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ABSTRACT

Introduction:  

Pancreaticoduodenectomy (PD) for patients with pancreatic ductal adenocarcinoma (PDAC) 

is associated with a high risk of postoperative complications (PoCs) and risk prediction of 

these is therefore critical for optimal treatment planning. We hypothesize that novel deep 

learning network approaches through transfer learning may be superior to legacy approaches 

for PoC risk prediction in the PDAC surgical setting.

Methods:

Data from the US National Surgical Quality Improvement Program (NSQIP) 2002-2018 was 

used, with a total of 5,881,881 million patients, including 31,728 PD patients. Modelling 

approaches comprised of a model trained on a general surgery patient cohort and then tested 

on a PD specific cohort (general model), a transfer learning model trained on the general 

surgery patients with subsequent transfer and retraining on a PD-specific patient cohort 

(transfer learning model), a model trained and tested exclusively on the PD-specific patient 

cohort (direct model), and a benchmark random forest model trained on the PD patient cohort 

(RF model). The models were subsequently compared against the American College of 

Surgeons (ACS) surgical risk calculator (SRC) in terms of predicting mortality and morbidity 

risk.

Results:

Both the general model and transfer learning model outperformed the RF model in 14 and 16 

out of 19 prediction tasks, respectively. Additionally, both models outperformed the direct 

model on 17 out of the 19 tasks. The transfer learning model also outperformed the general 

model on 11 out of the 19 prediction tasks. The transfer learning model outperformed the 
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ACS-SRC regarding mortality and all the models outperformed the ACS-SRC regarding the 

morbidity prediction with the general model achieving the highest Receiver Operator Area 

Under the Curve (ROC AUC) of 0.668 compared to the 0.524 of the ACS SRC.

Conclusion:

DNNs deployed using a transfer learning approach may be of value for PoC risk prediction in 

the PD setting.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related deaths in 

Western countries, with a 5-year survival rate of approximately 12%, making it the cancer 

with the lowest 5-year survival rate in the United States.1 Furthermore, patients with 

successfully resected tumors have a 3-year survival rate of only 20-34%,2 which is 

attributable to a combination of aggressive tumor growth patterns and poor response to 

oncological treatment.3-5 

Surgical resection in the form of pancreaticoduodenectomy (PD, Whipple’s procedure), distal 

pancreatectomy (DP) or total pancreatectomy (TP) - provides the only curative option for 

patients with PDAC. These procedures are, however, associated with a plethora of 

postoperative complications (PoCs) such as Superficial Surgical Site Infections (SSSIs), 

Organ/Space Specific Surgical Site Infections (OSSI), venous thromboembolism (VTE’s), 

hemorrhage, and death, collectively affecting upwards of 40% of patients undergoing PD.6 

These complications not only prolong the surgical treatment phase and subject patients to 

significant morbidity, but could furthermore render the patient unable to proceed with 

adjuvant chemotherapy due to frailty issues. 7

Due to these factors as well as the fact that upwards of 80% of successfully resected patients 

suffer tumor recurrence 8, the risk of an operative approach to PDAC treatment needs to be 

carefully weighed against the potential benefits, and tools for identifying PoC risks thus play 

an important role in selecting optimal treatment strategies for PDAC patients. While multiple 

risk prediction tools have been proposed for both general surgical and PDAC patients, these 

have reported varied performance in terms of identifying PoC risks 9,10, especially for PD 

patients11. Novel approaches such as artificial intelligence (AI) deep neural networks (DNNs) 
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have, however, recently shown superior performance over legacy approaches in PoC 

prediction12  although the potential value for pancreatic surgery patients remain unknown. 

Legacy risk prediction models often have the inherent drawback of being trained on general 

surgical cohorts with subsequent applications to specific surgical procedure such as PD. In 

contrast, DNN approaches can leverage the power of transfer learning, meaning that the 

model can be trained and learn general features from one patient cohort (e.g., learning 

features associated with PoC’s in general surgical populations) with subsequent retraining 

and fine tuning on a specific surgical procedure or cohort (e.g., patients undergoing a PD 

procedure. This makes it possible to create new models with knowledge of previously 

predicted input and output relationship which can then further be refined and improved 

through training on new data13. Investigating whether DNNs and the potential of transfer 

learning could be of value in predicting PoC risk for PD patients presents the goal of this 

study. We hypothesize that transfer learning of a DNN previously trained on a large-scale 

dataset with many operation types, to a dataset consisting exclusively of PD could be superior 

to legacy approaches.

METHODS

This study was conducted using a dataset obtained from the US American College of 

Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) which includes 

manually curated PoC’s from more than 700 US hospitals across 2,941 different procedure 

subtypes. For this study we used the 2002 to 2018 dataset available through NSQIP. The 

study and the use of the dataset was approved by NSQIP. IRB approval was waived by the 

Massachusetts General Hospital IRB. 
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Datasets and Modelling Approaches

The dataset included manually labelled data from 5,881,881 million patients with more than 

150 different variables for each patient such as perioperative biochemistry, height, weight, 

age, smoking status, comorbidities, demographic, American Society of Anesthesiology 

(ASA) score, and postoperative complications as defined by NSQIP14 and shown in table 1.

A graphical representation of patient selection and allocation into training and test data is 

illustrated in figure 1. Of the 5,881,881 patients in the NSQIP dataset, we identified 31,944 

patients as having undergone a PD procedure (as indicated by the CPT codes 48150, 48152, 

48153, and 48154). A total of 216 patients were excluded from the study due to having 

undergone a PD operation with a duration of 2 hours or less because we assessed that the 

procedure may not have been completed and there would thus be a risk of incorrect coding, 

resulting in a final sample size of 31,728 patients. 

The dataset of 31,728 PD patients was randomly split into two datasets: a dataset with 12,907 

PD patients (40%) which would be recombined with the non-PD dataset (5,862,034 patients) 

containing non-PD patients and thus all operation types (termed “general dataset” in the 

following), which was fielded to allow the model to learn both general and PD-specific 

features. The second dataset was a dedicated PD dataset containing the remaining 19,037 

(60%) of patients (PD dataset): This dataset contained only PD patients.

The datasets were used for training and testing four different modelling approaches, aiming at 

identifying the optimal training and dataset use approach in the PD setting:
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1. Training of a DNN on the general dataset with direct porting and testing on the PD 

dataset (general model)

2. Transfer learning of a DNN, from a general to a PD specific setting. This model 

included training on the general dataset, with subsequent transferring to the PD dataset for 

retraining (transfer learning model)

3. Direct training of a DNN only on the PD dataset (direct model)

4. Direct training of a Random Forrest (RF) model directly on the PD dataset, serving as 

benchmarking (RF model)

Finally, models were benchmarked against the American College of Surgeons (ACS) 

Surgical Risk Calculator (SRC), where a mortality risk as well as a compound morbidity risk 

value was included in the NSQIP dataset.

 

To separate the PD patients between training, validation, and test sets, we randomly selected 

PD 2,000 patients (6.3%) into a test set to ensure the validity of all the models after training. 

The remaining 17,037 PD patients were then randomly split into an 80% training set 

(consisting of 13,632 PD patients) and a 20% validation set (consisting of PD 3,407 patients) 

which was used to test validity and tune hyperparameters for modelling approaches 1-4. 

Model architecture

The model architecture is depicted in figure 2. Categorical values were converted into 

integers, and a dimension was assigned to each category in an embedding matrix. To 

determine the dimension, we multiplied the cardinality (the number of unique values) of the 

variable by 1.6 and raised it to the power of 0.56. The resulting value was compared to a 

dimensional space of 600 used from the fast.ai library, and the lower value was selected as 
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the dimension of the given category15. This process was repeated for all categorical variables, 

and the resulting embeddings were passed into the same embedding space with enough 

dimensions to include separate dimensions for each categorical variable.

The categorical variables were then passed through a dropout layer, followed by a 

normalization layer with the continuous variables. This was followed by a linear layer and a 

rectified linear unit (ReLU) activation function layer. The resulting tensor was passed 

through a subsequent normalization, dropout, linear, ReLU activation function, 

normalization, and another dropout layer before finally passing through a linear layer with 19 

output variables denoting NSQIP’s 18 different complications and death. Backpropagation 

was used to train the trainable parameters through the Adam optimizer and combined with 

the loss function flattened Binary Cross Entropy with Logits Loss with positive weights.

To counteract the imbalance in the data, positive weights were applied to all datasets since 

there were fewer positive outputs than negative ones. The positive weight for each output 

variable was determined by calculating the ratio of negative outcomes to positive outcomes 

for each variable in the training sets.

The DNNs all had 53 embedding layers and trained for 5 epochs, but they differed in terms of 

the number of trainable parameters, learning rates, weight decay, and weights in the loss 

function. The general model was trained on a neural network model with 1,253,130 trainable 

parameters, a learning rate of 3e-3, and a weight decay of 0.2. The transfer learning model 

also had 1,253,130 trainable parameters, a learning rate of 2e-4, and a weight decay of 0.2. 

The direct model trained on PD patients had 703,219 trainable parameters, a learning rate of 

2e-4, and no weight decay was specified for this model.
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To compare the DNNs with a conventional method of handling structured tabular data we 

created a random forest model. Our random forest consisted of 100 trees, each trained on a 

sample of 75% of the total data. We used the DecisionTreeClassifier from Scikit-learn with a 

minimum of five samples per node to train each tree. For each split point in the decision 

trees, we randomly sampled 50% of the columns. We set the minimum number of samples 

required to be a leaf node to 40. 

Input variables

The input variables for the models included 64 different factors, which were gathered 

preoperatively as well as operation time which was recorded after the operation. These 

variables can be classified as either continuous or categorical. Continuous variables are 

hierarchical numerical values, such as weight, height, age, and protein levels in the blood, 

while categorical variables include smoking status, comorbidities, type of anesthesia used, 

specialty under which the patient was treated, and more.

To prepare the numerical variables for training, variables were normalized as implemented in 

the fast.ai library's normalize function. If any continuous variables had missing data, the "fill 

missing" function from the same library was applied, replacing the missing value with the 

median value for the corresponding group.

To treat the categorical variables for training, they were converted into vectors and updated in 

each epoch of training via the embedding process. If any categorical variables had missing 

data, they were given their own separate category and included in the dataset.

Prediction variables
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The prediction variables in the model were the PoC’s as defined by NSQIP, occurring up to 

30 days after the surgical procedure. Of these, 18 were related to morbidity and the last was 

mortality. To evaluate the performance of the models, the ROC_AUC metric (receiver 

operating characteristic curve area under the curve) was used on the test set of 2,000 PD 

patients. This metric was calculated for each of the 19 output variables across all four models. 

The average ROC_AUC value was then determined for the 18 morbidity variables in each of 

the four models. This value was compared to that of the risk calculator, which only provided 

the probability of morbidity and mortality without specifying the type of morbidity.

Permutations importance

We utilized permutation importance from the Scikit-learn library to evaluate and plot the 

impact of each variable on our model’s performance. This method involves randomly 

shuffling each input variable, thereby disrupting its relationship with the remaining variables, 

and resulting in an altered model score. If the model's score decreases upon shuffling a 

variable, it indicated a positive impact, represented as a positive value in the plot. 

Conversely, if the score increased, it denoted a negative impact, represented as a negative 

value.16 

RESULTS

The performance of the models on the test data is depicted in table 2 and figure 3 with the 

ROC_AUC as the evaluation metric for all 19 variables. The direct model (trained and tested 

on PD data only) generally had the poorest performance among the four models only having 

the best performance for predicting myocardial infarction (MI). The general model (trained 

on the general dataset containing both general and PD patients) and the transfer learning 
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model (trained on the general dataset with subsequent retraining on the PD dataset) 

outperformed it on 17 out of the prediction tasks while the RF Model outperformed it on 14 

out of the 19 prediction tasks. 

Furthermore, Table 2 and Figure 3 demonstrates that the best performing models were the 

general model as well as the transfer learning model. As is depicted in Figures 2. B and 2. E 

respectively, the transfer learning model outperformed the RF model in 16 out of the 19 

prediction tasks and the general model outperformed it in 14 out of the 19 predictions tasks. 

When comparing the general model with the transfer learning model as shown in figure 3. C 

they exhibited similar performances on most of the outputs, with the transfer learning model 

outperforming the general model in 11 out of the 19 prediction tasks. 

The ACS-SRC only report two variables to the NSQIP dataset: morbidity risk and mortality 

risk. To compare the performance of the four models with the ACS-SRC, the average 

ROC_AUC of all variables, except the deceased variable, was calculated and labeled as 

“morbidity” in Table 3. This table demonstrates that all models outperformed the risk 

calculator regarding the morbidity risk with the general model achieving the highest average 

morbidity risk ROC_AUC of 0.679. The transfer learning model and RF model also 

outperformed the ACS-SRC when assessing the morality risk however, all models faired 

similar with the results ranging from the lowest from the general model of 0.648 to the best 

of the transfer learning model with a result of 0.678 (figure 4).

When looking at the permutation importance for the transfer learning model and the direct 

model, it can be seen in figure 5 that the predictions were made from different variable 

interaction. This is for example “Serum albumin” which was the third biggest driver of 
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complication predictions in the direct model, but only the fifth most important driving factor 

in the transfer-learning model. Regarding the transfer learning model, the third most 

important driver was “Operation Time” which was the fourth most important value in the 

direct model. Even though the models had some differences in which value ranked the 

highest there was a significant overlap in which values were generally regarded as the most 

important. These values included Age, Weight, Operation time, Height, and Serum albumin. 

DISCUSSION

In this study, we demonstrate that transfer learning of a DNN (transfer learning model) as 

well larger models trained on a diverse range of operations (general model) outperform 

alternative approaches such as models using random forest (RF model), DNN exclusively 

trained on PD patients (direct model) and non-deep learning AI models (ACS-SRC) when 

risk-predicting post-operative complications in PD patients. The DNN transfer learning 

approach thus outperformed the ACS-SRC, suggesting a potential value of using this 

approach when targeting limited-volume operation subtypes such as PD where direct transfer 

of pretrained models on large PD datasets or direct de-novo training of risk prediction models 

may not be feasible.

By utilizing DNNs that capture relationships between input and output variables of common 

diseases and treatment options, it is possible to develop, coherent predictive models even 

with limited data available for limited surgical procedures. By leveraging transfer learning 

techniques, it becomes possible to augment the size of small datasets by leveraging the 

knowledge acquired from other and potentially larger datasets. This approach expands the 

amount of available data for training larger models, thereby offering a potential for 

improving outcomes in the PD setting. 
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Comparing our study's findings with the results from deploying the ACS-SRC on PDs for 

neuroendocrine tumors by Dave et al. 17, both the general and the transfer learning model 

exhibited superior predictive performance in comparison to the NSQIP calculator. Our study 

incorporated a comparable variable termed 'morbidity,' aligning with the 'serious 

complication' variable examined by Dave et al. (Table 3). Notably, Dave et al. reported an 

AUC of 0.55 for their 'serious complication' value, whereas both our general and transfer 

learning models achieved an AUC of 0.67. However, it should be acknowledged that while 

there were overlapping complications, there existed differences in the specific variables 

included in our respective studies, making it difficult to directly compare these two. 

In a study from Aoki et al. 6 an attempt was made to predict a value referred to as ‘serious 

morbidity’ resulting in an ROC AUC of 0.708. However, the definition of 'serious morbidity' 

in this study was based on the presence of a Clavien–Dindo classification grade of IV or V, 

which introduces a disparity between this study and ours in terms of prediction variables. 

Similarly, a study from Braga et al. 18 also predicted major complications and achieved a 

ROC AUC of 0.743. However, their definition of major complications also aligned with a 

Clavien-Dindo classification of IV or V and included a variety of other types of 

complications, making it challenging to compare their study directly with ours.   

As such, in assessing the performance of this model versus previous approaches, it is 

important to underline that prediction targets are often not aligned. 

Most previous approaches have targeted PD specific complications such as pancreatic fistula 

development, which is indeed a major driver of postoperative complications in the PD 

setting. In contrast, this study focusses on the prediction of general non-PD specific 

complications. The rationale behind this choice stems from the fact that key drivers of fistula 

development (pancreatic texture and pancreatic duct diameter) are often not available for risk 

prediction before the time of surgery and models incorporating these features are thus of little 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.23294364doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.21.23294364
http://creativecommons.org/licenses/by/4.0/


use in the preoperative setting where the decision on whether to proceed with an operative 

strategy must be made. 

The relevance of fistula development as a driver of other complications should, however, not 

be underestimated. Fistula development is a recognized driver of other complications, 

including SSI’s 19 and postoperative hemorrhage20 . Previous results fielding a large-scale 

postoperative risk prediction model using a DNN approach on multiple surgical procedure 

subtypes from the NSQIP dataset, yielded a combined morbidity risk prediction ROC AUC 

of 0.8712, which is superior to the combined morbidity risk prediction ROC AUC of 0.678 

demonstrated here. The reason behind this suboptimal performance is likely multifaceted but 

could include that fact the fistula development risk did not factor into risk calculations in this 

model. The fact that the DNN approach presented here is on-par with or superior to previous 

approaches does, however, highlight the fact that even with state-of-the art DNN approaches 

that have previously demonstrated superior performance compared with legacy approaches12, 

PD risk prediction continues to a difficult task where models exhibiting excellent 

performance still remain elusive. Future efforts could potentially benefit from incorporating 

methods for assessing fistula risk by including preoperatively available data points assessing 

pancreatic texture and duct diameter, potentially through automated density analyses of 

preoperative CT scans combined with pancreatic duct diameter measurements.

This study has limitations that should be acknowledged. As is the case for all studies utilizing 

registry datasets, models are dependent on the quality and transferability of the data which 

the model is built upon. As an example, temporal information on when during treatment data 

points are obtained cannot be assessed. This poses a challenge especially regarding 

continuous variables such as biochemistry, which are susceptible to fluctuation depending on 

the time of measurement. A second limitation is that the PD dataset is of limited size, 
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although this was also the rationale for assessing the value of transfer learning approaches in 

the first place. The PD dataset was used for training all but the general model as well as 

validation and testing of all models. Therefore, the limited size of this dataset reduces the 

generality of the findings as well as hinder the learning of very complex relationships 

between variables. The limited size of the PD dataset is particularly challenging for rare 

outcome predictions such as stroke which, in the test set, only occurs with 5 patients. A third 

limitation of this study could be attributed to the underlining patient demographics and 

treatment strategies. NSQIP contains data primarily from US patients, and it thus cannot be 

assessed how this model would perform on non-US patients or hospital systems. 

Furthermore, it should be noted that although the ability of DNNs to include a multitude of 

relevant input variables offers the approach a position of strength over conventional 

regression-based approaches, this often also hinders manual use of the model as it is 

impractical for the clinical user to input several hundred parameters to the model for each risk 

prediction. Ideally, actual clinical use of DNNs would thus require automated embedding of 

the DNNs directly into the electronic health record (EHR) systems. Lastly it is worth noting 

that as with all studies concerning DNNs, the black box issue of which factors the model 

perceives as most relevant, is still an unsolved problem. Therefore, it is difficult for the 

model to address the rationale behind specific predictions hindering the ability to determine 

the relationships between variables which the model found most important. We have 

attempted to try and visualize the importance of the most important variables using 

permutation importance. However, visualizing the importance of a single feature in a non-

linear model- still presents a significant challenge.  

Even with these limitations, we conclude that DNNs and transfer learning approaches may 

have a value in predicting general complications in the setting of low-volume surgical cases 
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such as PDs, although overall performance improvements and EHR system integrations are 

likely needed before models can see actual clinical use. 

Author contributions: MB and MS conceived the study. MB, AB and AM performed data 

and results analyses. MB drafted the manuscript, which was critically revised by MB, AB, 

AM and HK. All authors approved the final manuscript. 

Conflicts of interest: Authors AB and MS have founded Aiomic Aps, a healthtech company 

fielding artificial intelligence models for healthcare use. The present work is for research 

only and is not related to any commercial activities. 

Data availability: Data is available for following contact to and permission from the 

Americal College of Surgeons National Surgical Quaility Improvement Program 

(https://www.facs.org/quality-programs/data-and-registries/acs-nsqip/) 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.23294364doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.21.23294364
http://creativecommons.org/licenses/by/4.0/


TABLES

General dataset
(n=5.874,941)

PD dataset
(n=17,037)

Test dataset
(n=2000)

Superficial 
Surgical site 
infection

79,986 
(1.4%)

1,348
(7.9%)

153
(7.7%)

Deep surgical site 
infection

21,314
(0.4%)

345
(2.0%)

38
(1.9%)

Organ/space 
surgical site 
infection

49,259
(0.8%)

2,321
(13.6%)

247
(12.4%)

Wound disruption 21,921
(0.4%)

242
(1.4%)

23
(1.2%)

Postoperative 
pneumonia

54,850
(0.9%)

704
(4.1%)

86
(4.3%)

Unplanned 
intubation

43,288
(0.7%)

716
(4.2%)

77
(3.9%)

Pulmonary 
embolism

18,967
(0.3%)

193
(1.1%)

32
(1.6%)

Ventilator 
dependence >48 
hours

43,476
(0.7%)

582
(3.4%)

66
(3.3%)

Progressive renal 
insufficiency

14,349
(0.2%)

141
(0.8%)

13
(0.7%)

Acute renal 
failure

15,511
(0.3%)

183
(1.1%)

22
(1.1%)

Urinary tract 
infection

62,844
(1.1%)

514
(3.0%)

59
(4.0%)

Stroke 11,256
(0.2%)

51
(0.3%)

5
(0.3%)

Cardiac arrest 17,383
(0.3%)

211
(1.2%)

19
(1.0%)

Myocardial 
infarction

21,027
(0.4%)

193
(1.1%)

21
(1.1%)

Deep vein 
thrombosis

32,230
(0.6%)

478
(2.8%)

59
(3.0%)

Sepsis 43,464
(0.7%)

1,271
(7.5%)

158
(7.9%)

Septic shock 23,498
(0.4%)

565
(3.3%)

70
(3.5%)

Bleeding 
requiring 
transfusion

303,726 
(5.2%)

3,593
(21.1%)

412
(20.6%)

Death 57,605
(1.0%)

349
(2.0%)

40
(2.0%)

Table 1: The incidence of postoperative complication (prediction variables) for the three 
dataframes before the split into validation/training sets are depicted above with the number of 
patients experiencing each variable labelled. PD: Pancreaticoduodenectomy

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.23294364doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.21.23294364
http://creativecommons.org/licenses/by/4.0/


Complication General 
model

Transfer 
learning 
model

Direct model RF model

Superficial 
Surgical site 
infection

0.608 0.582 0.537 0.575

Deep surgical 
site infection

0.695 0.706 0.622 0.593

Organ/space 
surgical site 
infection

0.580 0.581 0.517 0.608

Wound 
disruption

0.676 0.702 0.630 0.577

Postoperative 
pneumonia

0.639 0.629 0.562 0.567

Unplanned 
intubation

0.642 0.664 0.634 0.663

Pulmonary 
embolism

0.662 0.683 0.615 0.651

Ventilator 
dependence 
>48 hours

0.706 0.705 0.669 0.701

Progressive 
renal 
insufficiency

0.648 0.676 0.590 0.638

Acute renal 
failure

0.718 0.750 0.713 0.763

Urinary tract 
infection

0.726 0.687 0.623 0.665

Stroke 0.738 0.615 0.714 0.583
Cardiac 
arrest

0.643 0.685 0.646 0.610

Myocardial 
infarction

0.601 0.636 0.657 0.557

Deep vein 
thrombosis

0.653 0.634 0.578 0.603

Sepsis 0.645 0.626 0.552 0.641
Septic shock 0.695 0.713 0.629 0.702
Bleeding 
requiring 
transfusion

0.761 0.753 0.733 0.738

Death 0.648 0.678 0.660 0.672

Table 1 The overall performance of the four models on all variables in the test set with 
Receiver Operator Characteristics Area Under The Curve (ROC_AUC) values as the metric. 
The general model was trained on a general surgery patient cohort, the transfer learning 
model was trained on the general surgery patient cohort and transferred to a PD-specific 
patient cohort, the direct model and the Random forest model (RF) was trained exclusively 
on the PD-specific patient cohort.
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Complications General 
model

Transfer 
learning 
model

Direct model RF-model ACS-
SRC

Morbidty 0.669 0.668 0.623 0.635 0.524
Deceased 0.648 0.678 0.661 0.672 0.667

Table 2 
The average morbidity Receiver Operator Characteristics Area Under The Curve 
(ROC_AUC) scores of the four models, calculated on the test set. Additionally, the table 
includes the average morbidity and deceased scores obtained from the same test set derived 
from the American College of Surgeons Surgical Risk Calculator (ACS-SRC) 
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FIGURES

Figure 1  5.881.881 patients were in the National Surgical Quality Improvement Program 
(NSQIP) dataset, 31.944 of whom were PD patients. 216 of these patients were excluded 
because of an operation time of less than 120 minutes. 

The remaining 31.728 patients were split into two dataframes. One dataframe with 40% of 
the PD patients which was recombined the with the patients from the remainder of the NSQIP 
dataset (General dataset and the second data frame which was the 60% were split into a 
training set, validation set and a test set that was used after the training of all the models to 
test their accuracy.

Figure 2 Model architecture with all layers depicted. 

Figure 3  
Performance metrics measures as Receiver Operator Characteristics Area Under the Curve 
(ROC AUC) of the four different modelling approaches benchmarked against each other for 
predicting the mortality and the 18 different complications included in the National Surgical 
Quality Improvement Program (NSQIP) dataset. 

SSSI: Superficial Surgical site infection

DSSI: Deep surgical site infection

OSSI: Organ/space surgical site infection

WOUND: Wound disruption

PNEUMONIA: Postoperative pneumonia

UNPINT: Unplanned intubation

PE: Pulmonary embolism

VENT48: Ventilator dependence >48 hours

PRI: Progressive renal insufficiency

ARF: Acute renal failure

UTI: Urinary tract infection

STROKE: Stroke

CAR: Cardiac arrest
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MI: Myocardial infarction

DVT: Deep vein thrombosis

SEPSIS: Sepsis

SEPSHOCK: Septic shock

BLEED: Bleeding requiring transfusion

DECEASED: Death

Figure 4:  The average morbidity score and mortality Area Under the Receiver Operator 
Curve (ROCAUC) of the 4 models as well as the American College of Surgeons Surgical 
Risk Calculator (ACS-SRC). 

Figure 5: Feature importance of the transfer learning model on top and the direct model on 
the bottom. Both values are collected from the same validation set. 
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