- Using facial reaction analysis and machine learning to
- **objectively assess palatability of medicines in children**
- 3 Facial reaction analysis and palatability of medicines in children
- 4 Rabia Aziza¹¶, Elisa Alessandrini²¶*, Clare Matthews¹, Sejal Ranmal², Ziyu Zhou², Elin Haf Davies¹, Catherine
- 5 Tuleu²

- 6 ¹Aparito Ltd, Wrexham, United Kingdom
- ²University College London, School of Pharmacy, London, United Kingdom
- 8 *Corresponding author
- 9 E-mail: elisa.alessandrini@ucl.ac.uk (EA)
- 10 These authors contributed equally to this work.

Abstract

For orally administered drugs, palatability is key in ensuring patient acceptability and treatment compliance. Therefore, understanding children's taste sensitivity and preferences can support formulators in making paediatric medicines more acceptable. Presently, we explore if the application of computer-vision techniques to videos of children's reaction to gustatory taste strips can provide an objective assessment of palatability.

Primary school children tasted four different flavoured strips: no taste, bitter, sweet and sour. Data was collected at home, under the supervision of a guardian, with responses recorded using the Aparito Atom5TM app and smartphone camera. Participants scored each strip on a 5-point hedonic scale. Facial landmarks were identified in the videos, and quantitative measures such as changes around the eyes, nose and mouth were extracted to train models to classify strip taste and score. We received 197 videos and 256 self-reported scores from 64 participants. The hedonic scale elicited expected results: children like sweetness, dislike bitterness and have varying opinions for sourness. The findings revealed the complexity and variability of facial reactions and highlighted specific measures, such as eyebrow and mouth corner elevations, as significant indicators of palatability. This study into children's taste specificities can improve the measurement of paediatric medicine acceptability. An objective measure of how children feel about the taste of medicines has great potential in helping find the most palatable formulation.

Moreover, collecting data in the home setting allows for natural behaviour, with minimal burden for participants.

Author summary

When formulating medicines for children, understanding the taste profile is crucial to ensure they are not excessively unpleasant. In this study, we assessed if facial reactions in response to taste stimuli can be used to easily measure children's feelings about the taste. We recorded videos of children trying different taste strips and analysed their facial expressions in response to each taste. The strips had different flavours: bitter, sweet, sour, and one with no taste. We also asked the children to rate each strip on scale of 1 to 5. We collected data from 64 children. The results confirmed that children generally like sweet tastes and do not like bitter ones. Their opinions on sour taste varied. Moreover, we found that specific facial reactions, like changes in their eyebrows and mouth corners were good indicators of taste preferences. The analysis of facial expressions can help formulators make medicines for children taste better. By objectively measuring how children feel about the taste of medicines, we can create more acceptable medicines for them. The collection of this data at home ensured children were in their comfortable environment, making it easier for them to be part of the study.

Introduction

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

The concept of patient acceptability is gaining progressive relevance in the development of paediatric dosage forms. Acceptability is defined as the overall ability of the patient and caregiver to use a medicinal product as intended or authorised and it is determined by characteristics of the user (age, ability, disease type) and of a medicinal product (e.g. palatability, swallowability, appearance) (1). Thus, acceptability can have a significant impact on the patient's adherence and consequently on the safety and efficacy of a product. For this reason, the European Medicines Agency (EMA) has repeatedly emphasised the importance and incentive to assess the acceptability of formulations for paediatric use, including in its 2006 Reflection Paper (2) and 2014 guideline on pharmaceutical development of medicinal products for children, where it is stated that the evaluation of acceptability should be embedded in the development program and evaluated within the targeted population (1). Consequently, in recent years, there has been an increased emphasis on conducting studies examining factors affecting medicines acceptability in children. For orally administered drugs, palatability is key in determining patient acceptability and treatment compliance (1). Palatability is defined as the overall appreciation of a medicinal product in relation to its smell, taste, aftertaste and texture (i.e. feeling in the mouth) (1). Specifically, taste is frequently reported to be a common reason for noncompliance among children (3). Thus, regulatory agencies strongly encourage the inclusion of acceptability testing, including palatability assessment, as part of the product development and clinical program in the target patient population (3). Several methodologies for palatability assessment in children are available, and they have been largely reviewed (3-7). These methodologies should be age-appropriate and depending on the age of the child may involve collecting data from patients and/or caregivers (4). The selection of the appropriate taste assessment methodology is determined by the cognitive capacity of the child, and until now, there is no methodology validated for accuracy and reliability with any particular age group (3,6), although the facial hedonic scale is considered the gold standard for drug palatability testing in children (8). However, this scale cannot be used in very young children or in those with communication issues, cognitive impairments, and/or developmental delay. The EMA reflection paper defines four key criteria for palatability assessment in children: 1) the test should be short, 2) the test has to be intrinsically motivating and "fun" to do, 3) the procedure should be as easy as possible, 4) the number of variants to be tested should be limited to a maximum of four. However, the reflection paper does not aim to provide any scientific, technical, or regulatory guidance (2). This suggests the opportunity for the development of more objective quantitative technological advancements such as the use of high throughput systems

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

[https://www.opertechbio.com/technology], facial electromyography (9), electrogustometry (10), or facial recognition technology (8,11) in palatability assessment (3). Observation of children's facial expressions after a taste stimulus to assess taste reactivity, is not new. Some of the earliest investigations on taste in children consisted of videotaping infants and then characterising their oromotor reflexes when taste stimuli were placed on the tongue or in the oral cavity (12-15). In 1988, Oster and Rosenstein (15) developed a method for describing orofacial responses by using the Ekman and Friesen's (16) anatomically based Facial Action Coding System (FACS). FACS virtually decomposes any facial expression into its constituent action units (AUs). Video records are analysed in slow motion to quantify the actual number of affective reactions infants express to a taste stimulus, as a measure of valence and intensity (7,17). The advantage of using this method is that it can be used in non-verbal children such as infants. However, the analysis of video images requires trained individuals to establish reliability across scores and it can be subjective (18). Moreover, this method is timeconsuming and costly (7). A large number of studies have focused their attention on the use of artificial intelligence (AI) technologies, i.e. facial emotion recognition technologies, to assess food and drinks preferences and consumer acceptance (19-25) with promising results. However, only recently, the use of these technologies has caught the attention of researchers in the assessment of taste responses to medicinal products. Kearns et al. (26) undertook a prospective, pilot study to assess the feasibility of using facial recognition technology to assess drug palatability in 10 children aged between 7 to 17 years. Although the qualitative assessment of the facial recognition data demonstrated the ability to discriminate between bitter and sweet tastants, their facial recognition software (Noldus FaceReader® 7) and approach showed some limitations in discriminating taste profiles and highlighted that further refinement was required before this methodology can be applied more widely (8). The Noldus FaceReader® 7 software measures the intensities of a predefined set of emotions e.g., happy, angry, disgusted etc., on a frame-by-frame basis. Similarly, Peng et al. (27), used the same software to compare the palatability of two preparations of carbocysteine among healthy children aged 2-12 years. The palatability assessed by emotional valences was performed using a facial action coding system by FaceReaderTM, which reflected the quantification of emotions; a positive value represents a positive emotion, and a negative value represents a negative emotion (27). Presently, we refine the work of Kearn's group (26), to explore if the application of computer-vision techniques to videos of primary school children's reaction to gustatory taste strips can provide an objective assessment of palatability. Our methodology uses pose estimation for facial recognition analysis, which allows access to the raw movements of facial features, rather than through the lens of emotional reactions. Finally, our study was conducted

in a domiciliary setting to allow for natural behaviour, with minimal burden for participants.

Materials and Methods

Participants

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Participants were children aged between 4 to 11 years old recruited from a primary school in London, United

Kingdom, and their adult caregiver. Prior to the study, all participants received an information sheet with the study

details. Participants and their caregivers had to sign informed consent and assent forms respectively if they were

willing to participate in the study. The study was approved by the UCL research ethics committee (REC) 4612/029.

As this was an exploratory study, no formal requirements were put on sample size. All pupils at a school of 840

were invited to join the study.

Study Design and Procedures

This study was a single blind taste assessment, conducted in a home environment. After consent, all participants were provided with a study pack for the taste evaluation to be completed at home. The pack contained the study instructions, four taste strips and information about how to download the Aparito app (Atom5TM) on their smartphone. Atom5TM is a secure, encrypted and password protected platform (ISO 13845, ISO 27001, Cyber Essential Plus, CREST tested and ePrivacyApp awarded by ePrivacyseal GmbH) for remote monitoring of a wide range of adult and paediatric disease areas, designed to collect digital endpoint data. Commercially available Burghart (or ODOFIN) taste strips (MediSense, Groningen, The Netherlands) were used in this study. The taste strips are made of filter paper impregnated with different solutions containing substances found in food and drinks. They are used in clinical and research contexts as a validated procedure to investigate taste ability/gustatory sensitivity in both children and adults (28). One of the strips was blank with no tastant, one strip was bitter (0.006 g/mL of quinine hydrochloride), one was sweet (0.4 g/mL of sucrose), and one sour (0.3 g/mL of citric acid). Each taste strip was individually repackaged into coloured Mylar foil bags for blinding purposes: blank in a white coloured foil bag, bitter in yellow, sweet in green and sour in purple. After receiving the study pack, participants were asked to input their age and sex on the app. Then, instructions guided the participants through each step of the study. Children were instructed to place one strip on the middle of their tongue, close their mouth and test the sample for 10 seconds before removing the strip. The adult caregiver used their smartphone video to record the facial reaction of the child as they tasted the strip. After removing each strip, the children were asked to rate the sample on a 5-point hedonic smiley face scale, where 1 corresponded to a sad face, indicative of dislike and 5 to a happy face indicating the liking of the taste of the strip, Fig 1. Finally,

children were invited to provide their feedback about the tasting experience through an open response question.

Fig 1. A 5-point hedonic smiley face scale that was used in the study.

Instructions indicated to test the blank control strip first so that participants could practise the correct use of the strip, the video recording, and how to record their responses in the app. The other three taste strips were tested in three different sequences as indicated by the foil bag colour (sweet, sour, bitter - sour, bitter, sweet - bitter, sweet, sour) and children were randomly assigned to one of the three sequences by the app. To avoid any anticipation and bias in their responses, participants were blinded to the taste of the strip they were tasting and were instructed to taste each strip sequentially from each coloured foil bag. Children were invited to take some water to help remove any residual taste between each sample.

All data recorded within the app was transferred onto the Atom5 TM software platform and stored securely on Microsoft Azure. All data were collected and stored in accordance with the Data Protection Legislation 2018 and General Data Protection Regulation (GDPR) 2018.

Statistical Analysis

For each taste strip, the rank rating of the hedonic scale was analysed to see if any difference could be appraised between different age groups, sex, and order of strip testing. Also, differences in rank rating between different tastes were assessed. The Kruskal-Wallis H test was used for the analysis and the IBM® SPSS Statistics software platform (IBM Corp. Released 2021. IBM SPSS Statistics for Windows, Version 28.0. Armonk, NY: IBM Corp) was used with the limit of statistical significance set at $\alpha = 0.05$.

Machine Learning for Pose Estimation

Pose Estimation Framework

We used a CNN (Convolutional Neural Network) based, open-source ML (Machine Learning) framework,

Medianine (29) Medianine is a percention pineline builder that offers different pose estimation components

including face detection, face mesh, hands, body, and object tracking. In this study, we used the face mesh component to estimate 368 3D face landmarks per frame.

Data Pre-processing

The video data were filtered on two levels: frame level and facial landmark level.

First, we identified which frames to include in the analysis. We defined the tasting task as the sequence of frames per video from when the taste strip was inserted in the subject's mouth, until just before the action of removing said strip. The cleaning process included going through the videos and manually identifying the beginning and end times of the tasting task. Importantly, we noticed that some subjects reacted after the taste strip was removed from the mouth. Therefore, we also identified a post-tasting section that started from the moment after the strip was removed from the mouth, until the end of the video or until the subject was distracted by something else (e.g., if the child starts talking to someone else in the room or turns away and moves out of the frame).

Secondly, we identified 53 facial landmarks to be included in the analysis out of the 368 landmarks extracted by Mediapipe, which allows for the outlining of the main visible facial features, Fig 2.

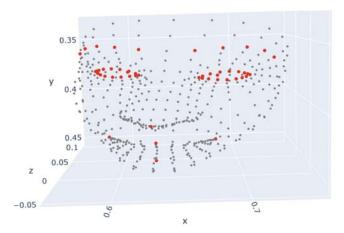


Fig 2. Landmarks identified to be included in the analysis (red) plotted against all landmarks estimated by Mediapipe (grey).

Facial Feature Aggregation

The extracted landmarks were aggregated into six measures inspired from Novotny et al., 2022 (30):

• Eyebrow elevation: left and right variants of the distance between the median of the eyebrow landmarks and the nose tip landmark.

- Eyebrow tilt: left and right variants of the angle between the fitted line to the five eyebrow landmarks and the line connecting the inner corners of the eyes.
- Eyebrow shape: left and right variants of the angle between the lines connecting the middle eyebrow landmark with the left and right endpoints of the eyebrow.
- Palpebral aperture: left and right variants of the surface delimiting the eye area.
- Lip elevation: upper and lower variants of the distance between the middle lip landmark and the nose tip.
- Mouth corner: left and right variants of the distance between the mouth corner landmark and the nose tip.

All distance measures were rescaled by a reference measure to account for the variations in the landmarks' coordinates caused by something other than the facial reaction. These other variations were caused by the subject's face changing position or angle during the video, e.g., head rotation, head movement closer or farther from the camera, the camera's angle moving during the test, etc. The reference measure chosen was the distance between the right inner corner of the eye and the tip of the nose.

Results

Data Description and Participants' Demographics

A total of 250 participants agreed to take part in the study and received a study pack at home. Of these, 40 participants completed all the hedonic ratings and video recordings, and 24 participants completed all the hedonic scales but did not record one or more videos. Thus, the data analysis was performed with data from 64 participants; Table 1 reports the number of hedonic scales and videos recorded per taste strip.

Table 1. Total number of hedonic scale ratings and videos analysed per each taste.

Taste of the strip	No. of hedonic scales	No. of videos
Neutral	64	51
Sour	64	46
Sweet	64	54
Bitter	64	46
Total	256	197

Children in the study were aged between 5 to 11 years, with a median age of 8.5 years (SD 1.46), Table 2, and there were slightly more females (n=36) than males (n=28).

Table 2. Age distribution of the children participating in the study.

Age (years) Frequency (%	
5	1 (2%)
6	3 (5%)
7	10 (16%)
8	18 (28%)
9	13 (20%)
10	11 (17%)
11	8 (13%)

Hedonic Scale Results

The ratings of the hedonic scale for each taste strip were analysed by gender, age, and randomisation order of the strips to assess if any difference between groups existed. The analysis by gender showed that there were no significant differences between boys and girls in terms of hedonic responses to the taste of each strip (χ 2(2) = 0.46, p = 0.50 for the blank (control) strip, χ 2(2) = 1.50, p = 0.23 for the sour strip, χ 2(2) = 2.32, p = 0.13 for the sweet strip, and χ 2(2) = 2.30, p = 0.13 for the bitter strip). Different ages also showed similar ranking scores for each taste strip (χ 2(2) = 2.04, p = 0.92 for the control strip, χ 2(2) = 4.19, p =0.65 for the sour strip, χ 2(2) = 3.92, p =0.69 for the sweet strip, χ 2(2) = 1.99, p =0.92 for the bitter strip). Similarly, changing the order of how the taste strips were assessed did not alter the rating of each taste strip (χ 2(2) = 0.64, p = 0.73 for the sour strip, χ 2(2) = 0.41, p =0.82 for the sweet strip, χ 2(2) = 0.80, p =0.67 for the bitter strip).

Instead, a statistically significant difference in ratings emerged across the different tastes (χ 2(2)= 124.62, and p= 0.001), with the following predominant scores observed for each taste strip: 3 for the blank control strip, 1 for the bitter strip, 5 for the sweet strip, and various scores for the sour strip. These results indicate that the hedonic scale elicited expected results: children like sweetness, dislike bitterness and have varying opinions for sourness, Fig 3.

Fig 3. Participants' hedonic scale rating for each taste strip, where 1 corresponds to not liking the taste (sad face), and 5 corresponds to liking the taste of the strip (happy face).

Facial Measures

210

211

212

213

214

215

216

217

218

219

220

221

222

Facial landmark coordinates were extracted for each frame captured during or after the tasting task. A total of 97.4% of frames (accounting for 95561 total frames) were successfully processed using the Mediapipe framework. Failures to process some frames were due to subjects turning away from the camera or covering their face. Fig 4 shows the distribution of processed frames during and after the tasting.

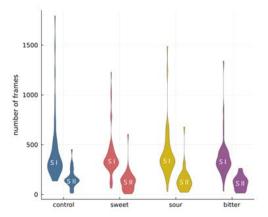
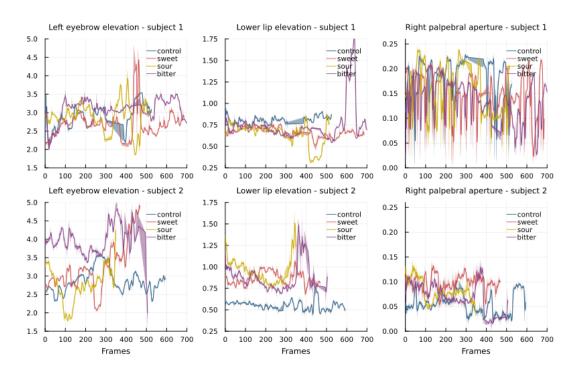



Fig 4. Number of frames processed with Mediapipe per taste and section: during the tasting (SI) and post tasting (SII).

Using the extracted coordinates, we computed the facial measures (described in section 2.4.3). A sample data of two subjects (four videos per subject: one for each taste) is depicted in Fig 5 as a 5-frame moving average of three

225

226

227

228

229

231

Fig 5. Sample of rescaled measures (left eyebrow elevation, lower lip elevation, right palpebral aperture) of two subjects, representing the variation of the measures over time per tasting (including both during and post tasting sections).

We then calculated the standard deviation of the rescaled measures for all subjects, including all their videos that passed quality checks. We plotted this, grouped per taste and hedonic score, in Figs 6 and 7.

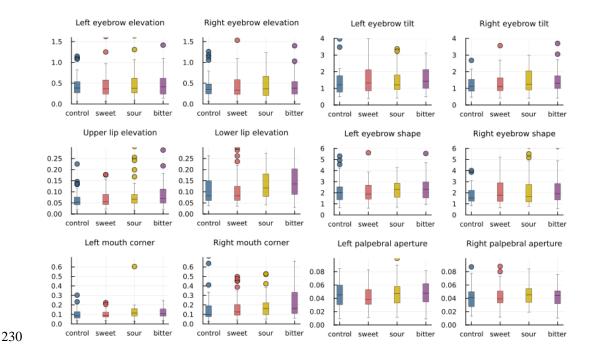


Fig 6. Box plots of the standard deviation of the rescaled measures, grouped by taste.

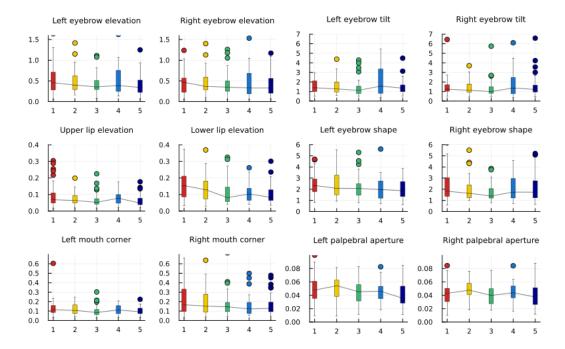


Fig 7. Box plots of the standard deviation of the rescaled measures, grouped by hedonic scores.

Moreover, we ran an analysis that determines which facial measure(s) were most predictive of palatability. We used an Extra-trees classifier to rank the importance of each measure. The "Right eyebrow elevation" measure was found to be the most important, followed by the "Left eyebrow elevation" and the "Left/Right" mouth corner", Fig 8.

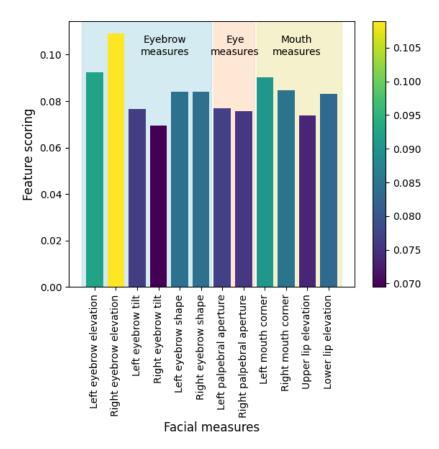


Fig 8. Ranking of the importance of the facial measures using an Extra-Trees classifier.

Discussion

The present study sought to investigate facial reactions to different tastes in children, with the aim of identifying key indicators of palatability perceptions.

Two previous studies have assessed the use of facial recognition technology to evaluate palatability in the context of medicinal products in children (26,27). However, the main differences of our study compared to the previous studies are as follows. Firstly, our study was conducted in a domiciliary setting rather than in a standardised laboratory environment. If, on the one side, this meant reduced video quality and compliance with the instructions, on the other side, our study showed that it is feasible with the advantage of posing a minimal burden for participants.

Secondly, the methodology applied in our study differed from that of Kearn's and Peng's study (26,27). We applied pose estimation for facial reaction analysis assessing the raw movements of facial features, rather than classifying

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

14

stimuli without the need to translate them into emotions which can be biased by aspects other than the taste. Finally, taste strips were used instead of liquids to measure the palatability. The advantage of using taste strips rather than solutions is that the latter pose inherent quality and safety related challenges to taste testing, given their bulkiness and thus difficulty of storage and transport, as well as their swallowing risk, particularly if used by children (31). This study showed that taste strips were easy to use and results from the hedonic scale showed that expected results were elicited: children like sweetness, dislike bitterness and have varying opinions for sourness. Previous studies have reported that children's liking of sweet and dislike of bitter reflect their basic biology (32). The appreciation for sourness seems to be influenced by children's food habits and there are various experiential factors that can influence flavour preferences during childhood (33,34). In the 197 videos available, the relative proportions of frames per taste were as follows: 28.29% control, 26.15% sweet, 24.40% sour, and 21.16% bitter. The lower value for bitter was due to less adherence to the 10 seconds minimal duration of the video. This well-balanced distribution of processed frames across the different tastes enabled a comprehensive evaluation of facial reactions. Overall, our findings demonstrate a clear signal of a reaction to taste, but also highlight the complexity and variability of facial reactions in response to different tastes. For instance, Figure 5 illustrates how the bitter taste resulted in a higher lower lip elevation, while the sweet taste elicited a higher left eyebrow in both subjects. However, these signals were not consistent across all measures and subjects, indicating the complex nature of taste perception. Our study considered a range of measures, and we found that right eyebrow elevation, left eyebrow elevation, and left mouth corner were the three most significant indicators of children's palatability perceptions, ranked in decreasing order of importance. Furthermore, we observed that some measures, such as lower lip elevation, showed a decreasing signal as the hedonic score increased, and that most measures exhibited symmetry between their left and right variants. The results from the hedonic scale ratings support this methodology as the current gold standard for use with this age and ability group. However, further insight may be possible by analysing the facial reactions in relation to the hedonic ratings, for example, considering separately the reactions of those who liked and disliked the sour taste. One limitation of this study is that the sample size obtained was smaller than what initially expected, although slightly larger than that of Kearn's and Peng's (26,27). This can partly be explained by the fact that the study

required proactive commitment from the caregiver's side and the fact that several parents were not willing to provide videorecords of the face of their children, although clear explanation about privacy and data confidentiality were provided in the Information Sheet.

A second limitation of this study was that only selected facial expression was considered. To generalise the findings, larger sample size and more diverse facial expression should be examined in future studies.

The results of this study provide new insights into the dynamics of facial expressions in response to taste stimuli. The study generated meaningful results, despite the relative lack of consistency and standardisation inherent in data gathered from a home setting, supporting the potential use of a decentralised approach.

Conclusion

Our study provides valuable insights into the complex nature of taste perception in children and their potential application to drug delivery by improving the acceptance of orally administered medications in children. Further investigations could be conducted to explore other non-verbal cues to provide a more comprehensive understanding of the factors that influence taste perception in children. For instance, voice patterns may reveal vocal cues that indicate preferences or aversions. Besides that, body movement and hand gesture analysis can also offer valuable information on the emotional and cognitive responses to taste stimuli. These findings may be used to develop interventions that enhance the understanding and acceptability of medications in children, ultimately to improve their overall health outcomes.

Acknowledgments

- The authors gratefully thank all the children and caregivers who took part in this study. Our work would not have
- 304 been possible without their help.

302

References

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

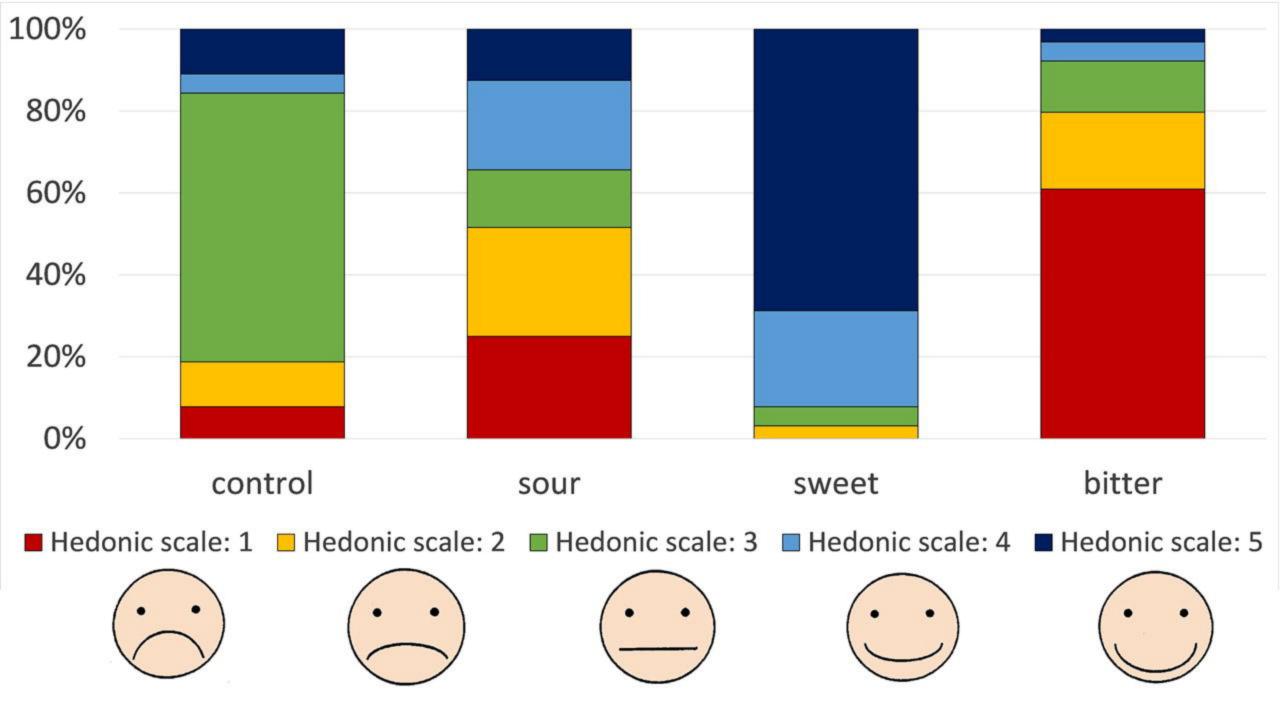
332

333

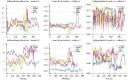
European Medicines Agency (EMA). Guideline on Pharmaceutical Development of Medicines 1. for Paediatric Use (EMA/CHMP/QWP/805880/2012 Rev. 2) [Internet]. 2012 [cited 2020 Dec 12]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guidelinepharmaceutical-development-medicines-paediatric-use_en.pdf 2. European Medicines Agency (EMA) Committee for Medicinal Products for Human Use (CHMP). Reflection Paper: Formulations of Choice for the Paediatric Population [Internet]. 2006 [cited 2023 May 19]. Available from: https://www.ema.europa.eu/en/documents/scientificguideline/reflection-paper-formulations-choice-paediatric-population en.pdf 3. Ternik R, Liu F, Bartlett JA, Khong YM, Thiam Tan DC, Dixit T, et al. Assessment of swallowability and palatability of oral dosage forms in children: Report from an M-CERSI pediatric formulation workshop. Int J Pharm [Internet]. 2018 Feb;536(2):570–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517317308062 4. Kozarewicz P. Regulatory perspectives on acceptability testing of dosage forms in children. Int J Pharm [Internet]. 2014 Aug;469(2):245–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517314002129 5. Davies EH, Tuleu C. Medicines for Children: A Matter of Taste. J Pediatr. 2008 Nov;153(5):599-604.e2. Forestell CA, Mennella JA. The Ontogeny of Taste Perception and Preference Throughout 6. Childhood. In: Handbook of Olfaction and Gustation. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2015. p. 795-828. 7. Mennella JA, Spector AC, Reed DR, Coldwell SE. The bad taste of medicines: overview of basic research on bitter taste. Clin Ther [Internet]. 2013 Aug;35(8):1225-46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23886820 8. Abdel-Rahman SM, Bai S, Porter-Gill PA, Goode GA, Kearns GL. A Pilot Comparison of High-Versus Low-Tech Palatability Assessment Tools in Young Children. Pediatric Drugs [Internet]. 2021 Jan 25;23(1):95–104. Available from: http://link.springer.com/10.1007/s40272-020-00430-2 9. Armstrong JE, Hutchinson I, Laing DG, Jinks AL. Facial Electromyography: Responses of

18 334 Children to Odor and Taste Stimuli. Chem Senses. 2007 May 17;32(6):611–21. 335 10. Shin IH, Park DC, Kwon C, Yeo SG. Changes in Taste Function Related to Obesity and Chronic 336 Otitis Media With Effusion. Arch Otolaryngol Head Neck Surg. 2011 Mar 21;137(3):242. 337 11. Sikka K, Ahmed AA, Diaz D, Goodwin MS, Craig KD, Bartlett MS, et al. Automated 338 Assessment of Children's Postoperative Pain Using Computer Vision. Pediatrics [Internet]. 2015 339 Jul 1;136(1):e124–31. Available from: 340 https://publications.aap.org/pediatrics/article/136/1/e124/28842/Automated-Assessment-of-341 Children-s-Postoperative Steiner JE. Facial Expressions Of The Neonate Infant Indicating The Hedonics Of Food-Related 342 12. 343 Chemical Stimuli. In: Weiffenbach JM, editor. Taste and development: The genesis of sweet 344 preference [Internet]. 1977. p. 173–8. Available from: 345 https://books.google.co.uk/books?hl=it&lr=&id=P0JCgGAlwLkC&oi=fnd&pg=PA173&ots=KS2 346 zTMxJ6D&sig=DD8HbsP0gcD4tkxYeHaj10-dl6A&redir esc=y#v=onepage&q&f=false 347 13. Steiner JE, Glaser D, Hawilo ME, Berridge KC. Comparative expression of hedonic impact: 348 affective reactions to taste by human infants and other primates. Neurosci Biobehav Rev 349 [Internet]. 2001 Jan;25(1):53–74. Available from: 350 https://linkinghub.elsevier.com/retrieve/pii/S0149763400000518 351 14. Forestell CA, Mennella JA. Early Determinants of Fruit and Vegetable Acceptance. Pediatrics. 352 2007 Dec 1;120(6):1247-54. 353 15. Rosenstein D, Oster H. Differential Facial Responses to Four Basic Tastes in Newborns. Child 354 Dev [Internet]. 1988 Dec;59(6):1555. Available from: 355 https://www.jstor.org/stable/1130670?origin=crossref 356 16. Ekman P, Wallace V. F. Facial action coding system. Environmental Psychology & Nonverbal 357 Behavior. 1978; 358 Mennella JA, Forestell CA, Morgan LK, Beauchamp GK. Early milk feeding influences taste 17. 359 acceptance and liking during infancy. Am J Clin Nutr. 2009 Sep 1;90(3):780S-788S. 360 18. Forestell CA, Mennella JA. More than just a pretty face. The relationship between infant's 361 temperament, food acceptance, and mothers' perceptions of their enjoyment of food. Appetite.

362


2012 Jun;58(3):1136-42.

https://www.frontiersin.org/articles/10.3389/fphar.2022.822086/full


20 392 28. Mueller C, Kallert S, Renner B, Stiassny K, Temmel AFP, Hummel T, et al. Quantitative 393 assessment of gustatory function in a clinical context using impregnated "taste strips". Rhinology. 394 2003;44(1):2–6. 29. 395 Lugaresi C, Tang J, Nash H, McClanahan C, Uboweja E, Hays M, et al. MediaPipe: A 396 Framework for Building Perception Pipelines. 2019 Jun 14; 30. 397 Novotny M, Tykalova T, Ruzickova H, Ruzicka E, Dusek P, Rusz J. Automated video-based 398 assessment of facial bradykinesia in de-novo Parkinson's disease. NPJ Digit Med [Internet]. 2022 399 Jul 18;5(1):98. Available from: https://www.nature.com/articles/s41746-022-00642-5 400 Georgopoulos D, Keeley A, Tuleu C. Assessing the feasibility of using "taste-strips" for 31. 401 bitterness taste panels. In: Formulating Better Medicines for Children [Internet]. Malmo; 2019 402 [cited 2023 May 16]. Available from: 403 https://www.ucl.ac.uk/pharmacy/sites/pharmacy/files/eupfi taste-strips poster.pdf 404 32. Mennella JA, Bobowski NK. The sweetness and bitterness of childhood: Insights from basic 405 research on taste preferences. Physiol Behav [Internet]. 2015 Dec;152:502-7. Available from: 406 https://linkinghub.elsevier.com/retrieve/pii/S003193841500298X 407 33. Liem DG. Heightened Sour Preferences During Childhood. Chem Senses [Internet]. 2003 Feb 408 1;28(2):173-80. Available from: https://academic.oup.com/chemse/article-409 lookup/doi/10.1093/chemse/28.2.173 410 34. Liem DG, Mennella JA. Sweet and sour preferences during childhood: Role of early experiences. 411 Dev Psychobiol [Internet]. 2002 Dec;41(4):388–95. Available from: 412 https://onlinelibrary.wiley.com/doi/10.1002/dev.10067 413



