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Abstract 
The viral kinetics of documented SARS-CoV-2 infections exhibit a high degree of inter-individual 
variability. We identified six distinct viral shedding patterns, which differed according to peak 
viral load, duration, expansion rate and clearance rate, by clustering data from 810 infections in 
the National Basketball Association cohort. Omicron variant infections in previously vaccinated 
individuals generally led to lower cumulative shedding levels of SARS-CoV-2 than other 
scenarios. We then developed a mechanistic mathematical model that recapitulated 1510 
observed viral trajectories, including viral rebound and cases of reinfection. Lower peak viral 
loads were explained by a more rapid and sustained transition of susceptible cells to a 
refractory state during infection, as well as an earlier and more potent late, cytolytic immune 
response. Our results suggest that viral elimination occurs more rapidly during omicron 
infection, following vaccination, and following re-infection due to enhanced innate and acquired 
immune responses. Because viral load has been linked with COVID-19 severity and transmission 
risk, our model provides a framework for understanding the wide range of observed SARS-CoV-2 
infection outcomes.  
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Introduction 
 
COVID-19 public health emergency status has lapsed in the United States, but community levels 
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain significant 
(https://covid.cdc.gov/covid-data-tracker/#datatracker-home). SARS-CoV-2 immunity in the 
population is now highly heterogeneous due to varying degrees of prior infection and 
vaccination1, and successive circulating SARS-CoV-2 variants of concern (VOC) with different 
immune evasion and infectivity properties continue to emerge. This has resulted in a wider 
variability of viral shedding patterns than those observed during infection with the ancestral 
strain in the early months of 20202,3. Understanding the heterogeneous upper respiratory tract 
(URT) kinetics of SARS-CoV-2 enables informed design of health interventions such as testing, 
isolation, quarantine, and drug therapies.  
 
Mathematical models are a vital tool to understand mechanisms underlying observed patterns 
of viral expansion and clearance4–9 . To date, studies fitting SARS-CoV-2 dynamic models to viral 
load trajectories have estimated the timing of innate and acquired immune responses and 
predicted parameters of transmission, including super-spreader events10–22. These models 
facilitated estimates of key quantities such as expected duration of the infectious period and the 
timing of peak viral load relative to symptom onset20,23–25. They also provided a theoretical 
means for testing treatment regimens and predicted that treatment within 5 days of symptom 
onset would likely be associated with higher efficacy11,22,24,26,27, an outcome that has since been 
verified in multiple clinical trials28–30. These models were also the first to suggest that viral 
rebound may occur in the context of early antiviral treatments11. 
 
However, early modeling studies only considered data from a small number of infected 
individuals11,20,22–27,31–35, and often drew either entirely from previously uninfected and/or 
unvaccinated cohorts13. Another consistent limitation was that most available data did not 
capture early timepoints during the pre-symptomatic phase of infection. Model results are 
therefore not easily generalized to current SARS-CoV-2 conditions. 
 
The National Basketball Association’s (NBA) daily testing program occurred regardless of 
symptoms and identified 2,875 infections between June 2020 and January 2022, spanning the 
alpha, delta, and early omicron VOC waves, as well as the roll-out of vaccines and boosters.  Hay 
et al. used a statistical approach to quantify the impact of immune history and variant on SARS-
CoV-2 viral kinetics and infection rebound in this data set36. However, a more mechanistic 
modeling approach is required to understand observed kinetic variability in this cohort. 
 
Here, we identify six distinct shedding patterns in the NBA cohort data. We then compare how 
well candidate models which extend the classical target-cell limited model previously published 
by Goyal et al.11,22 and Ke at al.20,23 recapitulate the longitudinal viral load data from 1510 
sufficiently documented infections. After obtaining data-validated parameter estimates for each 
individual infection, we identify the factors underlying differing rates of viral expansion and 
clearance, peak viral loads, and duration of infection observed in the data. We use the model to 
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identify differences between the timing and intensity of the immune response during initial and 
re-infections and identify a potential explanation for viral rebound observed in the cohort. 
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Results 
 
Viral shedding kinetics according to SARS-CoV-2 VOC.  
We first analyzed viral kinetics observed in the cohort according to VOC. For pre-VOC, alpha, 
delta and omicron variants, we observed variable kinetics among cohort participants. Median 
values differed between variants, with omicron variant having slightly lower peak viral loads and 
earlier clearance, while delta had the highest peak viral loads and pre-VOC had the longest time 
to clearance (Fig 1a-d). A high proportion of the infections caused by omicron variants occurred 
in participants who had received either two or three vaccine doses, whereas pre-delta 
infections mostly occurred in unvaccinated individuals (Fig 1e).  
 
The age structure of the NBA cohort differs significantly from the general population. Of the 
cases documented, 46% occurred in individuals under the age of 30, 42% occurred in individuals 
between the ages of 30 and 50, and only 12% occurred in individuals over the age of 50. 
Symptom status was noted for 59% of infections, of which 71% were symptomatic. The level of 
post-vaccination, pre-infection SARS-CoV-2 IgG was measured in 60% of infections. When 
stratifying patients into tertiles, Hay et al. identified low antibody titers as less than 125 
(arbitrary units [AU]/ml), mid-range titers as greater than 125 AU but less than 250 AU, and high 
titers as greater than 250 AU with the most infections occurring in the highest tertile. 17% of 
observed infections were reinfections of individuals followed longitudinally (Fig 1f). 
 
Six distinct SARS-CoV-2 shedding patterns.  
We identified a subset of infections in the NBA cohort as “well-documented” if they had at least 
4 quantitative positive viral load measurements starting within 5 days of detection, and 
infection was documented for 3 weeks or viral elimination was confirmed with 2 sequential 
negative test results. This reduced the data set to 810 well-documented infections. We then 
applied k-means clustering to the viral load data, clustering infections into 6 distinct viral 
shedding patterns (Fig. 2a-c) which differed according to time to viral elimination (Fig. 2c,d), 
area under the viral curve (Fig. 2c,e), peak viral load (Fig. 2c,f) and time to peak (Fig. 2c,g). 
 
The first group had low peak viral loads and early median time to clearance (Fig. 2a-g). The 
second group had a slightly earlier and significantly higher peak than group 1, but similarly short 
duration (Fig 2a-g). The third group had a similar peak viral load compared to group 2, but with 
a longer time to peak viral load and later clearance (Fig 2a-g). The fourth group had the fastest 
expansion rate, reaching a high, early peak viral load, but maintaining similar median time to 
clearance as group 3 (Fig 2a-g). The fifth group has the slowest expansion rate, taking the 
longest time to reach the second lowest peak viral load and had the longest median time to 
clearance among the groups (Fig 2a-g). In contrast with the prolonged low-level shedding of 
group 5, the sixth group had high peak and a long shedding duration (Fig 2a-g).  
 
The proportion of cases that fell into each dynamic group varied when we stratified by 
characteristics included in the data set. The dynamic groups with highest AUC, groups 5 and 6, 
made up around 39% of the infections in the 50 plus age group, whereas only around 20% of 
infections in the under 30 group fall into the high AUC groups (Fig. 2h). Among confirmed 
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asymptomatic infections, 33% of cases fell into group 1, defined by low peak and early time to 
clearance, relative to only 18% of confirmed symptomatic cases (Fig. 2i). High AUC shedding 
patterns were also more prevalent among infections with SARS-CoV-2 variants from earlier in 
the pandemic, making up 61% of pre-VOC infections, 27% of delta infections, and only 7% of 
omicron infections (Fig. 2j). Amongst unvaccinated individuals, high AUC infection patterns were 
much more frequent—58% of infections in unvaccinated individuals fell into groups 5 and 6, 
compared with 11% and 9% of infections for those whose most recent SARS-CoV-2 vaccine was 
their second dose or booster respectively (Fig. 2k). 
 
Mathematical model fit to viral loads from 1510 SARS-CoV-2 infections.  
To identify factors underlying the varied viral shedding patterns in the NBA cohort, we 
developed competing mechanistic mathematical models of viral and immune dynamics and 
selected the best model according to data-fitting criteria. This model adapts previously 
published ordinary differential equations models for within-host SARS-CoV-2 infections by 
combining elements introduced by Goyal et al.11,22 and Ke et al.20,23 . We make mechanistic 
assumptions inherent to many pre-existing viral dynamic models including a viral load 
dependent infectivity, viral production by infected cells, a limited number of susceptible cells 
and a pre-production eclipse phase for infected cells. Other assumptions that optimized model 
fit included conversion of susceptible cells to an infection-refractory state dependent on the 
number of infected cells (presumably representing innate responses to infection), density-
dependent death of infected cells as a proxy for an intensifying cytolytic innate response to a 
higher burden of infection, and a delayed cytolytic acquired immune response (Fig. 3a; 
Materials and Methods).  
 
We used a nonlinear, mixed-effects framework to estimate model parameters for the 1510 
infections documented in 1442 individuals in the NBA cohort that had at least 4 quantitative 
viral load measurements (Materials and Methods). We first used a representative subsample of 
these infections to compare model fits for the full model, illustrated in Fig. 3a and written out in 
equation (1), and reasonable simplifications, in which one or more immune mechanism was 
removed (Materials and Methods, Table S1). Under model selection criteria that balance 
simplicity with accuracy, the best model to explain the NBA data was the full model without any 
terms removed. We then refit the best model to all infections. It is possible that a more complex 
model could describe the data better; however, the fits that we achieve with this model were 
highly accurate (Fig. 3b, Fig. S7).  
 
Differences in timing and intensity of immune response as an explanation for heterogeneous 
shedding patterns.  
We next sought to explore possible virologic and immunologic explanations for different 
observed viral shedding patterns. For relevant model quantities, we calculated the mean within 
each dynamic group at each time point and a 95% confidence interval assuming normally 
distributed values. Viral loads projected by the model for each group (Fig. 4a) resembled those 
from the actual data (Fig 2c). Quantitative kinetic features extracted from model predictions 
including peak viral load, time to peak, viral area under the curve and shedding kinetic group 
also agreed well with those extracted from the data (Fig S1a-f). Dynamic groups with later peak 
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viral loads (G3, G5, G6) had a slower transition of susceptible cells to a refractory state relative 
to groups with earlier peak viral loads (G1, G2, G4) (Fig 4b). Furthermore, the group with the 
lowest peak viral loads and earliest time to clearance, G1, had a markedly higher proportion of 
cells entering the refractory state, and the key distinction between prolonged shedders with low 
peak viral load (G5) versus those with high viral load (G6) was also the proportion of refractory 
target cells (Fig 4b). The magnitude of the early cytolytic immune response was markedly higher 
for group 2 compared to the other 5 groups, which had high peak viral loads but early clearance 
(Fig 4c). The relative ordering of the groups in terms of mean time to acquired immune onset 
(Fig 4d) mirrored the ordering of median clearance time for the 5 groups observed in the data 
(Fig 2d). The earliest late immune responses were also the most intense.  
 
We also compared the value of model parameters across the six dynamic groups (Fig S2). The 
per-infected cell conversion rate of susceptible to refractory cells, 𝜙, was much more rapid for 
group 1 relative to the other groups, contributing to lower, earlier peak viral loads (Fig S2b). In 
contrast, groups 3, 5 and 6 reached peak viral load later due to lower product of viral infectivity, 
𝛽, and viral production rate, 𝜋 (S2c-e). Group 2 had the most rapid clearance of the virus due to 
an elevated value of early clearance of infected cells, 𝛿, in comparison to the other groups (S2i). 
The high peaks observed in groups 4 and 6 were driven by a higher viral production rate, 𝜋, and 
lower rate of conversion of target cells to a refractory state, 𝜙, resulting in the highest ratio 
between these two values (S2b,c,f). Conversely, group 5 had a lower ratio between these two 
parameter values (S2f), and thus a low peak despite prolonged shedding. This prolonged 
shedding observed in groups 5 and 6 resulted from a significantly later onset of acquired 
immunity compared to the other groups (S2k). Overall, these results suggest a complex 
interplay of viral and immune features dictate how individual infections differ according to peak 
viral load, viral expansion rate, viral clearance rate, and duration of shedding. 
 
As a sensitivity analysis, we calculated the Pearson correlation coefficient between individual 
estimates for each model parameter and 3 viral kinetic quantities predicted by the 
mathematical model: log of peak viral load, time to peak viral load, and shedding duration (Fig. 
4e-g). The peak viral load correlated strongly with viral production rate, 𝜋, and had a strong 
inverse correlation with the rate of conversion of susceptible cells to a refractory state, 𝜙 (Fig. 
4e). A linear model mapping log(𝜋/𝜙) to log peak viral load explained a large amount of 
variability (Fig. 4h). The timing of peak viral load inversely correlated strongly with 𝜋, 𝛽, and 𝜙 
(Fig. 4f). We fit an exponential model for time to peak viral load relative to infection as a 
function of log10(𝛽𝜋), which again explained a large amount of variability, 𝑅2  =  0.9 (Fig. 4i). 
Finally, the shedding duration correlated most strongly with the time of onset of acquired 
immunity in the model, 𝜏 (Fig. 4g, j).  
 
We examined the correlations between estimated model parameters and found several 
significant patterns (Fig S3). Viral infectivity, 𝛽, had a positive correlation with the rate at which 
susceptible cells were driven to a refractory state, 𝜙. The refractory conversion rate also had a 
strong negative correlation with the rate of reversion to susceptibility, 𝜌, and the intensity of 
early cytolytic immune pressure, 𝛿. These two parameters, 𝜌  and 𝛿, were strongly positively 
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correlated. There was also a strong correlation between the intensity of early cytolytic immune 
pressure, 𝛿, and late cytolytic immune pressure, 𝑚.  
 
Lower peak viral load and earlier clearance during reinfection with omicron due to more 
effective early immune responses and more rapid late responses.  
The NBA cohort data set documented initial infection and reinfection in 67 individuals (Fig. 5a, 
S4). Of the first infections, 52 were caused by a pre-delta variant and 15 by delta. For all 
individuals, the second infection was caused by an omicron variant. The mean peak viral load 
documented for a re-infection was 0.5 log lower than the mean for first infections. Though there 
was a slight negative correlation between peak viral load during the first infection and that of 
the second infection (Fig. 5b), the relationship was not statistically significant (𝑟𝑝𝑒𝑎𝑟𝑠𝑜𝑛  =

 − 0.18, 𝑝 = 0.15). The median time to clearance for reinfections was 9 days after detection 
compared with 14 days after detection for first infections (Fig. 5c).  
 
Three model parameter values were significantly different for first versus second infections (Fig. 
5d). Reinfections had higher infectivity, 𝛽, but lower viral replication rate, 𝜋. This may reflect 
differences between omicron and earlier SARS-CoV-2 variants, as well as early immune 
responses which contribute to lower peak viral loads. The timing of the acquired immune 
response, 𝜏, was also earlier, during reinfection suggesting more rapid activation of immune 
memory.  Model projections recapitulated viral load patterns observed in the data (Fig 5e). We 
plotted the immune terms from the model simulations for the two groups, and reinfection 
appeared to result in both more refractory cells (Fig 5f) and a more robust early immune 
response (Fig 5g). More significantly, the acquired immune response initiated sooner and at a 
higher magnitude for reinfection (Fig 5h).  
 
Waning early immune response and strong initial clearance of infected cells as a cause of off-
therapy viral rebound.  
Recent studies have shown that viral rebound during the natural course of untreated SARS-CoV-
2 infection is relatively common, occurring in over 10% of cases by some estimates37 
(https://www.fda.gov/media/166197/download). In their analysis of the NBA cohort, Hay et al. 
flagged 40 out of 1334 cases (3%) as rebound, defined by a non-monotonic sequence of test 
results36. As their most inclusive definition of rebound, they identified cases that achieved an 
initial clearance of at least 2 days with cycle threshold greater than or equal to 30, followed by 
at least 2 days with cycle threshold < 30. 
 
We defined simulated infections as rebound if there were 2 or more peaks with height > 3 log10 
RNA copies/ml and prominence > 1 log10 RNA copies/ml. Here we defined prominence as the 
height above the preceding local minima, as illustrated in (Fig. 6a). With this criteria, we 
identified 8.0% of the 1510 cases as rebound. These cases are marked with an “R” and included 
first in Fig S7. Note that we were unable to connect viral rebound to recrudescence of COVID-19 
symptoms because we do not have daily reports of symptom status.  
 
Considering the mean immune responses for these two groups, we observed several key 
differences. In cases of rebound (Fig 6b), susceptible cells were lost more rapidly initially, but 
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they were then replenished more rapidly from the refractory compartment (Fig. 6c-d). This 
allowed for a second surge of viral production, which had been reduced by fast early clearance 
of infected cells (Fig 6e). The delayed onset of the late acquired immune response also allowed 
sufficient time for this to occur before the infection was ultimately cleared (Fig 6e). Cases with 
rebound had higher viral production rates, 𝜋, which is crucial for growth of the viral population 
even with a reduced number of target cells. Rebound cases also had a higher early immune 
clearance rate, 𝛿, which was necessary to achieve the rapid initial clearance of infected cells 
that preserves susceptible cells. Crucially, rebound cases also had a significantly higher reversion 
rate, 𝜌, to account for replenishment of susceptible cells after the first viral peak. To 
compensate for the higher viral production rate, the viral rebound group also had a more 
intense late immune killing rate, 𝑚 (Fig 6g). Rebound cases could also be further stratified by 
timing of the second peak with slightly different mechanistic underpinnings (Fig. S5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.20.23294350doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.20.23294350
http://creativecommons.org/licenses/by-nc/4.0/


 10 

Discussion 
 
Viral kinetics are vital to understanding the pathogenesis of infection and, ultimately, to 
optimizing therapies. Here we use a remarkable cohort from the NBA, which is unique both for 
its size and because it captures early pre-symptomatic timepoints during infection, to describe 
the increasing variability in viral load patterns observed in SARS-CoV-2 infected people. We 
observe that with a general increase in population level immunity due to prior infection and 
vaccination, peak viral load is often lower and earlier with more rapid elimination of virus.  
 
Our mathematical model identifies testable mechanistic hypotheses for these observed 
differences. We first predict that low peak viral loads are associated with lower viral production 
within infected cells and lower viral infectivity. Moreover, for viral loads that also peak early 
(observed in group 1), the model predicts a rapid conversion of susceptible cells to a refractory 
state. Both effects are compatible with data observed in animal models and in vitro models 
describing effects of interferon effects which limit the extent of viral replication and protect 
uninfected cells from viral entry38–42. Appropriate follow up experiments to validate this 
prediction would include local sampling of nasal cytokines and other mediators of local 
immunity during critical early timepoints of infection as has been done in humans for other 
respiratory viral infections43. 
 
The magnitude of the early cytolytic immune response, which wanes as the number of infected 
cells and viral load declines following peak, appears to predict an earlier and more effective late 
sustained immune response. In our model, we assumed this response does not dissipate with 
decrease in virus, so we hypothesize that most of the late response is acquired and due to 
either expanding T cell or antibody levels. Prior work suggested that during primary infection, 
plasma SARS-CoV-2 IgG levels rise too late to explain reduction in viral load44. However, the 
study was performed in an immunologically naïve cohort and needs to be reassessed in the 
current infection environment45,46. T cell mediated killing of infected cells may also assist in 
elimination of infected cells during infection45,47. 
 
Our results suggest that the early/innate response is coupled to the effectiveness of the late 
acquired response. The mechanisms underlying this observation are unclear. One possibility is 
that a higher density of tissue resident NK cells, B cells and T cells may exist after first infection 
and vaccination. In other viral infections, it has been observed that an increase in pre-infection 
tissue resident T cells predicts earlier initiation of a local innate and acquired response due to 
early antigen recognition48,49. Alternatively, early binding and neutralization of viruses due to 
pre-existing antibodies may lower infectivity. Correlation between effective early and late 
responses was clearly observed during re-infection in individuals who had two infections during 
the observation window, suggesting that an early component of acquired immune pressure may 
indeed be important. These model predictions merit experimental follow up. 
 
Unfortunately, we are not able to link the heterogenous virologic patterns observed in the NBA 
cohort with severity of symptoms or future development of post-acute sequelae of SARS-CoV-2 
infection as this data was not available. For multiple other viruses, viral loads have been 
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identified as relevant correlates of disease50–53, and late SARS-CoV-2 viral loads have been linked 
with severity of infection among hospitalized people54,55. During clinical trials, reductions in 
nasal viral load due to monoclonal antibodies, nirmatrelvir / ritonavir, and molnupiravir 
correlated with very large reductions in the incidence of hospitalization and death28,29. Yet, early 
remdesivir which had a large clinical benefit was associated with no viral reduction in nasal 
passage30, highlighting that key viral load surrogates may be in the lung rather than nasal 
passages22. In addition, because early and peak viral load measurements are so rarely obtained 
during COVID-19 infection, the clinical importance of these values remain unknown. 
 
Several further limitations of this work are important to highlight. An issue that is universal to 
the field is that our model does not capture anatomic compartmentalization of viral shedding. A 
previous model demonstrated in non-human primates that SARS-CoV-2 kinetics in the lung 
differ in subtle but important ways from those in the upper airways, and that these differences 
are particularly significant in the context of antiviral therapy22. It is likely that our subgroups of 
shedding may cluster differently if we had access to serial whole lung viral loads. The re-seeding 
of infection in the nose from the lungs or vice versa may also provide alternative explanations 
for the dynamics observed in this data set, particularly viral rebound. Unfortunately, such 
detailed studies are not available in any human cohort. Studies using saliva do suggest slightly 
different kinetics than those from nasal swabs56, but it is doubtful that saliva captures total viral 
load in the lung. 
 
Another issue shared by all mathematical models in the field is the lack of sufficiently granular, 
tissue-based immune data to precisely model the innate and acquired immune response. 
Rather, our model uses several terms to capture the timing and intensity of what is likely to be a 
complex, multi-component response. Specifically, we use a density dependent killing term to 
capture early immunity: this assumes no memory and enhanced killing rates decrease as viral 
load decreases making this response most compatible with innate immunity. As with multiple 
other respiratory virus models and based on experimental data showing that interferon-alpha 
protects cells from infection, we also assume that infection temporarily makes susceptible cells 
refractory to viral entry20–22,39,42. Finally, we assume a late, sustained immune response that 
varies by intensity and timing, compatible with an acquired memory response. 
 
A final limitation shared by all intra-host SARS-CoV-2 models in humans is that we are not able 
to measure potentially important initial conditions of infection, including viral inoculum and the 
number of immune cells within a relevant spatial microenvironment of infection. Thus, the 
model may over ascribe observed differences in observed viral load trajectories to differences in 
immune responses rather than exposure viral load. 
 
In summary, we identify distinct shedding patterns in adults with SARS-CoV-2 infection, with 
shorter, lower viral load infection more commonly observed in persons with omicron infection, 
prior vaccination, and recent prior infection. The mechanistic predictors of rapidly contained 
infection are more rapid conversion of susceptible cells to a refractory state along with more 
rapid and intense late cytolytic immune responses. 
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Materials and Methods 
 
Study Overview. 
We analyzed SARS-CoV-2 viral load data collected during untreated infections in the NBA cohort. 
We clustered this data into 6 dynamic groups, which are statistically different in terms of peak 
viral load, time to peak viral load, area under the viral load curve, and time to clearance. 
Drawing on previous models in the field, we developed a set of candidate ordinary differential 
equation (ODE) mathematical models. We then used model selection theory to determine 
which version the data supported most strongly. With a validated model of SARS-CoV-2 
infection, we examined which parameter values differ to explain the varying viral shedding 
patterns observed in the six dynamic groups. We also used this approach to explain the differing 
dynamics of first and second infections captured in the NBA cohort, and to explain the 
mechanisms underlying viral rebound.  
 
Data Pre-processing. 
We used data from the NBA cohort previously published by Hay et al.36 . The group documented 
2875 individual SARS-CoV-2 infections in 2678 people through frequent quantitative PCR testing. 
First, we filtered this data to include only infections with at least 4 positive quantitative samples 
to provide adequate viral dynamics data for model fitting. This yielded 1510 infections in 1442 
individuals, of which 177 were caused by a pre-VOC variant, 46 by alpha, 163 by delta, and 1124 
by omicron (Fig. 1a). We further identified a “well-documented” subset of these infections by 
filtering for infections that had their first quantitative test within 5 days of detection and 
included test results through 20 days after detection or confirmed elimination of virus prior to 
day 20 (two consecutive negative tests). This well-documented group consisted of 810 
individual infections in 768 people. We also filtered the well-documented group for infections 
with a negative test result within 2 days prior to detection, yielding 266 cases with both early 
detection and 3 weeks of documentation.  We refer to this subset as “fully documented.” 
 
Quantitative Features of Viral Dynamics 
To convert cycle threshold (Ct) values to viral genome equivalents, we averaged Ct1 and Ct2 for 
each individual and applied equation S2 from Kissler et al.57  That is, 
 

log10([𝑅𝑁𝐴])  = (𝐶𝑡𝑎𝑣𝑔 −  40.93733)/(−3.60971) + log10(250), 

 
where the concentration of viral RNA is in copies/ml.  
 
We calculated the peak viral load for a given infection as the maximum measured log10 viral load 
over all quantitative data points and the time to peak viral load was the day of this 
measurement. We calculated the area under the log10 viral load curve from the date of 
detection through the last quantitative measure of viral load, linearly imputing missing values 
between data points. Note that this quantity is an underestimate for individuals without 
confirmed clearance. We calculated the median time to clearance by identifying when the 
cumulative incidence curve for clearance of the virus crossed 50%. The cumulative incidence 
curve is the inverse of the Kaplan-Meier curve for survival of the virus. The Kaplan-Meier curve, 
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KM, and confidence interval was computed using the Python package scikit-survival 0.21.0 
(https://scikit-survival.readthedocs.io/en/stable/). The cumulative incidence curve is then 1-KM.  
 
Data Clustering 
We clustered well-documented infections into 6 dynamic groups using k-means clustering as 
implemented in the Python package scikit-learn 1.2.2 (https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.KMeans.html). As input features, we used 
these 21 daily test results. These came from the day infection was detected through 20 days 
after detection. If any daily measurements were missing between recorded test values, we 
imputed the missing measurements linearly. If the last test date for an individual was prior to 
day 20, so there were missing daily measurements after the last test, we appended negative 
test values to reach 20 days (Fig S6a). This occurred only for infections for which clearance was 
confirmed with 2 consecutive negative tests, since we clustered well-documented infections. 
 
To select these hyperparameters for the k-means clustering, we tested values of k from 2 to 20 
for three possible interpolation methods, linear, quadratic, or cubic spline, and two possible 
surveillance periods, 13 or 20 days post detection (2 or 3 weeks surveillance). Comparing these 
scenarios, linear interpolation up to 20 days post detection had the lowest within cluster sum of 
squares (Fig. S6b). Based on the location of the “elbow” in the plots, we chose to proceed with 
k = 6 clusters. Using k < 6 results in less distinctive behaviors between the groups, while using 
more clusters resulted in some non-interpretable cluster centers (Fig. S6c). 
 
Mathematical Model of SARS-CoV-2 Dynamics 
We considered several ordinary differential equations models for SARS-CoV-2 infection 
dynamics. The full model tracks the number of target cells that are susceptible to infection (𝑆), 
target cells that are refractory to infection (𝑅), infected cells in an eclipse phase (𝐼𝐸), infected 
cells actively producing virus (𝐼𝑃), and SARS-CoV-2 virions (𝑉). Susceptible cells are infected at 
rate 𝛽𝑆𝑉, and become refractory at rate 𝜙𝐼𝑝𝑆. Refractory cells revert to a susceptible state at 

rate 𝜌𝑅. When cells are first infected, they enter an eclipse phase, from which they transition to 
a state of producing virus at rate 𝑘. Productively infected cells are cleared at rate 𝛿𝐼𝑃

ℎ+1, where 
the dependence on infected cells reflects an innate immune response with no memory. When 
the duration of infection surpasses time 𝜏, the clearance rate of infected cells increases by 
𝑚𝐼𝑃 , capturing the delayed onset of a cytolytic acquired immune response with memory. 
Productively infected cells produce virus at rate 𝜋, and free virions are cleared at rate 𝛾𝑉.  
Under these assumptions, the model has the form: 
 

𝑑𝑆

𝑑𝑡
= − 𝛽𝑆𝑉 −  𝜙𝐼𝑃𝑆 +  𝜌𝑅   (1a) 

 
𝑑𝑅

𝑑𝑡
= 𝜙𝐼𝑃𝑆 –  𝜌𝑅     (1b) 

 
𝑑𝐼𝐸

𝑑𝑡
= 𝛽𝑆𝑉 – 𝑘𝐼𝐸     (1c) 
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𝑑𝐼𝑃

𝑑𝑡
= 𝑘𝐼𝐸 − 𝛿𝐼𝑃

ℎ𝐼𝑃  −  𝑚(𝑡)𝐼𝑃  (1d) 

 
𝑑𝑉

𝑑𝑡
= 𝜋𝐼𝑃 –  𝛾𝑉     (1e) 

 

where {
  𝑚(𝑡) = 0     𝑡 < 𝜏
  𝑚(𝑡) = 𝑚    𝑡 ≥ 𝜏.

     (1f) 

 
To ensure that the model did not predict spurious oscillations in viral dynamics, we enforced 
that viral production was zero when 𝐼𝑃 was less than 1. 
 
As initial conditions, we set (𝑆0, 𝑅0, 𝐼𝐸0, 𝐼𝑃0, 𝑉0) = (1 × 107, 0, 0, 0, 𝑉0). Previous models of 
SARS-CoV-2 infection in the nasal compartment have used an initial value of 107 − 108 
susceptible cells, based on estimates that 2-20% of epithelial cells in the upper respiratory tract 
display the ACE 2 receptor5859,60. We assumed that the initial number of refractory cells is zero, 
because the early immune response is inactive prior to infection. We initiated simulations with 
zero infected cells, so 𝐼𝐸0 = 𝐼𝑃0 = 0, and a small viral inoculum to reflect the tight bottleneck 
that transmission places on viral replication. The number of virions present at the outset of 
infection was assumed to be below the limit of detection, but the precise inoculum varies for 
individuals. We also estimated the onset of infection relative to detection, 𝑡0. In the NBA cohort, 
the mean time of symptom onset was the date of detection, so 𝑡0 is correlated with the 
incubation period of SARS-CoV-2. With this in mind, we restricted estimates of 𝑡0 to fall 
between 0 and 20 days based on a 2022 review by Wu et al., which reported that across 142 
studies of SARS-CoV-2 infection, the incubation period ranged from 1.80 to 18.87 days61.  
 
To maintain identifiability, we fixed two parameter values, setting the rate of viral production 
onset to be 𝑘 =  4 in accordance with Ke at al.23 and the rate of clearance of free virions to be  
𝛾 = 15 in accordance with Goyal et al.11 
 
Model Fitting and Selection. 
We fit the model in Eq. 1, as well as simpler versions that eliminate one or more immune 
components and/or the eclipse phase, to data from the NBA cohort using a non-linear mixed 
effect approach62. With this approach, a viral load measurement from individual 𝑖 at time point 
𝑘 is modeled as log10(𝑦𝑖𝑘) = 𝑓𝑉( 𝑡𝑖𝑘 , 𝜃𝑖) + 𝜖, where 𝑓𝑉 represents the solution of the ODE 
model for the state variable describing the virus,  𝜃𝑖 is the parameter vector for individual 𝑖, and 
𝜖 ~ 𝑁(0, 𝜎2) is the measurement error for the log10-transformed viral load data. We fixed 𝜎2 =
0.5 log10 viral RNA copies/ml when comparing model fits, so that any differences in likelihood of 
the full model occur due to a change in agreement between model simulations and data rather 
than a drastic increase in the estimated magnitude of the measurement error. 
 
For model selection, we first worked with the 266 fully documented infections (early detection 
and at least 3 weeks of follow-up or confirmed clearance). In addition to the raw data, for 
individuals without confirmed elimination we imputed 5 “assumed negative” test results at 2-
day intervals starting at 40 days post-detection. Out of the 1510 infections considered in model 
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fitting, 629 had regular measurements past 40 days and 99.5% of tests collected past day 40 
were negative. For viral load observations below the lower limit of quantification or marked as 
“assumed negative”, we used the probabilistic model that Monolix software provides for left-
censored data (https://monolix.lixoft.com/censoreddata/).  
 
The candidate models that we considered are listed in the supplementary material (Table S1). 
For each candidate model, we used the Stochastic Approximation of the Expectation 
Maximization (SAEM) algorithm embedded in the Monolix software to obtain the Maximum 
Likelihood Estimation (MLE) of the vector of fixed effects, 𝜃𝑝𝑜𝑝, and the MLE of the vector of 

standard deviations of the random effects, 𝜎𝜃,  for the model parameters  𝛽, 𝜋, 𝜙, 𝜌, 𝛿, ℎ, 𝜏, 𝑚,  
the delay between infection and date of detection, 𝑡0, and the initial viral inoculum, 𝑉0 
(https://monolix.lixoft.com/tasks/population-parameter-estimation-using-saem/). We assumed 
a lognormal distribution for parameter values, and a logit distribution for initial conditions. The 
delay between infection and detection, 𝑡0, was assumed to fall between 0 and 20 days. The viral 
inoculum was assumed to fall between 0 and 250 log10 viral RNA copies/ml.   
 
We ran the SAEM algorithm six times for each model using randomly selected initial values for 
the estimated parameters. Using the parameter set with the highest likelihood, we computed 
the Akaike Information Criterion (AIC) for each model. Recall that 𝐴𝐼𝐶 = −2 max(log ℒ) + 2𝑚 
where ℒ is the likelihood that the data was generated by this model with these parameter 
values and 𝑚 is the number of model parameters. Hence smaller AIC scores indicate that a 
model is statistically more likely to explain the data. The model with the smallest AIC score in 
the initial model selection phase included all immune components considered and an eclipse 
phase. All AIC scores are recorded in Table S1. 
 
For the best fitting model, there were significant correlations between the random effects of 
model parameters 𝛽, 𝜋,  𝜙, 𝜌, 𝛿, 𝑚, and 𝜏, as well as the date of infection relative to detection, 
𝑡0. We allowed for linear correlations between these parameters in the final model 
(https://monolix.lixoft.com/statistical-model/individual-model/individualdistribution/). This 
further improved the AIC score by 161 points (Table S2). The correlation structure of the final 
set of parameter estimates is shown in Figure S3. 
 
Once the final model was selected, we further restricted them standard deviation of the 
measurement error to 𝜎2 = 0.25 log10 viral RNA copies/ml and ran the SAEM algorithm in 
Monolix to estimate parameters for all 1510 infections. The estimated parameter values from 
the run with the best AIC score were used for all model-based results (Table S3). Population 
parameter values are included in Table S4 and individual model fits are shown in Figure S7. 
Estimated individual parameter values are accessible at https://github.com/lacyk3/SARS-CoV-
2Kinetics.  
 
Statistics 
When comparing quantitative features and parameter values across different groups, we used a 
two-sided Mann-Whitney U-test. When assessing significance of the results, we adjusted p 
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values using the Bonferroni correction for the number of comparisons before comparing against 
a significance threshold of p > 0.05.  
 
Data and Code availability 
The data analyzed in this work was previously published by Hay et al. and is available on github 
at https://github.com/gradlab/SC2-kinetics-immune-history. The code for generating all analysis 
and figures included in this manuscript is available at https://github.com/lacyk3/SARS-CoV-
2Kinetics. 
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Figures 

 
Figure 1: Viral kinetics by variant in the National Basketball Association cohort from June 2020-January 2022. 1510 SARS-CoV-
2 infections are documented. Time series are stratified by variant with individual viral loads plotted in color, the median viral 
load plotted with a solid black line, and the 25th and 75th percentiles plotted in dashed black lines for (a) pre-variant of concern 
viruses, (b) alpha, (c) delta, and (d) omicron infections. (e) Bubble plot showing the correlation between variant of infection and 
vaccination status of the individual. Both the color and the size of the circle indicate the number of infections in each category. (f) 
Additional information about infections includes age, presence of symptoms, re-infection status, and pre-infection antibody titer 
following vaccination.  
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Figure 2: Distinct viral dynamic profiles in the National Basketball Association cohort from June 2020-January 2022. (a) 
Trajectories stratified by cluster assignment after k-means clustering with k = 6. Cluster centers are shown in black. (b) Heat map 
of log viral load over time. Each row corresponds to an infection and trajectories are ordered according to cluster. (c) Cluster 
centers plotted on the same axis demonstrate differing peak viral loads, time of viral peak, clearance rate and time to clearance 
by cluster. (d) The proportion of infections cleared over time for each cluster with 95% confidence interval shaded. Boxplots of (e) 
area under the log10 viral load curve, (f) peak viral load for different dynamic groups, and (g) days between detection and peak 
vial load. According to a Mann-Whitney U-test, distinctions in the mean for all possible pairs of groups are significant (𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑  

< .05) except for the pairs marked “ns.” In the final row, stacked bar charts indicate the percentage of cases that fall into each 
dynamic group when cases are stratified by (h) age group, (i) symptom status, (j) infecting variant, and (k) vaccination status. 
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Figure 3: Mechanistic mathematical model with fits to viral loads from each cluster. (a) Schematic of the ordinary differential 
equations model used to simulate SARS-CoV-2 infection with state variables indicated by capital letters, interactions indicated by 
arrows and parameters indicated by symbols adjacent to arrows. The model contains an early and late cytolytic immune 
response. (b) Examples of data from individual infections and corresponding model simulations colored according to cluster 
identified via k-means clustering as in Fig 2 with group 1 in blue, group 2 in green, group 3 in yellow, group 4 in orange, and 
group 5 in red and group 6 in purple. The black examples were not included in cluster analysis. The model also captures instances 
of rebound or non-monotonic clearance. 
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Figure 4: Mechanistic differences between dynamic groups. Panels (a-d) show the mean of key quantities in the mechanistic 
model for each group over time with 95% confidence interval shaded. The quantities are (a) log viral load, 𝑙𝑜𝑔10( 𝑉), (b) number 
of cells that are refractory to infection likely due to interferon response, 𝑅, (c) early clearance rate of infected cells due to 

density-dependent, likely innate immune responses, 𝛿𝐼ℎ , and (d) late clearance rate of infected cells likely due to acquired 
immune responses,  𝑚(𝑡). During persistent infection (G6), susceptible cells become refractory slowly, the early cytolytic 
responses are weak, and the late immune responses occur later and are less intense. Infections with high peak viral load that are 
cleared more rapidly (G2) have more rapid initial viral growth and more rapid and intense cytolytic immune responses relative to 
G6. Rapidly cleared, low viral load infections (G1) are notable for a rapid conversion of a larger portion of susceptible cells to a 
refractory state and a more rapid and potent acquired immune response. The Pearson correlation coefficient, 𝑟𝑝, between model 

parameters and kinetic quantities (e) peak viral load, (f) time to peak viral load, and (g) shedding duration provides insight into 
the sensitivity of model output to changes in parameters. (h) Peak height is largely explained by the ratio of the viral production 
rate over the rate of conversion of susceptible cells to a refractory state. (i) Time to peak viral load is largely explained by viral 
production rate and infectivity. (j) Shedding duration is largely explained by the time of activation of the acquired immune 
response. 
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Figure 5: Mechanistic underpinning of more rapid clearance of SARS-CoV-2 during re-infection versus initial infection. Initial 
infection and re-infection were documented for 67 individuals in the NBA cohort. (a) Examples of data and model fits for 
infection and reinfection in the same individual (b) As measured from the data, peak viral load of reinfection against peak viral 
load of first infection. In all cases the variant causing the reinfection was omicron, and the variant causing the first infection was 
either delta or a pre-delta variant. The mean peak viral load was around 0.5 log lower for second infection (t-test statistic = 2.26, 
p = .0254) (c) Proportion of infections cleared for reinfection (blue) and first infections (gray) over time, as measured from the 
data. Median time to clearance is 7.5 vs. 12 days since detection. (d) Boxplots of estimated individual parameters for infection 
and reinfection that are significantly different between the two groups (𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑  < 0.05 for Mann-Whitney U-test). During re-

infection with omicron, viral production was lower though infectivity was higher.  The onset of the late immune response also 
occurs significantly earlier.  (e) Mean viral load, (f) number of refractory cells, (g) early clearance rates, and (h) late clearance 
rates over time for the two groups as predicted by mechanistic model.  
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Figure 6: Model fitting to viral rebound in the NBA cohort. (a) We classified infections as examples of viral rebound if there are 
at least two peaks in the model simulation with height of 4 logs and prominence of 1 log. Mean (b) viral load, (c) proportion of 
target cells that are refractory, (d) number of susceptible cells, (e) rate of early clearance, and (f) rate of late clearance as 
predicted by our mathematical model for rebound vs. non-rebound cases in red and blue respectively. 95% confidence interval 
shaded. (g) Distribution of individual parameter estimates for the rebound vs. non-rebound cases. Only those for which the mean 
differs significantly are displayed (𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑   < .05 for Mann-Whitney U test).   
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