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ABSTRACT		193 

Obesity is a major public health crisis associated with high mortality rates. Previous genome-wide 194 

association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data 195 

from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 196 

participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of 197 

non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10-9). Notably, we 198 

identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in MTMR3 that 199 

was common in individuals of African descent. Using a diverse study population, we further identified 200 

two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 201 

and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding 202 

current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized 203 

medicine. 204 

 205 

INTRODUCTION	206 

In 2015, approximately 12% of adults worldwide had obesity 1, and four years later, the global 207 

obesity-related deaths amounted to five million, translating to an age-standardized mortality rate of 62.6 208 

per 100,000 individuals in 2019 2. Previous genome-wide association studies (GWAS) have identified 209 

hundreds of loci associated with obesity-related traits, primarily with body mass index (BMI) – a practical 210 

and widely used proxy of overall adiposity. However, most of these genome-wide screens relied on meta-211 

analyses of imputed data, predominantly from individuals of European ancestry 3,4.  212 

Despite making some advancements toward improving ancestral diversity in GWAS, ancestry-213 

stratified analyses and multi-ancestry analyses leveraged for discovery and fine-mapping are uncommon 214 

and largely underpowered by comparison. Furthermore, follow-up investigations for known BMI loci 215 

identified in European ancestry populations are insufficiently conducted to evaluate the generalizability of 216 

these loci. As such, the majority of BMI risk variants are common variants (minor allele frequency 217 

[MAF] > 5%) in primarily European ancestry populations, most of which exhibit small effect sizes. While 218 
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these index variants collectively explain less than 5% of the total phenotypic variation in BMI 5, it is 219 

estimated that as much as 1/5 of the phenotypic variance can be captured by common variants across the 220 

entire genome 5, leaving low and rare variants (MAF ≤ 5%) with potentially large effects to be explored 6.  221 

Whole-genome sequencing (WGS) outperforms genotyping arrays in capturing low and rare 222 

frequency variants, as demonstrated in a recent study where researchers revealed that the heritability of 223 

BMI estimated using WGS data was comparable to the pedigree-based estimates, h2 ≈ 0.40 7. Thus, the 224 

discrepancy between phenotypic variance explained by genetic variations in GWAS compared to the 225 

expected heritability may be due to the use of imputed genotypes rather than directly sequenced 226 

variations. Causal variants or SNPs in known loci may not be represented on 1000 Genomes panels, or 227 

not well imputed from reference data because of differences in linkage disequilibrium (LD) across 228 

populations. To address this limitation, we conducted WGS association analyses to identify rare, low-229 

frequency, and ancestry-specific genetic variants associated with BMI, using data from the Trans-Omics 230 

for Precision Medicine (TOPMed) Program 8, which is the most racially and ethnically diverse WGS 231 

program to date, as well as the Centers for Common Disease Genomics (CCDG) Program 9.  232 

 233 

METHODS	234 

 235 

Study	Population	and	Phenotype	236 

 Our study population was racially, ethnically, geographically, and ancestrally diverse. We 237 

analyzed a multi-population sample of 88,873 adults from 36 studies in the freeze 8 TOPMed and CCDG 238 

programs (Figure 1, Supplementary Data 1). They belonged to 15 population groups, reflecting the way 239 

participants self-identified in each study. For individuals who had unreported or non-specific population 240 

memberships (e.g., “Multiple” or “Other”), we applied the Harmonized Ancestry and Race/Ethnicity 241 

(HARE) method 10 to infer their group memberships using genetic data. This imputation was applied to 242 

8,015 participants (9% of the overall population), assigning each to one of the existing population groups. 243 

In this way, our study population groups were defined based on a combination of self-reported identity 244 
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and the first nine genetic principal components (PCs) (Figure 1, Supplementary Fig 1, and 245 

Supplementary Data 1).  246 

The 15 population groups were labeled by their self-identified or primary inferred population 247 

group (e.g., predominantly African ancestry/admixed African/Black were labeled as “African”). Sample 248 

sizes for these groups ranged from 341 to over 43,000 as follows: African (N = 22,488), Amish (N = 249 

1,106), Asian (N = 1,241), Barbadian (N = 248), Central American (N = 776), Costa Rican (N = 341), 250 

Cuban (N = 2,128), Dominican (N = 2,046), European (N = 43,434), Han Chinese (N = 1,787), Mexican 251 

(N = 4,265), Puerto Rican (N = 4,991), Samoan (N = 1,274), South American (N = 695), and Taiwanese 252 

(N = 2,053). We refer to analyses involving all 15 population groups as multi-population analysis and 253 

group-specific analyses by their primary population group.  254 

Among the 88,873 participants, 53,109 (60%) were female and 45,439 (51%) were non-255 

European. The mean (SD) age of the participants was 53.5 (15.1) years. Additional descriptive tables of 256 

the participants are presented in Supplementary Data 2 – 4. BMI was calculated by dividing weight in 257 

kilograms by the square of height in meters. Participants were excluded from analyses if less than 18 258 

years of age, had known pregnancy at the time of BMI measurement, had implausible BMI values (above 259 

100 kg/m2 without corroborating evidence), or did not provide appropriate consent. The mean (SD) of 260 

BMI varied by study, ranging from 23.4 (3.1) in GenSALT to 32.7 (6.8) in VAFAR (Supplementary 261 

Data 2), and by population group, ranging from 23.4 (3.1) in Han Chinese to 33.7 (6.8) in Samoans 262 

(Supplementary Data 3). 263 

 264 

TOPMed	WGS	265 

A detailed description of WGS methods has been reported previously 11. Details regarding the 266 

laboratory methods, data processing, and quality control are described on the TOPMed website 267 

(https://www.nhlbiwgs.org/methods). Briefly, ~30X WGS was conducted using Illumina HiSeq X Ten 268 

instruments at six sequencing centers. At the Center for Statistical Genetics at University of Michigan, 269 

TOPMed sequence data were mapped to the GRCh38 human genome reference sequence in a manner 270 
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consistent with the joint CCDG/TOPMed functionally equivalent read mapping pipeline 12. Joint 271 

genotype calling on all samples in Freeze 8 used the GotCloud pipeline 13. Variants were filtered using a 272 

Support Vector Machine (SVM) implemented in the libsvm software package. Sample-level quality 273 

assurance steps included concordance between annotated and genetic sex, between prior SNP array 274 

genotyping and WGS-derived genotypes, and between observed and expected relatedness and pedigree 275 

information from cleaned sequence data. 276 

 277 

Common	Variant	Association	Analysis 278 

We performed multi-population WGS association analysis of BMI using GENESIS 14 on the 279 

Analysis Commons (http://analysiscommons.com) 15 computation platform. Analyses were performed 280 

using linear mixed models (LMM). To improve power and control for false positives with a non-normal 281 

phenotype distribution, we implemented a fully adjusted two-stage procedure for rank-normalization 282 

when fitting the null model 16. The first model was fit by adjusting BMI for age, age squared, sex, study, 283 

population group, ancestry-representative PCs generated using PC-AiR17, sequencing center, sequencing 284 

phase and project. A 4th degree sparse empirical kinship matrix (KM) computed with PC-Relate 18 was 285 

included to account for genetic relatedness among participants. We also allowed for heterogeneous 286 

residual variances across sex by population group (e.g., female European), as it has previously been 287 

shown to improve control of genomic inflation 19. Residuals from the first model were rank normal 288 

transformed within population group and sex strata. The resulting transformed residuals were used to fit 289 

the second stage null model allowing for heterogeneous variances by the population group and sex strata 290 

and accounting for relatedness using the kinship matrix. Variants with a MAF of at least 0.5% were then 291 

tested individually.  292 

Due to the large number of variants tested (N = 90,142,062) in the multi-population analysis, we 293 

adopted a significance threshold of 5 × 10-9 as has been used previously 20. Group-specific analyses were 294 

conducted in the two largest population groups, European and African. 295 

 296 
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Replication	Analyses	297 

For the novel single-variant association identified in our discovery analyses, we requested 298 

replication from five independent cohorts of similar race, ethnicity, and continental ancestry to our 299 

discovery populations (Ntotal = 109,748): Multiethnic Cohort (MEC) 21, Million Veteran Program (MVP) 300 

22,23, BioMe BioBank Program 24, UK Biobank (UKBB) 25,26, and the REasons for Geographic And Racial 301 

Differences in Stroke (REGARDS) study 27. Phenotypes were developed and analyses were carried out 302 

under the same protocol as outlined above. We subsequently conducted inverse variance weighted fixed 303 

effects meta-analysis in METAL28, using study-specific summary results. Additional details on the parent 304 

study design for each replication study are included in the Supplementary Note.  305 

 306 

Conditional	Analysis	307 

 To identify loci harboring multiple independent signals, we performed stepwise conditional 308 

analyses on the most significant signal within 500kb of our index variant. The significance threshold for 309 

secondary signals was determined by Bonferroni correction for the number of variants across all regions 310 

tested, P = 5.96 × 10-7 (P < 0.05/83,928 SNPs with MAF > 0.5% within 500kb of the 16 index SNPs). 311 

Variants passing the significance threshold after the first round were further conditioned on the top 312 

variant in the locus after the first round of conditioning, to identify potential third signals within each 313 

locus using the same threshold.  314 

To determine whether association signals in known loci were independent of known signals, we 315 

performed conditional analyses using previously published index variants 5,29-48. Specifically, we analyzed 316 

all genome-wide significant variants that were not the previously reported index variants but located 317 

within 500 kb of a known GWAS SNP. Given that these are potential new signals in regions known to 318 

influence BMI, index variants were considered independent if the estimated effect (β) value remained ≥ 319 

90% of the unconditioned β value and P < 6.25 × 10-3 (0.05/8 loci tested). LDlink was used to calculate 320 

pairwise LD between potentially independent signals in known loci and produce LD heatmaps using the 321 

1000 Genomes Global reference panel 49.  322 
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 323 

Rare	Variant	Aggregate	Association	Analysis	324 

 Rare variants with a MAF ≤ 1% were tested in aggregate by gene unit across studies in the multi-325 

population analysis. Variants were grouped into gene units in reference to GENCODE v28, including 326 

both coding variants and variants falling within gene-associated non-coding elements. Coding variants 327 

included high-confidence loss of function variants (Ensembl Variant Effect Predictor [VEP] LoF = HC), 328 

missense variants (MetaSVM score > 0) and in-frame insertion/deletions or synonymous variants 329 

(FATHNMM-XF coding score > 0.5). In addition to coding variants, we included variants falling within 330 

the promoter of each transcript tested. Promoter regions were defined as falling in the 5 kb region 5’ of 331 

the transcript and also overlaying a FANTOM5 Cage Peak 50. In order to identify regulatory elements 332 

likely to be acting through the tested gene, we leveraged the GeneHancer database 51. GeneHancer 333 

identifies enhancer regions and associates them with the specific genes they are likely to regulate, 334 

allowing us to aggregate regulatory regions by the likely target gene. GeneHancer regions were limited to 335 

the top 50% scored regions and variants falling in these regulatory elements were further filtered to those 336 

most likely to have a functional impact (FATHMM-MKL noncoding score > 0.75). Variants aggregated 337 

to gene units were tested using variant set mixed model association tests (SMMAT) 52. Variants were 338 

weighted inversely to their MAF using a beta distribution density function with parameters 1 and 25. 339 

Genes were considered significantly associated after Bonferroni correction for the number of genes 340 

analyzed (P < 5 × 10-7). 341 

   342 

Fine-Mapping	343 

In order to identify candidate functional variants underlying association regions, we performed 344 

fine-mapping analyses in our multi-population GWAS single variant association summary statistics, using 345 

the program PAINTOR 53 which integrates the association strength and genomic functional annotation. 346 

We used the annotation file from aggregate-based testing described above under “Rare Variant Aggregate 347 

Association Analysis” to identify deleterious coding variants, variants within GeneHancer regions, and 348 
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variants within gene promoter regions. We restricted this analysis to variants located within 100 kb of the 349 

locus index variants. We calculated LD using our analysis subset of the TOPMed data, assuming one 350 

causal variant per locus, unless evidence of independent secondary signals was identified, in which case 351 

we allowed for two causal variants per locus. 352 

 353 

PheWAS	354 

To identify potential novel phenotypic associations with newly discovered variants, we performed 355 

a phenome-wide association (PheWAS) in the MyCode Community Health Initiative Study (MyCode), a 356 

hospital-based population study in central and northeastern Pennsylvania 54, and in the Charles Bronfman 357 

Institute for Personalized Medicine’s BioMe BioBank Program (BioMe) located in New York City55; 358 

both studies had genetic data linked to electronic health records (EHR). ICD-10-CM and ICD-9-CM 359 

codes were mapped to unique PheCodes using the Phecode Map v1.2 56 from the EHR. Cases were 360 

defined if individuals had two or more PheCodes on separate dates, while controls had zero instances of 361 

the relevant PheCode. We performed association analyses on PheCodes with N ≥ 20 cases and 20 controls 362 

using logistic regressions, adjusting for current age, sex (for non-sex-specific PheCodes), and the first 15 363 

PCs calculated from genome-wide data, and assuming an additive genetic model using the PheWAS 364 

package 57 in R. Analyses were conducted in the overall population as well as in individuals of 365 

genetically-informed African ancestry alone (as inferred from k-means clustering of the PCs 58), given the 366 

potential population-specific association of our novel locus. We restricted our analyses to unrelated 367 

individuals up to 2nd degree. Association analyses were conducted within each study, followed by inverse 368 

variance weighted fixed effects meta-analysis in METAL28. PheCodes were deemed statistically 369 

significant after Bonferroni correction for the number of PheCodes analyzed (P < 0.05/538 = 9.3 × 10-5). 370 

 371 
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RESULTS	372 

Single-variant	Analyses		373 

Among the 90 million SNPs included in the multi-population analysis, 86% (N = 77,178,487) 374 

were rare SNPs with a study-wide MAF of 0.5% < MAF ≤ 1%, and 6% (N = 5,542,150) were low-375 

frequency (1% < MAF ≤ 5%) SNPs. In the multi-population unconditional analysis, we identified 16 loci 376 

that reached the prespecified genome-wide significance threshold of P < 5 × 10-9 (Table 1, Figure 2, 377 

Supplementary Figs. 2 – 3), including one low-frequency (MAF = 4%) and 15 common (MAF 14% – 378 

50%) tag SNPs. In general, the low-frequency variant in our primary discovery showed a stronger effect 379 

than the common variants, with an estimated effect 2.14 times larger than the average common variants 380 

(0.078 vs. 0.037 on average). Of these 16 loci, 15 were in known BMI-associated regions, and one novel 381 

locus was identified on chromosome 22 harboring a low-frequency index SNP near MTMR3 382 

(rs111490516; MAF = 4%, β = 0.078, SE = 0.013, P = 4.52 × 10-9; Table 1). The MAF of this MTMR3 383 

locus varied widely across population groups, with the highest MAF observed in the African (13%) and 384 

Barbadian (13%) population groups, while it ranged from 0% to 5% in other population groups 385 

(Supplementary Data 5). 386 

In the two population-specific analyses, 10 association signals reached genome-wide significance 387 

(Supplementary Data 6, Supplementary Figs 4 – 7). Two of these signals were also detected in the 388 

multi-population analysis. For two loci, SEC16B and FTO, each population-specific analysis revealed a 389 

distinct lead variant compared to the multi-population analysis; however, they were in high LD with (R2 = 390 

0.95 and R2 = 1.00, according to TOP-LD 59; Supplementary Data 6) and within 30 kb of the multi-391 

population lead SNPs. Notably, the novel locus in MTMR3 achieved significance exclusively in the 392 

African group. While the most significant SNP in the African population group (rs73396827) differed 393 

from that in the multi-population analysis (rs111490516), the two were in strong LD in the TOPMed 394 

African population (R2 = 1.00). Both of these SNPs were fixed in the European group (MAF = 0%). In the 395 

European group analysis, one SNP in the ALKAL2 locus on chromosome 2 (rs62107261, β = -0.102, SE = 396 
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0.016, P = 2.08 × 10-10, MAF = 5%) was not in LD with the corresponding lead variant in the multi-397 

population analysis (R2 = 0.00, as calculated in the analysis subset), but was a known independent 398 

secondary signal at this locus 40. The remaining SNPs were in the proximity to the index SNPs in the 399 

corresponding loci from the multi-population analysis.  400 

 401 

Replication	402 

The replication sample sizes ranged from 4,413 in BioMe to 79,889 in MVP (Supplementary 403 

Data 7). In the five replication studies of Blacks, Africans, and African Americans, the MAF of 404 

rs111490516 in MTMR3 ranged from 11% to 13%, aligning with the 13% observed in our African and 405 

Barbadian groups and contrasting to the 0% to 5% range in our non-African discovery groups 406 

(Supplementary Data 7). We replicated the novel variant rs111490516, demonstrating directionally 407 

consistent associations with BMI across the replication studies and a 68% reduction in the estimated 408 

effect when meta-analyzing across replication studies (β = 0.025, SE = 0.007, P = 4.76 × 10-4, MAF = 409 

11%) compared to the discovery analysis (Figure 3, Supplementary Data 7). In the meta-analysis of 410 

198,621 individuals from both discovery and replication studies, the estimated effect was 0.037 with a SE 411 

of 0.006 and a P-value of 4.19 × 10-9 (Figure 3, Supplementary Data 7). 412 

To gain a better understanding of the potential functional consequence of the MTMR3 locus, we 413 

used Ensembl VEP 60 to annotate all variants in high LD with our top SNP (R2 > 0.8 in the African 414 

population group using TOP-LD 59). Of the 54 variants in high LD, most were intronic or nearby MTMR3 415 

(Supplementary Data 8). Of these, four variants had a moderate CADD (combined annotation dependent 416 

depletion) score (scaled CADD > 10) with rs73394881 having the highest relative CADD score61, three of 417 

which lay within a possible enhancer (rs73396896, R2 = 0.884; rs73394881, R2 = 0.889; rs74832232, R2 = 418 

0.889).  419 

 420 
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Conditional	Analyses	421 

Conditional analysis using the most associated variant at each locus revealed two significant 422 

secondary signals after multiple testing correction (Tables 1, Supplementary Data 9, Supplementary 423 

Figure 8). These included a known BMI-associated index variant on chromosome 2 (rs62107261, β = -424 

0.097, SE = 0.014, P = 2.06 × 10-12, near ALKAL2) 40, which was also the most significant variant at this 425 

locus in the European group analysis (Supplementary Data 6). We further identified rs78769612 on 426 

chromosome 18 (β = -0.100, SE = 0.019, P = 2.17 × 10-7, near MC4R). Although both secondary SNPs 427 

were in known BMI-associated loci, rs78769612 near MC4R was a new index variant.  428 

We additionally assessed independence for the top variants in known loci, by conditioning on all 429 

previously-reported index variants 5,29-48. Two SNPs, rs2206277 in TFAP2B and rs3838785 in BDNF, 430 

remained significant after multiple test correction, indicating potentially novel signals in known loci 431 

(Supplementary Data 10). The novel index variant from the internal conditional analysis, rs78769612 432 

near MC4R, was not robust to this treatment, suggesting that this novel variant was not independent of 433 

known BMI variants. The LD matrix plots highlighted low LD (R2 range 0.018 – 0.342) between our top 434 

SNP at the BDNF locus, rs3838785, and previously published lead variants within 500 kb 435 

(Supplementary Fig. 9). Although our top SNP, rs2206277, in the TFAP2B locus was conditionally 436 

independent of previously published BMI-risk SNPs (β ≥ 90% of the unconditioned β and P < 6.25 × 10-437 

3), this SNP was in high LD with two nearby published SNPs (R2 = 0.822 for rs987237 and R2 = 0.793 for 438 

rs72892910).  439 

 440 

Aggregate-based	testing	441 

We did not identify any novel gene regions through association tests at the genome-wide level (P 442 

< 5 × 10-7) when aggregating variants with MAF ≤ 1%. Nevertheless, we successfully replicated previous 443 

gene-based associations with the well-known melanocortin 4 receptor (MC4R) gene (P = 8.47 × 10-8), 444 

with 111 alleles across 37 sites within coding regions, enhancers, and promoters for MC4R. The MC4R 445 

locus was also identified in single-variant analyses. 446 
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 447 

Fine-mapping	448 

To pinpoint the most probable causal variant(s) underlying each of the 16 loci, we subsequently 449 

performed fine-mapping using PAINTOR 53. Assuming one causal variant per locus, the index variants 450 

were the most likely causal variants in 14 loci, with posterior probabilities (PP) ranging from 0.02 and 451 

1.00, and seven of them had a PP above 0.50 (Supplementary Data 11, Supplementary Fig 10). Two 452 

intronic index variants, rs2307111 in POC5 and rs1379871 in DMD, were particularly noteworthy with 453 

PP exceeding 0.98. In contrast, variants with the highest PP in ADCY3 and ZC3H4 were not the reported 454 

index variants, although the highest PP for the ADCY3 locus was below 0.50, and thus not likely the 455 

causal variant underlying this signal. In the ZC3H4 locus, the highest PP variant (rs55731973, PP = 0.77) 456 

was intronic, located in the 5’ UTR or upstream of ZC3H4 depending on alternative transcripts, and 457 

resided in probable enhancer regions. Additionally, this variant was a significant cis-eQTL for SAE162, 458 

another nearby downstream gene.  459 

 460 

PheWAS	461 

To explore potential novel pleiotropy, we conducted association tests between the tag variant 462 

from our novel locus, rs111490516, and 538 PheCodes available in the MyCode and BioMe studies. No 463 

PheCode was significantly associated with rs111490516 following multiple test correction (P < 9.3 × 10-464 

5). However, PheCode 327.3 (Sleep Apnea) and 327.32 (Obstructive Sleep Apnea) ranked among the top 465 

associated PheCodes (P < 0.001) (Supplementary Data 12, Supplementary Fig 11). Perhaps not 466 

coincidentally, obesity is one of the strongest risk factors for sleep apnea 63.  467 

 468 

DISCUSSION	469 

By leveraging WGS data from a large multi-population study, we identified and replicated one 470 

novel low-frequency BMI variant in MTMR3, specific to the diversity of our sample. We also identified 471 

two common secondary signals in known BMI loci, supported gene-based associations for MC4R, and 472 
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refined resolution in multiple loci by prioritizing candidate SNPs with high PP. Our discovery of the 473 

novel BMI-associated variant emphasizes the importance of studying diverse populations, which could 474 

further refine and expand the catalog of genes and variants that confer risk for obesity and potentially 475 

other disease traits.   476 

The novel MTMR3 variant, rs111490516, was most common in our African and Barbadian 477 

population groups (MAF = 13%) and of moderate frequency in our Dominican population group (MAF = 478 

5%). We further replicated this association in study samples of similar population background. Yet, 479 

previous GWAS of BMI focusing on African ancestry individuals failed to identify a significant 480 

association in this region. It is not available for lookup in the most recent MVP BMI GWAS 23, although 481 

included in our replication. In one of the largest GWAS meta-analyses of imputed genotype data in 482 

African ancestry individuals with summary data available publicly, which was conducted by the African 483 

Ancestry Anthropometry Genetics Consortium (AAAGC, N up to 42,751)37, this variant was directionally 484 

consistent and suggestively associated (β = 0.042, P = 1.80 × 10-4, MAF = 12%)37. Similarly, in our 485 

replication analysis of 109,748 individuals with imputed genotypes, MTMR3 (rs111490516) was 486 

suggestively significant (β = 0.025, P = 4.76 × 10-4, MAF = 11%). Therefore, the lack of discovery in 487 

prior publications is likely not due to insufficient power. As indicated by our fine-mapping results for this 488 

novel locus, our index SNP is likely not causal but could be in LD with a causal SNP and also poorly 489 

captured in studies relying on imputation. In other words, the causal variant underlying this locus may be 490 

nearby, less frequent, and on an LD block more frequent in a population poorly represented in other 491 

imputation reference panels, but well represented in our WGS and highly diverse sample (e.g., Caribbean 492 

admixed individuals). In this case, one would require sequencing data in a large sample size with the 493 

relevant haplotype to detect a significant association that was not able to be identified with imputation in 494 

a similar number of people.   495 

The SNP rs111490516 lies in an intron of the MTMR3 (myotubularin related protein 3) gene, with 496 

limited evidence of involvement in regulatory or functional protein activity. Other variants mapped to 497 

MTMR3 have been associated with obesity-related traits in GWAS. In a study of 155,961 healthy and 498 
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medication-free UKBB participants, rs5752989 near MTMR3 was associated with fat-free mass (β = 499 

0.115, P = 8.00 × 10-9, allele G frequency = 43%)64. In a meta-analysis of up to 628,000 BioBank Japan 500 

(BBJ), UKBB, and FinnGen (FG) participants, the same SNP was associated with body weight (β = -501 

0.010, P = 3.86 × 10-8, allele A frequency ranged from 51% in FG to 86% in BBJ) 65.   502 

The primary cellular function of MTMR3 relates to regulation of autophagy 66. Although there is 503 

no direct evidence linking MTMR3 to obesity, previous studies have established a connection between 504 

MTMR3 and related cardiometabolic traits. MTMR3 was associated with LDL cholesterol (P = 1 × 10-8) in 505 

a GWAS meta-analysis of European, East Asian, South Asian, and African ancestry individuals 67. A 506 

potential mechanism was proposed later suggesting MTMR3 may mediate the association between 507 

miRNA-4513 and total cholesterol 68. Furthermore, pyruvate dehydrogenase complex-specific knockout 508 

mice with high-fat diet induced obesity also exhibited increased blood glucose and higher expression 509 

levels of MTMR3 69. We utilized the Ensembl VEP database to explore predicted functional consequences 510 

of our novel locus. While there is limited knowledge on the biological implications of the lead variant and 511 

those in high LD, there are multiple lines of evidence supporting a role in obesity at this locus. 512 

  The use of WGS coupled with inclusion of non-European populations improved fine-mapping 513 

resolution, as has been shown previously 47. While there have been multiple attempts to fine-map 514 

previously identified BMI loci 5,33,48, no previous study has successfully identified BMI risk variants of 515 

high confidence at the POC5 and DMD loci. By applying a Bayesian fine-mapping approach, we reduced 516 

associated signals to 95% credible sets of two likely causal SNPs. Functional annotation revealed that one 517 

of them, rs2307111, was a benign missense variant in POC5 (NP_001092741.1:p.His36Arg) according to 518 

ClinVar 70,71, while the other is an intron variant in the promotor region of DMD. These two variants were 519 

also considered high-confidence causal variants (PPrs2307111 = 0.96, PPrs1379871 = 0.99) in a recent joint 520 

analysis of three biobanks (UKBB, FG, BBJ) 72. Notably, unlike in Kanai et al. where the PP appeared to 521 

be driven by the Europeans (for rs2307111: PPUKBB = 0.96, PPBBJ = 0.12, PPFG = 0.01; for rs1379871: 522 
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PPUKBB = 1.00, PPFG = 1.00), the effect alleles in our study were observed in high proportions across many 523 

non-European population groups (Supplementary Data 5).  524 

In addition to our novel findings, 17 of the 18 identified variants reside in previously reported 525 

BMI-associated loci, highlighting the generalizability of the genes underlying BMI across populations, 526 

including SEC16B, TMEM18, ETV5, GNPDA2, BDFN, and MC4R 5,34,48,73. Three of the loci harbor genes 527 

implicated in severe and early-onset obesity – ADCY3, BDNF, and MC4R 4. We also consistently 528 

identified multiple association signals of high effect in MC4R, which is a well-established monogenic 529 

obesity gene, through our discovery analysis, internal conditional analysis, and rare variant aggregate 530 

analysis.  531 

While our study included a large sample size of diverse populations and leveraged high quality 532 

WGS data from well-characterized and harmonized cohorts, our results should also be interpreted with 533 

the following limitations. First, although our study is large compared to other harmonized and sequenced 534 

data samples, the total study size is relatively modest compared to existing GWAS meta-analyses of 535 

common variants using imputed genotype data. Moreover, rare variants, such as those analyzed in our 536 

study, may require even larger sample sizes for novel discoveries. Even though our study is among the 537 

most racially, ethnically, and ancestrally diverse yet conducted, the European population group still 538 

represented 49% of our participants. On the other hand, diversity can contribute to added heterogeneity of 539 

effect sizes, potentially limiting discovery in the multi-population analysis. We sought to overcome this 540 

limitation by allowing for heterogeneous residual variances across population groups and examining 541 

population stratified results when samples sizes were adequate. Notably, all our genome-wide significant 542 

loci from population stratified analyses were also captured in the multi-population analysis, likely owing 543 

to our considerations of heterogenous effects, self-identity (population groups), and ancestry (genotype 544 

PCs). As has been shown by others 47, this underscores the importance of conducting multi-population 545 

analysis using appropriate methods that account for heterogeneity and minimize the risk of inflation or 546 

missed detection of loci that may vary in MAF or phenotypic effects across populations. 547 
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 In summary, our study demonstrates the power of leveraging WGS data from diverse populations 548 

for new discoveries associated with BMI. As we enter the era of incorporating GWAS-based risk models 549 

in clinical practice, it is critical that we continue to diversify the data collected and analyzed in genomic 550 

research. Failure to do so risks further exacerbating health disparities for public health crisis such as 551 

obesity. Ultimately, our study brings us one step closer to understanding the complex genetic 552 

underpinnings of obesity, translating these leads into mechanistic insights, and developing targeted 553 

preventions and interventions to address this global public health challenge. 554 

 555 

 556 
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TABLES  

Table 1. Summary of independent loci reaching genome-wide significance (P < 5 × 10-9) in single variant and internal conditional analyses 

CHR POS 
(hg38) 

Nearest 
gene rsID REF ALT ALT 

Freq Beta SE P-value Known index 
varianta 

Novel 

Locusb 

Top variant in each locus 
1 177920345 SEC16B rs543874 A G 20% 0.064 0.006 1.38E-26 Yes No 
2 621558 TMEM18 rs939584 C  T 85% 0.058 0.007 1.99E-17 No  No 
2 24927427 ADCY3 rs10182181 A G 56% 0.035 0.005 1.76E-11 Yes No 
3 186108951 ETV5 rs869400 T  G 82% 0.038 0.006 1.21E-09 No No 
4 45179317 GNPDA2 rs12507026 A T 36% 0.045 0.005 9.55E-19 Yes No 
5 75707853 POC5 rs2307111 T C 55% -0.032 0.005 7.43E-10 Yes No 
6 50830813 TFAP2B rs2206277 C T 19% 0.054 0.006 2.05E-18 Novel No 
8 76068626 HNF4G rs830463 A G 47% 0.031 0.005 6.58E-10 No No 
11 27657463 BDNF rs3838785 GT G 58% -0.030 0.005 3.14E-09 Novel No 
12 49853685 BCDIN3D rs7138803 G A 30% 0.036 0.005 1.69E-11 Yes No 
13 53533448 OLFM4 rs9568868 G T 14% 0.047 0.007 5.73E-11 No No 
16 53767042 FTO rs1421085 T C 29% 0.090 0.006 6.11E-59 Yes No 
18 60161902 MC4R rs6567160 T C 21% 0.053 0.006 8.22E-19 Yes No 
19 47077985 ZC3H4 rs28590228 C T 50% 0.033 0.005 4.75E-10 No No 
22 29906934 MTMR3 rs111490516 C T 4% 0.078 0.013 4.52E-09 Novel Yes 
X 31836665 DMD rs1379871 G C 41% 0.029 0.004 1.35E-11 Yes No 

Secondary signals 

2 422144 ALKAL2 rs62107261 T  C 3% -0.095 0.014 3.83E-12 Yes No 

18 60361739 MC4R rs78769612 G T 2% -0.106 0.019 3.53E-08 No No 
Newly identified locus highlighted in bold. CHR, chromosome; POS, position; REF, reference allele; ALT, alternative allele; ALT Freq, alternative allele 
frequency; SE, standard error. 
a Known index variant 'Yes' indicates previously published index variant from NHGRI-EBI GWAS Catalog; 'No' indicates index variant within 500 kb ± of the 
published lead variant, not independent of known signal in conditional analysis; 'Novel' indicates new lead variant either not published or conditionally 
independent.   
b Novel locus 'Yes' was defined if there is no known index variant within 500 kb ± of the lead variant in current analysis. 
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FIGURES	 	

Figure 1. Study population group composition.  

A) Pairwise scatter plots of the first three principal components (PCs) by population group. B) This image 

contains a lollipop chart and a waffle plot illustrating the number and proportion of participants by 

population group. Our study population was composed of 88,873 participants from 15 population groups, 

51% of which are non-European. 
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Figure 2. Summary of significant association findings.  

A) Manhattan plot of multi-population, single variant analysis (N = 88,873 individuals). The novel locus (MTMR3) is highlighted in red. 

Previously reported BMI loci are in dark beige. The horizontal dashed line indicates genome-wide significance threshold P = 5 × 10-9. B) 

Scatterplot showing the minor allele frequency compared to the absolute value of the estimate effect of the index variant at each significant locus. 

All effect estimates are from the primary analysis conducted across all population groups. Previously reported loci are highlighted in blue, while 

the novel locus is in red; circles represent the most significant variant at each locus, and triangles show newly reported secondary signals within 

known loci.  
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Figure 3. Forest plot of rs111490516 replication.  All effect estimates (95% confidence interval) are 

oriented on the BMI increasing allele and are provided as standard deviation per allele. Actual beta values 

and P-values are in Supplementary Data 7. 
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