational and MR associations between 

BMI and fasting and postprandial dietary states do suggest a worsening atherogenic 

lipoprotein profile with BMI (Figure 7, S13 Fig, and S14 Fig.). As illustrated with the fasting 603 

observational effect estimates in Figure 7, the atherogenic VLDL lipoproteins are higher with 

increases in BMI while non-atherogenic lipoproteins – or those involved in the reverse 

cholesterol transport system (HDL), were lower. In contrast to expectations, other atherogenic 606 

lipoproteins IDL and LDL, largely do not associate with BMI. In addition, triglycerides in 

non-atherogenic medium HDL and small HDL increase with increases in BMI. Further, as 

HDL lipoprotein density increases the inverse relationship with BMI weakens and as seen 609 

with small HDL the association becomes positive (Figure 7). This is consistent with the 

observation above that the strongest inverse association with BMI is that with average 

diameter of HDL particles, suggesting that as BMI increases there is a associated shift toward 612 

smaller HDL particle size. Along with these changes, other observations were consistent with 

obesity influencing lipid profiles that are associated with cardiometabolic disease (17,25,67). 

These included increases in apolipoprotein B, decreases in apolipoprotein A-1 and increases 615 

in the ratio of B to A-1 with increases in BMI, in both the fasting and postprandial states 

(65,68).  

 618 
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The MR association of BMI across branched chain (BCAA) and aromatic (AAA) amino acids 

were similar with positive effects in the fasting state, no effect in the postprandial state, and an 

inverse association in the response state (Figure 2 and 5).  Meanwhile the dietary profile of 621 

(glucogenic) amino acids suggest no effect in the fasting state and inverse effects in both the 

postprandial and response states. These observations may suggest that BMI may have a causal 

influence on the synthesis or metabolism of amino acids in general, particularly regarding 624 

their inverse association with BMI in the response state (Figure 2 and 5). BCAAs and AAAs 

have long been associated with obesity, glucose, insulin (resistance), and type 2 diabetes (69–

75). In support of early observations, numerous recent studies that have shown associations 627 

between amino acids and BMI, visceral adipose tissue and weight change (18,36,76–78), 

between BCAAs and AAAs with insulin resistance and type 2 diabetes (79–82), used MR to 

show that insulin resistance increase BCAAs concentration (83) and used a randomized 630 

control trail to show that restricting BCAAs can improve glucose tolerance and reduce fat 

accumulation (84). Indeed evidence now suggests a potential causal pathway from BMI to 

type 2 diabetes via the intermediate traits of insulin resistance and BCAAs, respectively (83). 633 

Observations here reinforce the causal association between BMI and amino acids, with the 

additional observations that postprandial abundance of the glucogenic amino acids decreases 

with BMI and that the relative change in amino acid abundance in response to a liquid mixed 636 

meal decreases with increases in BMI.  

 
As the study was centered in the Netherlands, study samples were limited to individuals of 639 

Northern European ancestry and as such inferences made from results should be limited to 

populations of similar ancestry and environment. Sampling was limited to individuals of 

middle age (range 44 to 66 years and a mean of 56, Table 1). Whilst this provides specificity 642 

to a middle age population it also limits the results to this population age range as well. The 

NEO population sampling was performed in two distinct batches, one focused on 

oversampling individuals of high BMI (Leiden) and a second a random and representative 645 

sampling of the population (Leiderdorp). The product of this led to the use of weighted linear 

regression analyses to maintain sample size and power, while also providing estimates that are 

representative of the study population at large. The validity of this assumption rests in the 648 

credibility of the weights, which were specifically designed to make the BMI distribution of 

the Leiden sample mirror that of the Leiderdorp sample (85). We have illustrated through 

comparison with the Leiderdorp sample that effect estimates are consistent across the two 651 

analyses, imparting support to the weighted analysis (S11 Figure). With these factors, there 
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was just a single postprandial time point evaluated here limiting the inferences that can be 

drawn. It is reasonable to speculate that an earlier time point, or a complete time series would 654 

provide additional information about how BMI might influence postprandial variation. 

Finally, while a single complex meal standardizes the complexities in evaluating metabolite 

response and postprandial abundances alternative meals could provide novel insights in the 657 

interplay between BMI, nutrition, and metabolite variation. 

	
In conclusion, using a middle-aged cohort of 5517 individuals we have demonstrated that 660 

effect estimates for BMI on metabolite traits in the fasting, postprandial and response dietary 

states. We have been able to show that results are broadly correlated between observational 

and one-sample Mendelian randomization analyses and in the context of the numerous 663 

documented associations between BMI, metabolites and disease, this gives support to a 

conclusion that metabolites may act as intermediates – or at the least biomarkers of underlying 

driver physiology – between adiposity accumulation and disease. Furthermore, this work 666 

suggests that the dynamic metabolome may potentially flag common biological events which 

will systematically vary by BMI, which may be linked to the aetiology of disease and which 

are linked to life course events such as feeding and metabolic response.  669 
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Tables	
 

Table	1.	Population	summary	statistics	

Trait	 NEO	 Men	 Women	 Leiderdorp	 Leiden	
var	exp	
by	sub-
pop	

p-value	

sex	 M:2671 
F:2846 

M:2671 
F:0 

M:0 
F:2846 

M:623 
F:783 

M:2048 
F:2063 0.17% 3.65E-04 

age	 55.99 
(45.00-65.00) 

56.13 
(45.00-65.00) 

55.86 
(45.00-65.00) 

56.13 
(46.00-65.00) 

55.95 
(45.00-65.00) 0.02% 3.26E-01 

height	 1.74 
(1.57-1.92) 

1.81 
(1.68-1.95) 

1.67 
(1.55-1.79) 

1.73 
(1.57-1.92) 

1.74 
(1.57-1.92) 0.03% 2.03E-01 

weight	
90.58 

(60.00-
126.80) 

97.45 
(72.95-131.60) 

84.14 
(57.20-121.52) 

79.16 
(54.00-116.15) 

94.49 
(69.60-128.85) 16.12% 9.63E-213 

waist	
circ.	

102.01 
(74.00-
129.00) 

106.32 
(85.79-131.00) 

97.96 
(71.00-126.00) 

91.22 
(70.00-119.00) 

105.70 
(86.00-131.00) 22.87% 2.85e-313 

hip	
circ.	

110.23 
(94.00-
133.00) 

108.57 
(96.00-125.00) 

111.79 
(92.00-138.00) 

103.40 
(90.00-124.17) 

112.57 
(99.00-135.00) 16.22% 3.33E-214 

pack	
years	

11.21 
(0.00-52.38) 

13.71 
(0.00-61.69) 

8.88 
(0.00-43.83) 

8.69 
(0.00-43.32) 

12.09 
(0.00-55.20) 0.83% 1.01E-10 

alcohol	 15.52 
(0.00-60.52) 

21.40 
(0.00-73.24) 

10.00 
(0.00-41.72) 

14.58 
(0.00-54.06) 

15.84 
(0.00-62.57) 0.10% 1.95E-02 

smokin
g	

(N|F|C)	
34.11 |  

49.85 | 16.03 
30.32 |  

50.49 | 19.19 
37.67 |  

49.26 | 13.07 
39.29 |  

46.76 | 13.95 
32.34 |  

50.91 | 16.74 0.38% 4.11E-06 

higher	
ed	%	 38.58 42.27 35.12 50.5 34.48 1.52% 6.24E-26 

BMI	 29.98 
(21.40-41.35) 

29.74 
(22.72-38.99) 

30.20 (20.64-
42.90) 

26.24 
(19.94-37.20) 

31.26 
(26.02-42.19) 20.70% 3.66E-280 

BMI-
PGS	

10.20 
(9.64-10.78) 

10.20 
(9.63-10.78) 

10.20 
(9.65-10.77) 

10.14 
(9.56-10.71) 

10.22 
(9.67-10.80) 1.63% 1.53E-21 

R2	 0.0431,  
 0.0473** 0.0439 0.0453 0.0427 0.0243 - - 

beta	
(se)	
	

3.38 (0.21), 
3.26 (0.20)** 2.77 (0.25) 4.00 (0.34) 3.14 (0.40) 2.25 (0.22) - - 

P	 8.10x10-55 

3.61x10-60** 7.23x10-28 1.57x10-30 5.10x10-15 8.22x10-24 - - 

 40 

Table 1: Population summary statistics for the (1) complete NEO cohort, for (2) men and (3) women 

of the NEO cohort and the two NEO sub-populations (4) Leiderdorp and (5) Leiden, respectively. For 

each variable: age, height, weight, waist circumference, hip circumference, waist-hip ratio, smoking 

in pack years, alcohol consumption in grams per day, the percent of the population with higher 

education, BMI, and BMI-PGS the mean (95% confidence intervals) is provided. In addition, the 45 

number of men and women in each sample (sub-)population is provided (sex). The last three rows of 

data provide summary statistics describing the relationship between the instrumental variable (BMI-

PGS) on the exposure (BMI). Specifically, the variance explained (R2), the effect estimate (beta) and 

standard error (se), and the P-value (P) are provided. Estimates suffixed with ** are derived from 

linear models that include sample weights. The last two columns of data provide an estimate of the 50 

proportion of variation (in NEO) of the trait (in the row) explained by variation between the sub-

population samples, as estimated by a linear regression, and the model P-value. 
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Table	2	Metabolite	traits	causally	associated	with	BMI		
 55 

trait metabolite class dietary 
state 

beta se P 

lafa_f Ratio of 18:2 linoleic acid to 
total fatty acids (%) 

Fatty acids 
ratios 

fasting -0.106 0.025 1.80E-05 

faw6fa_f Ratio of omega-6 fatty acids 
to total fatty acids (%) 

Fatty acids 
ratios 

fasting -0.081 0.024 6.97E-04 

pufafa_f Ratio of polyunsaturated 
fatty acids to total fatty 

acids (%) 

Fatty acids 
ratios 

fasting -0.081 0.024 6.80E-04 

cit_f Citrate (mmol/l) Glycolysis 
related 

metabolites 

fasting -0.079 0.024 8.63E-04 

leu_f Leucine (mmol/l) Amino acids fasting 0.068 0.020 5.62E-04 
lhdlc_p Total cholesterol in large 

HDL (mmol/l) 
Lipoprotein 
subclasses 

postprandial -0.076 0.023 1.12E-03 

lhdlfc_p Free cholesterol in large 
HDL (mmol/l) 

Lipoprotein 
subclasses 

postprandial -0.077 0.023 9.73E-04 

mvldlplpct_p Phospholipids in medium 
VLDL to total lipids in 

medium VLDL ratio (%) 

Lipoprotein 
subclasses 

ratios 

postprandial -0.073 0.022 9.98E-04 

idlfcpct_p Free cholesterol in IDL to 
total lipids in IDL ratio (%) 

Lipoprotein 
subclasses 

ratios 

postprandial -0.079 0.023 5.08E-04 

lhdlcpct_p Total cholesterol in large 
HDL to total lipids in large 

HDL ratio (%) 

Lipoprotein 
subclasses 

ratios 

postprandial -0.085 0.025 7.90E-04 

lhdlcepct_p Cholesterol esters in large 
HDL to total lipids in large 

HDL ratio (%) 

Lipoprotein 
subclasses 

ratios 

postprandial -0.086 0.026 1.03E-03 

lhdlfcpct_p Free cholesterol in large 
HDL to total lipids in large 

HDL ratio (%) 

Lipoprotein 
subclasses 

ratios 

postprandial -0.095 0.025 1.20E-04 

lafa_p Ratio of 18:2 linoleic acid to 
total fatty acids (%) 

Fatty acids 
ratios 

postprandial -0.092 0.025 2.00E-04 

faw6fa_p Ratio of omega-6 fatty acids 
to total fatty acids (%) 

Fatty acids 
ratios 

postprandial -0.080 0.024 7.83E-04 

pufafa_p Ratio of polyunsaturated 
fatty acids to total fatty 

acids (%) 

Fatty acids 
ratios 

postprandial -0.077 0.024 1.10E-03 

cit_p Citrate (mmol/l) Glycolysis 
related 

metabolites 

postprandial -0.105 0.022 2.83E-06 
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his_p Histidine (mmol/l) Amino acids postprandial -0.085 0.024 3.96E-04 
mvldlplpct_r Phospholipids in medium 

VLDL to total lipids in 
medium VLDL ratio (%) 

Lipoprotein 
subclasses 

ratios 

response -0.091 0.027 6.75E-04 

svldlfcpct_r Free cholesterol in small 
VLDL to total lipids in small 

VLDL ratio (%) 

Lipoprotein 
subclasses 

ratios 

response -0.082 0.025 1.11E-03 

ala_r Alanine (mmol/l) Amino acids response -0.081 0.023 5.91E-04 

		
Table 2: MR association summary statistics for the 20 metabolite traits associated with BMI. Provided 
are the trait name, metabolite description and units, metabolite class as defined by Nightingale 
Heath, the dietary state, and the effect estimate, standard error, and P-value. The effect estimates 
are in normalized standard deviation units of change per 1 unit change of BMI (kg/m2). 60 
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Figures	

Figure	1	Mendelian	Randomization	schematic	
 65 

 

Figure 1:  A schematic or directed acyclic graph of the Mendelian randomization framework. The MR 

framework in this study assumes (1) that the instrument is robustly associated with the outcome, (2) 

that the instrument is not associated with variables that are associated to the outcome and (3) that 

the instrument acts on the outcome only through the exposure and not through a pleiotropic 70 

pathway. 

 

 

	
 	75 
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Figure	2:	Observational	effect	estimate	forest	plot	

 

Figure 2: Observational BMI – metabolite abundance and response effect estimates. Point 

estimates and 95% confidence intervals for BMI on fasting metabolite abundance (green), 

postprandial metabolite abundance (blue), and metabolite response (red). Metabolites are classified 80 

and organized by Nightingale Health sub-class assignments. Metabolites that are associated with 

BMI, after multiple test correction (P<0.05/43), are indicated as solid color point estimates.  
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Figure	3:	Scatter	plots	85 

 

Figure 3: Scatter plots. In all plots the solid black line is a best fit regression line, the dotted black line 
is an equivalency line (intercept = 0, slope = 1), the dashed vertical and horizontal line indicate the 
zero values, and a Pearson’s correlation coefficient is in the bottom right corner. (A) Scatter plot of 
BMI-metabolite cross-sectional effect estimates for females (x-axis) and males (y-axis). Point 90 
estimates are colored red if there is an association between the metabolite and BMI in both sexes, 
blue if an association was only observed in females, green if an association was only observed in 
males, and purple if no association was observed in either sex. Point estimates are shaped as circles, 
squares, and triangles to represent the three dietary states fasting, postprandial, and response, 
respectively. (B) Scatter plot of BMI-metabolite cross-sectional effect estimates from Wurtz et al (x-95 
axis) and NEO (this study, y-axis). Point estimates are colored red if there is an association between 
the metabolite and BMI in NEO, blue if an association was only observed in Wurtz et al, green if an 
association was observed in both studies, and purple if no association was observed in either study. 
(C) Scatter plot of BMI-metabolite cross-sectional effect estimates for fasting (x-axis) and 
postprandial (y-axis) dietary states. Point estimates are colored red if there is an association between 100 
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the metabolite and BMI in the fasting state, blue if an association was only observed in the 
postprandial state, green an association was observed in both dietary states, and purple if no 
association was observed in either. Point estimates are shaped as circles if they are not different 
between the two dietary states – as determined by a z-test – shaped as squares if they are nominally 
different (P < 0.05) and triangles and labeled if they are different after correcting for multiple tests (P 105 
< 0.05/229). (D) Scatter plot of BMI-metabolite cross-sectional (x-axis) and MR (y-axis) effect in the 
fasting (top and green), postprandial (middle and blue), and response (bottom and red) dietary 
states.  Metabolites with effect estimates that differ between the cross-sectional and MR analyses 
are solid circles and labelled with the metabolite name. 

	110 

Figure	4	Alanine	response	

Figure 4: Association of BMI with alanine response. Plot on the left illustrates the correlation 
between fasting (x-axis) and postprandial (y-axis) tyrosine abundance, with a best fit line for 4 BMI 
classes of individuals: healthy (BMI < 25), overweight (25 <= BMI < 30), obese (30 <= BMI < 40), and 115 
severely obese (BMI > 40). All best fit lines were forced through an intercept of zero. Note that the 
slope of the best fit line is largest for individuals who have a healthy BMI and smallest for those who 
have severe obesity. The plot on the right illustrates the inverse relationship between BMI (x-axis) 
and tyrosine response (y-axis). The blue line is a best fit linear regression line, the black line is a best 
fit generalized additive model (GAM) smooth (non-linear regression), and the red, blue, green, and 120 
purple line intervals are best fit regression for each clinically defined portion of the BMI distribution, 
which mirror the non-linear regression. 
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Figure	5:	Forest	plot	of	MR	effect	estimates	125 

 

Figure 5: Forest Plot of MR effect estimates. Point estimates and 95% confidence intervals for BMI 

on fasting metabolite abundance (green), postprandial metabolite abundance (blue), and metabolite 

response (red). Metabolites are classified and organized by Nightingale Health sub-class assignments. 

Metabolites that are associated with BMI, after multiple test correction (P<0.05/43), are indicated as 130 

solid color point estimates. 
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	135 

Figure	6:	Metabolites	associated	with	BMI	in	MR	analyses	

 

Figure 6: Metabolites associated with BMI in MR analyses. A forest plot of effect estimates (points) 

and 95% confidence intervals (whiskers) for MR (blue, “tsls” prefix) and observational (green, “obs” 

prefix) effect estimates for the weighted NEO (wNEO), weighted NEO female (wNEO_female), and 140 

weighted NEO male (wNEO_male) (sub-)populations. Fasting, postprandial, and response association 

observed in the general population as well as those association only seen in females and males.  
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Figure	7:	Fasting	lipoprotein	cross-sectional	profile	

 145 

Figure 7: Fasting lipoprotein cross-sectional profile. (Upper) A tile plot of cross-sectional effect 

estimates for lipoproteins and lipoprotein ratios in the fasting state. Tiles with an effect estimate 

provided in text are those associated with BMI (p<1.16x10-3). The lipoproteins are organized by size 

or density along the x-axis, and the component or ratio being measured is along the y-axis. (Lower) A 

dot plot or profile of cross-sectional effect estimates for lipoproteins (x-axis) ordered by lipoprotein 150 

size or density with effect estimates (y-axis). The component or measurement of each lipoprotein are 

defined by the color as described in the key. 	
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