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Abstract  
A major limitation in current Alzheimer’s disease (AD) research is the lack of the ability to 
measure cognitive performance at scale—robustly, remotely, and frequently. For the purposes 
of screening, recruitment, stratification, and longitudinal follow-up in clinical trials, there are no 
established online digital platforms validated against plasma biomarkers of AD. Here we report 
findings using a novel web-based platform that assessed different cognitive functions in AD 
patients (N=46) and elderly controls (N=53) who were also assessed for plasma biomarkers 
of AD (amyloid β42/40 ratio, pTau181, GFAP, NfL). Their performance was compared to a 
second, larger group of elderly controls (N=256). AD patients were significantly impaired 
across all digital cognitive tests, with performance correlating with plasma biomarker levels, 
particularly pTau181. These findings show how online testing can now be deployed in AD 
patients to measure cognitive function effectively and related to blood biomarkers of the 
disease. 
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Introduction  
The advent of new disease-modifying treatments for Alzheimer’s disease (AD) has highlighted 
the need for sensitive cognitive tests to stratify those who might benefit from early treatment, 
as well as to track the effects of interventions 1,2. Traditional face-to-face neuropsychological 
assessments are able to detect changes only several years after pathological accumulation of 
amyloid and tau, a factor that is considered crucial for clinical trial failure 3. Digital metrics 
obtained using computerised tests can detect subtle signs of impairment that cannot be 
captured by standard tests of cognition and might be particularly valuable tools in the early 
phases of the disease, when cognitive impairment is at subthreshold levels on commonly used 
clinical scales 4. In principle, such measures could also potentially track disease progression 
more sensitively 5,6. 

Deployment of digital cognitive testing platforms has the potential to make a deep impact on 
this field, where a crucial limitation has been the lack of the ability to measure cognitive 
performance at scale 7–10. Screening for AD, recruitment and stratification into clinical studies, 
as well as longitudinal follow-up in trials, could all be transformed if cognitive testing were to 
be conducted robustly, remotely, and frequently 11. However, any digital cognitive platform first 
needs to be validated in patients who have evidence of AD pathology, ideally using scalable 
and affordable biomarkers that might be used in combination to allow for widespread 
screening or recruitment. 

Until quite recently, cerebrospinal fluid (CSF) biomarkers, such as amyloid β (Aβ42 or the 
Aβ42/40 ratio) and phosphorylated tau 181 (pTau181), have been the major fluid indices used 
as proxies of AD pathology in the brain. However, work on plasma biomarkers of AD has 
advanced rapidly. For example, plasma Aβ42/40 ratio has been found to correlate well with its 
CSF levels as well as with amyloid positron emission tomography (PET) findings, and its 
reduction is associated with cognitive decline and the risk of progression to dementia in 
cognitively unimpaired individuals, people with subjective cognitive impairment (SCI), and mild 
cognitive impairment (MCI) patients 12–16.  

Plasma pTau181 has been emerging as an even more specific and sensitive biomarker for 
AD 17–19. It shows a good correlation with its levels in the CSF 17, and has been associated 
with both amyloid and tau PET positivity 17,19. It is estimated that plasma pTau181 can detect 
pathological accumulation of tau approximately 6 years earlier than tau PET 20. Increased 
levels of plasma pTau181 are found in amyloid-positive cognitively unimpaired individuals, 
and pTau181 increases further in amyloid-positive MCI and AD patients, while it is not 
increased in several other neurodegenerative diseases and clinical mimics of AD 17,20. 

Plasma glial fibrillary acidic protein (GFAP), which is a marker of neuroinflammation and 
reflects astrocytosis, is also considered to be associated with amyloid deposition in healthy 
controls, SCI, MCI and AD dementia patients 21–24. This can be observed even in cognitively 
normal individuals with a normal amyloid status 23, and some evidence suggests that it is better 
than Aβ42/40 ratio in predicting the positivity of amyloid PET 21,24. However, being a marker of 
neuroinflammation, raised GFAP levels are not specific to AD, and are also increased in many 
other neurological diseases 25. Similarly to GFAP, another plasma biomarker that can be 
altered across several neurological disorders is neurofilament light chain (NfL). High baseline 
levels of NfL, an index of the rate of axonal injury, are strongly linked to markers of 
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neurodegeneration such as CSF total tau (t-tau), magnetic resonance imaging (MRI) atrophy 
and FDG-PET hypometabolism 26–28.  

Some studies have attempted to examine the relationship between plasma biomarkers and 
cognitive performance, but to the best of our knowledge, the cognitive tests used were not 
digital online measures. For example, the plasma Aβ42/40 ratio is associated with scores on 
the Face Name Associative Memory Exam, cross-sectionally in SCI patients 29. Performance 
on this test is also significantly correlated with amyloid burden measured by amyloid PET in 
cognitively unimpaired individuals 30. Baseline levels and longitudinal increases in plasma 
pTau181 are associated with a decline on standard tests of cognition such as the mini mental 
state examination (MMSE), as well as with amyloid and tau accumulation and brain atrophy 
18,31–33. Another pTau isoform, plasma pTau217, was found to increase longitudinally in 
cognitively unimpaired people and MCI patients with evidence of amyloid positivity (A+), and 
in MCI patients who converted to AD over 6 years 34. In the same study, an increase in 
pTau217 over time was correlated with worsening cognition on the MMSE and modified 
Preclinical Alzheimer’s Cognitive Composite (mPACC) 35 in cognitively unimpaired and MCI 
participants.  

GFAP has been linked to cognitive performance on standard tests of cognition in plasma and 
serum cross-sectionally 24,36, to a decline in cognition over time 37, and to clinical conversion 
to AD 22. High baseline levels of NfL are also correlated with greater cognitive impairment 
trans-diagnostically 38, and a longitudinal increase in NfL is associated with worse cognitive 
scores in cognitively unimpaired A+ individuals 26 and patients with evidence of cognitive 
deficits (such as MCI and AD) 28,39. These changes, however, do not seem to be specific to 
AD 40.  

A recent report compared the head-to-head performance of different plasma biomarkers in 
cognitively unimpaired A+ individuals 41. pTau217, pTau181, and GFAP were associated with 
cognitive decline (on the mPACC and MMSE), while pTau 231 and NfL did now show such an 
association 41. The authors concluded that pTau217 alone was the strongest individual 
predictor of cognitive impairment. This was also observed in the whole sample of cognitively 
unimpaired individuals (whether A+ or A-). However, standard neuropsychological tests such 
as the mPACC and the MMSE still require a dedicated face-to-face appointment, which limits 
their use for large-scale population screening.  

Here, we investigated whether plasma biomarkers (Aβ42/40 ratio, pTau181, GFAP, and NfL) 
are associated with several digital online cognitive metrics, measuring visual short-term 
memory (VSTM), long-term memory (LTM), visuospatial copying, executive function, and 
processing speed in a cohort of AD patients and two samples of elderly healthy controls, one 
of which also underwent blood collection for plasma biomarker measurement. 
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Methods 

Ethics 

Ethical approval was granted by the University of Oxford ethics committee (IRAS ID: 248379, 
Ethics Approval Reference: 18/SC/0448). All participants gave written informed consent prior 
to the start of the study.  

Participants 
53 EHC and 46 AD patients were recruited from the Cognitive Disorders Clinic at the John 
Radcliffe Hospital in Oxford. Alzheimer’s disease dementia patients were defined as having 
Alzheimer’s disease clinical syndrome according to the 2018 criteria42 as they did not have 
ATN confirmation prior to enrollment in the study and will be subsequently referred to as AD. 
Elderly healthy controls were > 50 years old, had no psychiatric or neurological illness, were 
not on regular psychoactive drugs, and all scored above the cut-off for normality (88/100 total 
ACE score). The groups were not statistically different in age, gender or education level (Table 
1). 

Participants underwent blood collection, face-to-face standard cognitive, and online remote 
digital cognitive testing, and self-reported motivation and mood indices were collected (see 
Figure 1 for study flow).  

To get a normative dataset for the digital cognitive battery, we recruited 256 participants above 
50 years old through the Prolific participant recruitment platform (prolific.co). All participants 
were residents of the UK, had English as their first language and self-reported to be 
neurologically healthy. Four participants were excluded because they failed attention checks 
during the testing. All participants had normal or corrected-to-normal vision acuity and no 
colour blindness.  

Measurements of plasma biomarkers: Aβ42, Aβ40, pTau181, NfL and 
GFAP 
Four plasma biomarkers were assayed: 

● Amyloid pathology (‘A’): Aβ42, 40 and the Aβ42/40 ratio, which is a better measure of 
amyloid pathology than Aβ42 alone 12,43. 

● Tau pathology (‘T’): pTau181, which is a specific and sensitive marker of tau pathology 
in the blood and is highly predictive of tau PET positivity 18. 

● Neurodegeneration (‘N’): NfL, the most commonly used blood-based biomarker 
reflecting the rate of neurodegeneration occurring in the brain 44. 

● Astrocytosis: GFAP, an established marker of astrocytosis and synaptic plasticity 23.  

Supplementary Figure 1 presents the outline of plasma biomarker protocol. Blood was 
collected in 6 ethylenediaminetetraacetic acid (EDTA) tubes (10 ml each), and centrifuged 
(1800 g, RT, 10 minutes). The EDTA tubes were filled completely and gently inverted after 
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collection to avoid coagulation. After centrifugation, plasma from all 6 tubes was transferred 
into one 50-mL polypropylene tube, mixed, aliquoted into 0.5 mL polypropylene tubes (Fluid 
X, Tri-coded Tube, Azenta Life Sciences), and stored at 4°C, until (< 8 hours) it was transferred 
into a -80°C freezer. The time between blood collection and centrifugation was < 30 minutes. 
Transfer time between 4°C and -80°C storage was < 20 minutes, and the samples were kept 
refrigerated during transport. All cryovials were anonymized, and the unique cryovial code was 
logged into a secure database, linked to the participant’s anonymous code and visit number. 
A separate paper-based document (i.e., a sample log) was filled in at collection, with the 
unique participant’s anonymized code, gender, date of birth, hospital number, date, and time 
of different pre-processing steps (collection, start and end time of centrifugation, time into the 
4°C fridge, and -80°C storage).  

Samples were shipped in dry ice to the Biomarker Factory / Fluid Biomarker Laboratory, UK 
Dementia Research Institute at University College London (UCL), London. The Dementia 
Research Institute (DRI) laboratory staff carried out the analyses. Plasma Aβ40, Aβ42, GFAP, 
and NfL were measured by Single molecule array (Simoa) technology using the Neurology 4-
plexE assay on an HD-X analyser (Quanterix), according to manufacturer’s instructions. 
Plasma pTau181 was also measured by Simoa using the pTau-181 Advantage assay on an 
HD-X analyser (Quanterix). Briefly, samples were thawed at 21°C, and centrifuged at 10,000 
RCF for five minutes at 21°C. On-board the instrument, samples were diluted 1:4 with sample 
diluent and bound to paramagnetic beads coated with a capture antibody specific for human 
Aβ40, Aβ42, GFAP, NfL and pTau-181. Aβ40-, Aβ42-, GFAP-, NfL- and pTau181-bound 
beads were then incubated with a biotinylated anti-Aβ40, anti-Aβ42, anti-GFAP, anti-NfL and 
anti-pTau181 detection antibodies in turn conjugated to streptavidin-β-galactosidase complex. 
Subsequent hydrolysis reaction with a resorufin β-D-galactopyranoside substrate produces a 
fluorescent signal proportional to the concentration of Aβ40, Aβ42, GFAP, NfL and pTau181 
present. Singlicate measurements were taken of each sample. Sample concentrations were 
extrapolated from a standard curve, fitted using a 4-parameter logistic algorithm. Intra-assay 
and inter-assay CVs were less than 10% and 15% respectively, as determined by 8 quality 
controls following the same principles. 

Face-to-face neuropsychological screening 
Following plasma collection, all participants completed the Addenbrooke's Cognitive 
Examination-III (ACE) 45 in person at the time of the visit as a standard test of cognition.  

Digital cognitive test battery: Oxford Cognition Online Platform 
Participants also completed a sequence of computerised cognitive tasks from OCTAL (Oxford 
Cognitive Testing Portal, available at https://octalportal.com) (Figure 2). The tasks include 
Oxford Memory Test (OMT), Object-in-Scene Memory Task (OIS), drag-and-drop version of 
Rey-Osterrieth Complex Figure (ROCF), Trail Making Test (TMT), Digit Symbol Substitution 
Test (DSST) and Freestyle Corsi Block Task (CORSI) (Figure 2). They measure distinct 
aspects of human cognition, various forms of memory, attention, and executive functions. 
They were adapted from established behavioural paradigms or neuropsychological tests, 
whilst being robust against the type of device that a person is tested on. These six tasks can 
be tried at https://octalportal.com. The tasks were conceived and designed by S.Z. and M.H.. 
Most of the tasks were built using the PsychoPy Builder (PsychoJS, version 2022.2.4) with 
custom-written codes in Javascript, with one exception: the Rey–Osterrieth Complex Figure 
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(see details below), which was fully custom-written in HTML5 with JavaScript. All tasks were 
hosted on the server system Pavlovia.org.  

A link with a unique patient and visit identifier was sent to the participants’ email address the 
same day as the in-person visit when blood was collected. Participants were required to use 
Chrome or Firefox browsers on a desktop, laptop or tablet with any operating system. They 
were encouraged to complete the online tests within a week maximum. After two weeks, the 
completion of the online tests was reviewed, and participants who did not complete the tasks 
within that time frame were prompted via email to do so. Tests completed more than 3 weeks 
after the blood samples were discarded. 

Since behavioural science is increasingly acknowledging that human behaviour sampled for 
convenience only across university populations may be WEIRD (Western, Educated, 
Industrialised, Rich and Democratic) 46, the healthy controls recruited around the university 
(EHC1) may not necessarily be representative of the general population. Thus, we recruited 
256 healthy elderly participants online through Prolific.co as a normative group (group EHC 2, 
see Table 1 for basic demographics). To account for the effect of age on cognitive metrics, 
the cognitive performance of all participants was then transformed into z-score based on EHC 
2 group (see details below “Normalisation for digital cognitive metrics”; Table 2 and 
Supplementary Table 1).  

Oxford Memory Task (OMT) 

OMT is the “What was where?” visual short-term memory experiment, which has been 
described in previous publications 4,47,48. In this remote online version, participants were 
presented with one or three fractal patterns positioned at various locations on-screen for 3 
seconds (Figure 2). Then, a 4-second delay was accompanied by a black screen. 
Subsequently, one of these fractal patterns was shown alongside a foil pattern. The two 
patterns were shown along the vertical meridian with 4 cm separation, with the order of the 
target and foil randomised across trials. Participants must identify which pattern they just saw 
(identification performance) by clicking the target pattern and drag it to its proper location on 
the screen (localisation performance). The foil was not a totally novel pattern; rather, it was 
part of the general pool of fractal images presented across the experiment. But the exact 
colour and shape of the foil never showed up as one of the patterns to remember. 

Each participant performed a practice block of 6 trials including 3 trials with 1 item followed by 
3 trials with 3 items. This is followed by a main test block of 40 trials, including 20 trials of 1 
item and 20 trials of 3 items. The order of trials was randomised online. No feedback was 
given during practice or main test blocks. Fractal stimuli were drawn from a library of 196 
pictures of fractals (http://sprott.physics.wisc.edu/fractals.htm), including 49 different shapes 
and each shape containing 4 colour variations.  

As participants did the task remotely with their own devices, to ensure that the size of stimuli 
was physically the same across different devices, a card calibration procedure, previously 
described and validated 49, was employed prior to certain tasks. Participants are instructed to 
place a bank card or card of comparable size on the screen, and adjust the slider until the size 
of the image of the card on the screen matches the size of the physical card. This allows us 
to estimate screen distance by calculating the display's logical pixel density in pixels per 
centimetre. After successful calibration, the diameter of the fractal stimulus is 2 cm. A Matlab 
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script (MathWorks, Inc.) was used to determine the fractals' locations in a pseudorandom 
manner with a few constraints. In order to avoid crowding and create a clear zone around the 
items' original locations, which is essential for the analysis of localization errors, fractals were 
never placed closer than 3 cm to one another.  

Eight cognitive metrics were extracted from this task: Identification Accuracy (proportion of 
correct object identification), Location Error (distance between response and target), 
Identification Time (reaction time to identify target), Localisation Time (reaction time to place 
object), Target Detection (rate of detecting correct object and placed at target location, see 
Figure 2), misbinding (rate of placing target at a non-target location), guessing (rate of placing 
target randomly) and imprecision (how precise spatially is the response).  

Object-in-Scene Memory Task (OIS) 

This test provides measures of identification accuracy, precision of spatial localization and 
semantic accuracy in visual STM and LTM (Figure 2). Participants were presented with a 
photo of an everyday scene and instructed to remember a particular object placed in the 
picture. To aid effective encoding, the participant was also asked to click on the displayed 
object. Subsequently, 20 different objects were presented, and the participant was asked to 
choose the correct object and place it in the remembered location in the scene. To ensure that 
they were not simply remembering the semantic information or name of the object, the object 
pool contained a foil that matches the target’s category (e.g., two guitars of different colour 
and shape). After 5 different object and scene pairs, participants were asked to reproduce the 
object-scene associations probed (delayed recall, after 3-4 minutes). There were a total of 20 
trials divided into four blocks, and the order of the pairs was randomised.  

Three metrics were extracted from the task for both immediate and delayed recall stages: 
object identification accuracy (proportion of trials in which participants correctly identified the 
original object; chance level = 5%), semantic identification accuracy (proportion of objects 
correctly recalled as belonging to the same semantic category as the target; chancel level = 
10%), location error (the distance from the original target item location to the centre of 
participant’s response location; centimetre as unit). 

Rey-Osterrieth Complex Figure (ROCF) 

This task is a digitised version of the traditional pen-and-paper test50i . which is an established 
measure of visuospatial abilities (Figure 2). The original ROCF task requires the participant to 
draw a complex line-drawing freehand, first by replicating an existing figure (copy), and then 
again from memory (immediate recall). Our digitised version does not require hand drawing. 
Instead, the figure is split into 13 independent elements, and participants are required to drag 
each element into an empty canvas to copy the figure. Each test was automatically scored 
using an offline MATLAB-based algorithm. In contrast to the discrete score used in the pen-
and-paper version, the score of our digital version provides a continuous measure of precision. 
The middle large rectangle is selected as the anchor point as a reference element. If the 
element is not placed (not present on the canvas), there will be no score; otherwise, the 
distance from the large rectangle is computed. As a measure of imprecision for each element, 
the absolute difference between the ideal distance and the actual distance is then calculated. 
The absolute error is then scaled using a logarithmic function: if the element is placed relatively 
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correctly, the difference in the distance from the big rectangle is computed; if the element is 
placed too far, the score is zero. The normalised absolute difference is then subtracted from 
1 to calculate the score for this element. The sum of all element scores is 13, but the results 
are scaled to a percentage to match the original 36 element picture. Our version's scoring is 
consistent with the pen-and-paper scoring guide, as the participant receives one point for 
correctly positioning the element and no score if the element is placed incorrectly or not at all 
on the canvas. This task and scoring have been validated with the in-person traditional 36 
items pen-and-paper test and manual scoring with standard scoring guide 57 in healthy 
participants before the start of the study. The percentages obtained at the copy and immediate 
recall – ROCF copy and recall scores – were used as metrics of interest. 

Digit Symbol Substitution Test (DSST) 

DSST provides a measure of processing speed. In this digitised version, participants were 
required to match symbols to digits according to a key located at the top of the page (Figure 
2). The key consisted of 9 symbols next to the digits 1–9. At the bottom of the screen, there 
was a row of 9 randomised symbols. Participants reported the digit that corresponded to each 
symbol by clicking on the correct digit. The row was refreshed once all 9 were answered. 
Participants were allowed two minutes to answer as many as they could and the number of 
correct matches within the allowed time (DSST - correct responses). 

Trail Making Test (TMT) 

TMT is a standard test of processing speed and executive functions 51,52. In this online version 
(Figure 2), 25 circled numbers are presented on-screen, and participants are instructed to 
connect them by clicking the circles in order as fast as possible. It contains three trials of Task 
A (where the order is 1-2-3-4-5-6-…) and three trials of Task B (order 1-A-2-B-3-C-…). Each 
participant sees six different trail maps randomly chosen from a pool of 100 pre-made maps, 
generated using a “divide-and-combine” approach 53. The task also included a control 
condition of four trials to assess basic motor speed, where participants are presented with two 
circles located at two opposite corners of the screen. One is labelled with 1 and the other with 
2, and participants were instructed to connect 1 with 2 as quickly as possible. The average of 
the reaction times of the TMT was used as a variable of interest. 

Freestyle Corsi Block Task (CORSI) 

This task is a modification of the Corsi Block Tapping Task 54, which is a standard measure of 
visual STM. In the original version, participants were presented with a set of nine identical 
wooden blocks positioned on a board. Subjects were required to point at the blocks in the 
order they were presented. They started with sequences of smaller blocks, and the number of 
blocks increased during the test. In the most computerised version of the task, the participant 
is shown several identical blocks that are in fixed locations spread across the screen 55. Blocks 
then light up in sequence and the participant must remember which blocks lit up and in what 
order. In this digital version, the blocks’ locations were not fixed (‘Freestyle Corsi Block Task’). 
In an n-location trial, a 1-cm-wide red dot appeared at a random location on the screen, 
disappeared after 1 second, and reappeared at another random location on the screen (for 
n >1), and this process is repeated n times up to a sequence of 5 items. Once the sequence 
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has finished, after a 1 second break the participant could freely click anywhere on-screen to 
indicate where each dot appeared in sequence. The location error was calculated as the 
average distance between the response and the target location. The task was divided into five 
blocks, each block having five trials of a n-location sequence (i.e., 5 blocks of 1-item, 5 blocks 
of 2 items, up to 5 blocks of 5 items). The average of the reaction times of the 5 conditions 
was chosen as a variable of interest. 

Questionnaire-derived motivation and mood metrics 

All participants also completed two questionnaires which were hosted on Qualtrics: (1) Apathy 
Motivation Index (AMI), an 18-item questionnaire, sub-divided into three subscales of apathy: 
emotional, behavioural and social apathy 56 and (2) Geriatric Depression Scale (GDS), short 
form, which includes 15 questions. It is a screening tool designed to assess depressive 
symptoms in elderly people. A total score greater than 5 indicates probable depression 57. 
Within each questionnaire, a validation question was embedded: “This is a validation question. 
Please choose ‘No’.” 

Statistical analysis 
For analysis and data visualisation purposes MATLAB (version R2023a), R studio (version 
12.0), JASP (version 0.16.4) and SPSS (version 29.0) were used. Demographics, cognitive 
tests and plasma biomarkers levels were compared using a Mann-Whitney U test for 
continuous variables, while χ2 test was used for categorical variables such as gender. P-values 
were two-tailed with statistical significance set at p<0.05 for all analyses. Rank-biserial 
correlation was used for effect size estimate. If data from multiple visits was available, 
averaged values per participant across visits were used.  

Normalisation for digital cognitive measures 

Z-score (i.e. number of standard deviations from the mean of the normative population in the 
similar age (± 3 yrs)) was computed for each variable and each subject, based on a normative 
population of 256 online participants above 50 years old (EHC 2, see Table 1 for 
demographics). 

Correlation between digital cognitive metrics and plasma biomarkers 
Plasma biomarkers’ log10 transformed values and Z-scores of digital cognitive measures were 
used for correlation and linear regression analyses. Correlations between digital cognitive 
metrics and plasma biomarkers were assessed with Spearman’s rank test, using age, sex, 
and education as covariates. The Benjamini–Hochberg method, which controls the False 
Discovery Rate (FDR), was used to correct for multiple comparisons.  

Machine learning for group classification 
Additionally, machine learning was applied to predict group classification and plasma 
biomarkers levels, firstly using MATLAB-based algorithms for feature ranking, to estimate the 
absolute contribution of each variable. The fscchi2 function in MATLAB was used to predict 
group classification, while the fsrftest function was used to predict continuous variables, i.e., 
plasma biomarkers’ levels. Rank’s importance scores were then transformed into p-values by 
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calculating the exponential of the negative scores. Secondly, we applied the R-based MuMIn 
package to test which combinations of biomarkers would best predict group classification and 
plasma biomarkers levels. For predicting groups, we used logistic regression, while for 
predicting pTau181 level and Aβ42/40 ratio linear regression. The MuMIn package then uses 
the dredge function to achieve model selection, with the best performing model having the 
lowest corrected Akaike information criterion (AIC). ROC curves and AUCs were then 
computed for the model of interest. The pROC package in R with De Long’s test was used to 
compare model performance in direct comparisons between two ROC curves. 

Results 

Participants tests and plasma biomarkers overview. 
AD patients were significantly worse in all digital cognitive metrics with high effect sizes (|rrb| > 
0.5) compared to matched controls (EHC1), see Figure 3 for distribution comparison for key 
cognitive metrics, and Supplementary Figures 2 and 3 for all metrics and online normative 
data. AD showed a large decline in executive functions, indexed by trail making test (TMT) 
and digit symbol substitution (DSST), as indicated by on average 8.5 standard deviation (SD) 
below expectation. Overall, AD patients were 2.0-7.5 SDs below expectation in both 
identification and localisation of recalling remembered items in working memory (OMT and 
Freestyle Corsi Block Task (CORSI)) and LTM (Object-in-Scene Memory Task (OIS) delayed 
recall). Noticeably, AD patients were particularly impaired at memory recall (OIS and Rey 
Osterrieth Complex Figure (ROCF)-recall). For example, both EHC groups could normally  
recall >90% of objects correctly with a very precise spatial memory (1 cm location error); in  
contrast, although AD remembered the object’s semantic category (for example, it was a 
guitar), they could only recall 72.9% of the objects (but which guitar?) accurately with an 
average location error of 7.5 cm away from the centre of the object (which is 2 cm wide). 
Similarly, EHCs recalled 80% of ROCF immediately, but AD patients on average scored less 
than 50% (5.2 SD below expectation).  

Compared to the online participants (EHC 2), EHC 1 performed slightly but significantly better 
in many cognitive metrics (see Supplementary Table 1). In our sample, this difference could 
not be explained by age, education level, or the testing environment (all completed remotely 
at home anonymously). Online participants in EHC2 performed particularly worse in the Oxford 
Memory Task (OMT), where they made significantly more misbinding errors and faster at 
localisation compared to the participants we tested locally.  This group difference might be 
due to a speed-accuracy trade-off in EHC 2 group; in this online group, participants with 
shorter localisation time were associated with more misbinding errors (Pearson r = -0.22, 
p=0.003), while in contrast no correlation between speed and accuracy was found in EHC 1 
(r=-0.07, p = 0.64).  

Regarding plasma biomarkers, as expected, patients with AD had higher mean levels of 
pTau181, GFAP and NfL and lower Aβ42/40 ratio compared to controls (Table 1).  

The standard neuropsychological test used, the Addenbrooke’s Cognitive Examination (ACE), 
was significantly different between AD and EHC1, and had a high effect size in group 
comparisons, which was expected as it was the only test used for diagnosis. As expected, AD 
patients were in general more apathetic and depressed compared to EHCs (Table 1). Across 
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all participants, the apathy level overall strongly correlated with the level of depression 
(Pearson’s r = 0.46, p<0.001), but it did not significantly correlate with any of our online 
cognitive metrics (Supplementary Figure 4). 

Relationships between plasma biomarkers and cognitive metrics. 
The relationships between all plasma biomarkers and digital cognitive metrics are visualised 
as a network plot in Figure 4a, in which the strength of the relationship is represented by the 
distance between the metrics. Among the four plasma biomarkers investigated in the present 
study, pTau181 was most strongly correlated with our digital cognitive metrics, which all 
clustered on the right of the plot. In contrast, Aβ42/40 ratio showed the weakest relationship 
with cognitive performance as well as with the other three plasma biomarkers. Among the 
digital cognitive metrics, OIS and the ROCF were the most closely associated with  the plasma 
biomarkers. OMT and TMT were the tests that showed the weakest correlations with plasma 
biomarkers. 

This pattern of relationships can also be appreciated when looking at the individual correlation 
between each pair of biomarkers and cognitive metrics (Figure 4b). Across the different tasks 
examined, multiple metrics of STM were correlated with pTau181, GFAP and NfL levels; the 
better the performance, the lower the levels of these three plasma biomarkers. Similarly, these 
plasma levels were also correlated with executive function metrics such as DSST and TMT, 
and with visuospatial ability as indicated by the ROCF copy score. In contrast, Aβ42/40 ratio 
was only weakly associated with STM metrics and was not associated with the LTM related 
metrics in OIS (e.g., delayed recall accuracy and localization error). However, Aβ42/40 ratio 
levels were associated with the immediate recall scores of ROCF. When looking closer at the 
responses in the working memory task OMT, we found that pTau181 was associated with 
multiple metrics, while GFAP was specifically related to misbinding  and guessing rates; 
people with higher GFAP tended to make more localisation errors, such as placing the target 
object in a non-target location or in a random place. Additionally, in OMT NfL levels were 
associated with the imprecision of the response (i.e., the spatial spread of the responses 
around the target response, see more in Methods).  

Which plasma/cognitive metric best predicts AD? 
The selected variables were then ranked according to their importance in predicting group 
classification, i.e., AD or EHC (Figure 5a). The rank represents the negative log of the p-
values. In this sample, the recall of the ROCF and the Identification accuracy of the OIS had 
a higher rank compared to pTau181, and all cognitive metrics ranked higher than all the other 
plasma biomarkers. All tests and biomarkers were significant predictors of the group (all p < 
0.001 except Aβ42/40 ratio, p= 0.002). 

We then explored which were the best predictors of tau and amyloid pathology, indexed 
respectively by pTau181 and the Aβ42/40 ratio. Most of our digital cognitive tests, except the 
CORSI, were better predictors of pTau181 levels compared to the other plasma biomarkers 
(Supplementary Figure 5a). The most predictive cognitive tests were the ROCF and TMT (p < 
0.001), followed by OIS (p = 0.003), OMT (p = 0.004), DSST (p = 0.004), NfL (p = 0.005), 
Aβ42/40 (p = 0.02), while GFAP (p = 0.06) and CORSI (p = 0.13) were not statistically 
significant predictors of pTau181 levels. Conversely, pTau181 was the only statistically 
significant predictor of amyloid burden (p = 0.02) (Supplementary Figure 5b). The best 
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performing digital cognitive test to predict amyloid burden was the OIS task, but it was not 
statistically significant. 

Model comparison using the MuMIn R function was then used to choose the best combination 
of plasma biomarkers and cognitive metrics in predicting group classification, pTau181 and 
the Aβ42/40 ratio levels. The best model for predicting groups consisted of pTau181, recall of 
the ROCF, and Immediate Object Accuracy of the OIS (Figure 5b and Supplementary Figure 
5c), with an AUC of 1. In comparison, the recall of the ROCF alone had an AUC of 0.946, 
while pTau181 had an AUC of 0.911, which were, however, not statistically significantly 
different from the best model (ROCF: Z = 1.6, p = 0.11, pTau181: Z = 1.9, p = 0.06), nor 
between them (Z = 0.60, p = 0.55). When Lasso penalization was introduced to avoid perfect 
separation of the best model, it still performed significantly well (AUC = 0.92). In comparison, 
ACE had an AUC of 0.97 in discriminating between groups, which was, however, not different 
compared to the best performing digital metric, ROCF (Z = 0.06, p-value = 0.95). 

The best model for predicting pTau181 levels consisted of Aβ42/40, NfL, OIS and ROCF, 
which had an adjusted R2 of 0.44 (Supplementary Figure 5c). The winning model for predicting 
Aβ42/40 levels consisted of pTau181, CORSI, OIS, OMT and ROCF, but had an overall  
poorer model fit with an adjusted R2 of 0.24 (Supplementary Figure 5c). If single metrics were 
evaluated, in predicting pTau181 levels, OIS and ROCF had an adjusted R2 of, respectively, 
0.33 and 0.25, while in comparison, ACE had an adjusted R2 of 0.14. AICs were -18.57 (OIS), 
-9.90 (ROCF) and 8.43 (ACE), with the best-performing model being the one containing OIS 
(more negative).  

Discussion 

The findings reported here demonstrate that AD patients have impaired performance on our 
digital cognitive tests and that this is closely related to pathological blood-based biomarkers 
of the disease (Figures 3 and 4). Levels of plasma pTau181, GFAP and NfL were all highly 
correlated with several cognitive metrics, with pTau181 being the biomarker that showed the 
closest association to digital cognitive performance (Figure 4a). Overall, the results of this 
study show that it is feasible to deploy digital cognitive testing in AD, which would have the 
potential to make a significant impact on several fronts. Screening for the disease, recruitment 
and stratification into clinical trials, and longitudinal follow-up in intervention studies could all 
be transformed if cognitive testing were to be conducted robustly, remotely, and frequently 11. 
Digital cognitive testing could make this happen. 

In terms of single metrics, two measures of visual memory performed best. These were the 
recall on the ROCF test (a measure of visual episodic memory) and Immediate Object 
Accuracy on the OIS task (a measure of visual short-term memory). In fact, they were better 
predictors of group classification (AD or EHC) compared to all plasma biomarkers (Figure 5a). 
Further, performance on the TMT, CORSI, DSST, and OMT predicted groups better than all 
plasma biomarkers except pTau181. If used in combination, the best-performing model to 
predict the group was the one combining pTau181, recall of the ROCF and Immediate Object 
Accuracy of the OIS with an AUC of 1, achieving perfect separation of patients from controls 
(Figure 5b). The best-performing digital metric, recall of ROCF, performed equally well as 
pTau181 in group classification. Further, the model combining pTau181, the recall of ROCF 
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and Immediate Object Accuracy of OIS was not statistically significantly better than the model 
containing ROCF or pTau181 alone.  

The very high AUCs of these metrics in predicting groups in this small, highly selected sample 
might partially explain the lack of positive contribution of adding cognition to plasma 
biomarkers. With accuracy being at ceiling, further evidence is needed to establish whether 
combining pTau181 to digital metrics might be beneficial in a larger dataset including different 
populations such as individuals with SCI or MCI. A bigger sample would also be required to 
assess the performance of these metrics in people with preclinical AD versus amyloid and tau-
negative healthy controls. Therefore, whether the combination of digital cognitive metrics and 
plasma biomarkers can be useful to stratify which individuals in the preclinical or prodromal 
phase of AD might be at risk of developing AD dementia remains to be established. However, 
it is encouraging that, even with a relatively small sample size, these metrics show a good 
correlation with several plasma biomarkers, surviving multiple comparisons and corrections 
for age, gender, and education, which are major confounders in both plasma biomarkers and 
cognitive assessments 7,58. 

Notably, while performance on our digital cognitive tests was tightly associated with plasma 
biomarker levels, it was not statistically significantly correlated with measures of apathy and 
depression (Supplementary Figure 4). This supports the proposal that these metrics are 
related to cognitive performance and do not merely measure willingness to engage in the 
online task, which is a potential confounder. This type of control is important as patients with 
AD are often reported to have higher rates of anxiety and depression compared to age-
matched healthy controls, a finding that was also present in our sample (Table 1). 

A key finding of this study is that digital cognitive metrics were more tightly correlated with 
pTau181 than the Aβ42/40 ratio (Figure 4 and Supplementary Figure 5). This is not entirely 
surprising, as amyloid burden has been shown to have a weaker association with cognition 
compared to tau 59,60. A large meta-analysis that investigated different indices of amyloid 
positivity in cognitively unimpaired elderly adults without blood-based biomarkers showed that 
although episodic memory might be correlated with amyloid burden, global cognition and 
executive functions are not if assessed by amyloid PET 61. In our digital platform, higher 
amyloid burden indexed by a lower Aβ42/40 ratio was not uniquely associated with LTM 
abilities but was correlated with performance across multiple tasks, measuring visual STM and 
LTM, executive function, and visuospatial function (Figure 4b). One possible explanation for 
the better performance of pTau181 compared to the Aβ42/40 ratio lies in the fact that pTau181 
in blood correlates well with both amyloid and tau PET 17, and not only with amyloid burden. 
Moreover, unlike GFAP and NfL, pTau181 is AD-specific 18.  

Digital platforms are emerging as potential screening and diagnostic tools for people at risk of 
developing AD 62. Most studies using such platforms have focused on screening healthy 
individuals 10. Moreover, biomarker validation on these digital platforms is mostly limited to 
one single marker, frequently amyloid PET 10. Some brief digital screening tools have 
demonstrated promise in differentiating amyloid-positive and tau-positive MCI patients (as 
measured by amyloid and tau PET) from MCI without evidence of amyloid or tau accumulation, 
but they are not very good at separating healthy controls from people with MCI or prodromal 
AD 63. A digital version of the Face Name Associative Memory Exam, measuring episodic 
memory, has also been found to correlate with CSF levels of pTau181 and the Aβ42/40 64. 
The performance of these tests compared to plasma biomarkers of AD is currently unknown. 
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One of the strengths of the current study is the inclusion of tests measuring different cognitive 
domains and the use of different plasma biomarkers, measuring not only amyloid and tau 
accumulation but also neuroinflammation and neurodegeneration. To our knowledge, no study 
so far has investigated the relationship between these four biomarkers and performance on a 
digital platform in a mixed population of elderly healthy controls and AD patients. 

The patient population included in this study was already at the AD dementia stage, where 
cognitive impairment is overt. In this sample, plasma pTau181 was the biomarker that was 
more closely associated with cognitive metrics and the best predictor of group classification. 
However, we cannot exclude that other biomarkers such as pTau217 could show an even 
higher association with cross-sectional or longitudinal cognitive function in the same 
population, as some evidence suggests 65,66. Also, early markers of amyloid deposition such 
as pTau217, pTau213 and GFAP may be more closely linked with cognitive changes in the 
early phases of the disease 21,22,65,66. 

Importantly, amongst the digital metrics, ROCF had comparable performance to the standard 
cognitive scores used (ACE) in group classification, and OIS and ROCF had better 
performance (higher adjusted R2 and lower AIC) than ACE in predicting pTau181 levels. This 
is encouraging, as in the future, the combination of these measures might be used as a proxy 
for standard cognitive metrics while saving a considerable amount of time in face-to-face 
appointments. 

To conclude, digital cognitive metrics were tightly associated with several plasma biomarkers, 
particularly pTau181, but also with GFAP and NfL, and to a much lesser extent with the 
Aβ42/40 ratio. Adding these metrics to pTau181 did not improve group classification in this 
sample, but the best performing metric, the recall of ROCF, performed at par with pTau181 
levels. As plasma biomarkers are being proposed as equivalent to CSF biomarkers in the 
forthcoming NIA-AA revised criteria for AD 67, and given their increased use in clinical practice 
68, implementation of a digital cognitive platform that has been validated with AD plasma 
biomarkers provides an important step forward  for future large-scale deployment. 
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Figures and Tables. 
Figure 1. Study schematic. 
AD = Alzheimer’s disease. EHC = Elderly Healthy Control. 
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Figure 2. Experimental design of online digital cognitive tasks.  
Oxford Memory Test (OMT) is a “What was where?” visual short-term memory experiment where 
participants are presented with one or three fractal patterns positioned at various locations on-screen 
for 3 seconds. After a 4-second delay, participants identify the fractal pattern shown before and move 
it to its remembered location. Thus, the response reflects how precisely the memory was recalled. 
Additionally, the Object-in-Scene task (OIS) measures long-term memory. Participants are shown with 
a photo of an everyday scene and asked to remember a particular object placed in the picture. Another 
memory task is Freestyle Corsi Block Task (CORSI), which involves remembering a sequence of 
random locations on the screen. Participants are then free to click anywhere on-screen to indicate the 
remembered sequence of locations. Participants in the Rey-Osterrieth Complex Figure (ROCF) test 
their visuospatial abilities by dragging 13 elements given to copy a complex line graph on an empty 
canvas. Digit Symbol Substitution Test (DSST) requires participants to match symbols to digits 
according to a key located at the top of the page. More correct matches were made in under two minutes 
indicating faster processing speed. Trail Making Test (TMT) is also an executive function task. 
Participants are instructed to connect 25 circled numbers by clicking the circles in order as fast as 
possible. This task contains three trials of Task A (where the order is 1-2-3-4-5-6-…) and three trials of 
Task B (order 1-A-2-B-3-C-…). Full versions of all tasks can be tried online at https://octalportal.com.  
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Figure 3. Digital cognitive metrics.  
In all online tasks, AD patients (plotted in lilac) performed significantly worse and had higher 
variability compared to age-matched healthy controls (EHC1, plotted in grey). On the X-axis, 
cognitive performance is shown as z-scores derived from age-matched online normative data, 
except TMT for which the raw completion time is shown. Y-axis indicates the percentage of 
participants. See supplementary materials for the distribution plots for all other cognitive 
metrics.  
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Figure 4. pTau181 shows the strongest relationship with digital cognitive tests. 
(a) Network plot of relationships between all plasma biomarkers (clustered on the left) and 
online digital cognitive tasks (clustered on the right). Associations are presented in graded 
colours, where red is associated with a negative correlation and light blue with a positive 
correlation. The shorter distance between two metrics indicates a stronger relationship (larger 
correlation coefficient). For online tasks, only one metric was selected per task, according to 
the highest effect size in discriminating between groups. (b) Strength of the correlation is given 
by diameter of the circle, with positive correlations in blue and negative in red. All displayed 
correlations are significant after Benjamini–Hochberg correction for multiple comparisons.   
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Figure 5. Which cognitive metric or plasma biomarker best predicts AD? 
(a) Ranked biomarkers and digital cognitive metrics in predicting group AD or control. Plasma 
biomarkers are marked in orange, while online cognitive metrics are marked in black. All 
metrics were significant in group classification. OMT = Identification accuracy of the Oxford 
Memory Task, OIS = Object Identification Accuracy in Immediate Recall of the Object-in-
Scene Memory Task, ROCF = recall of the Rey–Osterrieth Complex Figure, DSST = number 
of correct responses of the Digit Symbol Substitution Task, TMT = average reaction time of 
the Trail Making Test, CORSI = average location error of the Freestyle Corsi Block Task. (b) 
ROC curves for group classification. Light blue shows the combined model with pTau181, 
ROCF and OIS, with black line indicates ROCF alone model and orange shows the model 
pTau alone. AUC = area under the curve, CI = confidence interval.  
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Table 1. Demographics, plasma biomarkers, standard cognitive metrics and 
questionnaire-derived apathy and depression scores. 
All metrics are reported in group mean and standard deviation. * indicates p-values below <0.001, n.s. 
means not significant. The effect size for group comparison is rank-biserial correlation coefficient. ACE: 
The Addenbrooke's Cognitive Examination-III. AMI: Apathy Motivation Index. GDS: Geriatric 
Depression Scale. 
 

Dimensions Metrics AD (n= 46) EHC 1  
(n= 53) 

EHC 2 
(n=256) 

AD vs EHC 1 

p value Effect 
size 

Demographics 

Age 68.3 (10.2) 68.6 (7.0) 63.2 (8.2) n.s. 0.021 

Gender (M/F) 23/23 24/29 126/130 n.s. 0.047 

Education 14.5 (3.5) 15.8 (3.1) 15.9 (3.6) n.s. 0.199 

 

Plasma 
biomarkers 

pTau181 
(pg/ml) 5.413 (3.4) 2.563 (1.3) 

not 
applicable 

* < 0.001 -0.70 

GFAP 
(pg/ml) 224.742 (117.9) 111.796 (57.9) * < 0.001 -0.69 

NfL (pg/ml) 29.740 (19.1) 17.128 (11.0) * < 0.001 -0.58 

Aβ42/40 ratio 0.059 (0.01) 0.067 (0.01) * < 0.001 0.53 

Aβ42 (pg/ml) 6.640 (1.5) 7.154 (1.5) 0.06 0.22 

Aβ40 (pg/ml) 115.241 (25.7) 108.393 (19.9) n.s. -0.127 

 

ACE 

Total score 63.5 (20.0) 97.4 (2.0) 

not 
applicable 

* < 0.001 0.93 

Attention 12.0 (4.4) 17.2 (0.3) * < 0.001 0.88 

Memory 11.7 (6.1) 25.0 (1.1) * < 0.001 0.95 

Fluency 7.4 (3.6) 13.2 (0.9) * < 0.001 0.89 

Language 21.0 (4.9) 25.6 (0.7) * < 0.001 0.78 

Visuospatial 11.9 (4.2) 15.8 (0.3) * < 0.001 0.79 

 

Questionnaire AMI 1.5 (0.3) 1.2 (0.4) 1.5 (0.4) 0.002 -0.40 
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s GDS 6.9 (1.9) 4.9 (1.1) 5.6 (2.0) * < 0.001 -0.64 
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Table 2. Digital cognitive metrics from OCTAL. 
All metrics were normalised by age-matched normative data (i.e. participants who are EHC 2). All metrics are reported in group mean and standard deviation. 
* indicates p-values below <0.001. The effect size for group comparison is rank-biserial correlation coefficient. See supplementary table 1 for the extended 
table, including all cognitive metrics and the rank-biserial correlation coefficients for group comparison with EHC 2.  OMT: Oxford Memory Test; OIS: Object-in-
Scene task; ROCF: Rey-Osterrieth Complex Figure; CORSI: Freestyle Corsi tapping task; DSST: Digital Symbol Substitution Task; TMT: Trail-Making task.  
 

Digital Cognitive 
Tasks Metrics AD (n= 

46) 
EHC 1  
(n= 53) 

EHC 2 
(n=256) 

AD vs EHC 1 AD vs EHC 2 EHC 1 vs EHC 2 

p value Effect size p value p value 

OMT 
Identification Accuracy (z) -1.9 (2.0) 0.3 (0.9) -0.3 (1.2) * < 0.001 0.66 * < 0.001 * < 0.001 

Location Error (z) 3.1 (2.6) -0.1 (1.0) 0.4 (1.5) * < 0.001 -0.77 * < 0.001 0.014 

OIS 

Object Identification 
Accuracy - Delayed 
Recall (z) -2.4 (1.3) 0.0 (1.0) -0.2 (1.0) * < 0.001 0.86 * < 0.001 n.s. 

Location Error - Delayed 
Recall (z) 4.4 (3.5) 0.2 (1.0) 0.3 (1.4) * < 0.001 -0.76 * < 0.001 n.s. 

ROCF 

Copy Raw Score (%) 73.6 (24.0) 90.6 (2.9) 89.6 (5.3) * < 0.001 0.7 * < 0.001 n.s. 

Copy Score (z) -6.0 (7.9) 0.1 (0.9) -0.4 (1.9) * < 0.001 0.69 * < 0.001 n.s. 

Immediate Recall Raw 
Score (%) 49.5 (20.2) 85.1 (7.8) 82.1 (9.5) * < 0.001 0.92 * < 0.001 0.024 

Immediate Recall Score 
(z) -5.2 (3.1) 0.1 (1.0) -0.4 (1.3) * < 0.001 0.92 * < 0.001 0.006 

CORSI Mean Location Error (z) 2.8 (2.3) -0.0 (0.9) 0.4 (1.5) * < 0.001 -0.8 * < 0.001 n.s. 

DSST Number of Correct -2.5 (1.6) -0.2 (0.9) -0.1 (1.2) * < 0.001 0.82 * < 0.001 n.s. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.21.23293786doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.21.23293786


32 

Digital Cognitive 
Tasks Metrics AD (n= 

46) 
EHC 1  
(n= 53) 

EHC 2 
(n=256) 

AD vs EHC 1 AD vs EHC 2 EHC 1 vs EHC 2 

p value Effect size p value p value 

Responses (z) 

TMT Average Completion 
Time (z) 10.8 (15.5) 0.3 (1.4) 0.2 (1.3) * < 0.001 -0.89 * < 0.001 n.s. 
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