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Abstract 
 
The viral kineLcs of documented SARS-CoV-2 infecLons exhibit a high degree of inter-individual 
variability. We idenLfied six disLnct viral shedding paRerns, which differed according to peak 
viral load, duraLon, expansion rate and clearance rate, by clustering data from 810 infecLons in 
the NaLonal Basketball AssociaLon cohort. Omicron variant infecLons in previously vaccinated 
individuals generally led to lower cumulaLve shedding levels of SARS-CoV-2 than other 
scenarios. We then developed a mechanisLc mathemaLcal model that recapitulated 1510 
observed viral trajectories, including viral rebound and cases of reinfecLon. Lower peak viral 
loads were explained by a more rapid and sustained transiLon of suscepLble cells to a 
refractory state during infecLon, as well as an earlier and more potent late, cytolyLc immune 
response. Our results suggest that viral eliminaLon occurs more rapidly during omicron 
infecLon, following vaccinaLon, and following re-infecLon due to enhanced innate and acquired 
immune responses. Because viral load has been linked with COVID-19 severity and transmission 
risk, our model provides a framework for understanding the wide range of observed SARS-CoV-2 
infecLon outcomes.  
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.20.23294350doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.20.23294350
http://creativecommons.org/licenses/by-nc/4.0/


 3 

Introduc4on 
 
Even as the COVID-19 public health emergency status has lapsed in the United States, 
community levels of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain 
significant (hRps://covid.cdc.gov/covid-data-tracker/#datatracker-home). SARS-CoV-2 immunity 
in the populaLon is now highly heterogeneous due to varying degrees of prior infecLon and 
vaccinaLon1, and successive circulaLng SARS-CoV-2 variants of concern (VOC) with different 
immune evasion and infecLvity properLes conLnue to emerge and predominate. This has 
resulted in a wider variability of viral shedding paRerns than those observed during infecLon 
with the ancestral strain in the early months of 20202,3. Understanding the heterogeneous 
upper respiratory tract (URT) kineLcs of SARS-CoV-2 enables informed design of health 
intervenLons such as tesLng, isolaLon, quaranLne, and drug therapies.  
 
MathemaLcal models are a vital tool to understand mechanisms underlying observed paRerns 
of viral expansion and clearance4–9 . To date, studies fibng SARS-CoV-2 dynamic models to viral 
load trajectories have esLmated the Lming of innate and acquired immune responses and 
predicted parameters of transmission, including super-spreader events10–22. These models 
facilitated esLmates of key quanLLes such as expected duraLon of the infecLous period and the 
Lming of peak viral load relaLve to symptom onset20,23–25. They also provided a theoreLcal 
means for tesLng treatment regimens and predicted that treatment within 5 days of symptom 
onset would likely be associated with higher efficacy11,22,24,26,27, an outcome that has since been 
verified in mulLple clinical trials28–30. These models were also the first to suggest that viral 
rebound may occur in the context of early anLviral treatments11. 
 
However, early modeling studies only considered data from a small number of infected 
individuals11,20,22–27,31–35, and oden drew either enLrely from previously uninfected and/or 
unvaccinated cohorts13. Another consistent limitaLon was that most available data did not 
capture early Lmepoints during the pre-symptomaLc phase of infecLon. Model results are 
therefore not easily generalized to current SARS-CoV-2 condiLons. 
 
The NaLonal Basketball AssociaLon’s (NBA) daily tesLng program occurred regardless of 
symptoms and idenLfied 2,875 infecLons between June 2020 and January 2022, spanning the 
alpha, delta, and early omicron VOC waves, as well as the roll-out of vaccines and boosters.  Hay 
et al. used a staLsLcal approach to quanLfy the impact of immune history and variant on SARS-
CoV-2 viral kineLcs and infecLon rebound in this data set36. However, a more mechanisLc 
modeling approach is required to understand observed kineLc variability in this cohort. 
 
Here, we idenLfy six disLnct shedding paRerns in the NBA cohort data. We then compare how 
well candidate models which extend the classical target-cell limited model previously published 
by Goyal et al.11,22 and Ke at al.20,23 recapitulate the longitudinal viral load data from 1510 
sufficiently documented infecLons. Ader obtaining data-validated parameter esLmates for each 
individual infecLon, we idenLfy the factors underlying differing rates of viral expansion and 
clearance, peak viral loads, and duraLon of infecLon observed in the data. We use the model to 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.20.23294350doi: medRxiv preprint 

https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://doi.org/10.1101/2023.08.20.23294350
http://creativecommons.org/licenses/by-nc/4.0/


 4 

idenLfy differences between the Lming and intensity of the immune response during iniLal and 
re-infecLons and idenLfy a potenLal explanaLon for viral rebound observed in the cohort.  
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Results 
 
Viral shedding kine4cs according to SARS-CoV-2 VOC.  
We first analyzed viral kineLcs observed in the cohort according to VOC. For pre-VOC, alpha, 
delta and omicron variants, we observed highly variable kineLcs among cohort parLcipants. 
Median values differed between variants, with omicron variant having slightly lower peak viral 
loads and earlier clearance, while delta had the highest peak viral loads and pre-VOC had the 
longest Lme to clearance (Fig 1a-d). A high proporLon of the infecLons caused by omicron 
variants occurred in parLcipants who had received either two or three vaccine doses, whereas 
pre-delta infecLons mostly occurred in unvaccinated individuals (Fig 1e).  
 
The age structure of the NBA cohort differs significantly from the general populaLon. Of the 
cases documented, 47% occurred in individuals under the age of 30, 42% occurred in individuals 
between the ages of 30 and 50, and only 12% occurred in individuals over the age of 50. 
Symptom status was noted for 59% of infecLons, of which 72% were symptomaLc. The level of 
post-vaccinaLon, pre-infecLon SARS-CoV-2 IgG was measured in 60% of infecLons. When 
straLfying paLents into terciles, Hay et al. idenLfied low anLbody Lters as less than 125 
(arbitrary units [AU]/ml), mid-range Lters as greater than 125 AU but less than 250 AU, and high 
Lters as greater than 250 AU with the most infecLons occurring in the highest terLle. 17% of 
observed infecLons were reinfecLons of individuals followed longitudinally (Fig 1f). 
 
Six dis4nct SARS-CoV-2 shedding paFerns.  
We idenLfied a subset of infecLons in the NBA cohort as “well-documented” if they had at least 
4 quanLtaLve posiLve viral load measurements, and infecLon was documented through day 20 
post-detecLon, or viral eliminaLon was confirmed prior to 20 days post-detecLon with 2 
sequenLal negaLve test results. This reduced the data set by about half to 810 well-
documented infecLons. We then applied k-means clustering to the viral load data from the date 
of detecLon through 20 days ader detecLon for this subset of infecLons, clustering the 
individual infecLons into 6 disLnct viral shedding paRerns (Fig. 2a-c) which differed according to 
Lme to viral eliminaLon (Fig. 2c,d), viral area under the curve (Fig. 2c,e), peak viral load (Fig. 
2c,f) and Lme to peak (Fig. 2c,g). 
 
The first group had low peak viral loads and early median Lme to clearance (Fig. 2a-g). The 
second group had a slightly earlier and significantly higher peak than group 1, but similarly short 
duraLon (Fig 2a-g). The third group had a similar peak viral load compared to group 2, but with 
a longer Lme to peak viral load due to a slower expansion rate, and later clearance resulLng in a 
larger area under the log10 viral load curve (Fig 2a-g). The fourth group had the fastest 
expansion rate, reaching a high, early peak viral load, but maintaining similar median Lme to 
clearance as group 3 (Fig 2a-g). The fidh group has the slowest expansion rate, taking the 
longest Lme to reach the second lowest peak viral load and had the longest median Lme to 
clearance among the groups (Fig 2a-g). In contrast with the prolonged low-level shedding of 
group 5, the sixth group had high peak viral and a long shedding duraLon resulLng in the 
highest area under the log10 viral load curve (Fig 2a-g).  
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The proporLon of cases that fell into each dynamic group varied when we straLfied by several 
characterisLcs included in the data set. The dynamic groups with highest AUC, groups 5 and 6, 
made up around 39% of the infecLons in the 50 plus age group, whereas only around 20% of 
infecLons in the under 30 group fall into the high AUC groups (Fig. 2h). Among confirmed 
asymptomaLc infecLons, 33% of cases fell into group 1, defined by low peak and early Lme to 
clearance, relaLve to only 18% of confirmed symptomaLc cases (Fig. 2i). The prevalence of high 
AUC shedding paRerns was also higher for SARS-CoV-2 variants from earlier in the pandemic, 
making up 61% of pre-VOC infecLons, 26% of delta infecLons, and only 8% of omicron 
infecLons (Fig. 2j). Amongst unvaccinated individuals, high AUC infecLon paRerns were over 5 
Lmes as common as in fully vaccinated individuals—that is 58% of infecLons in unvaccinated 
individuals fell into groups 5 and 6, compared with 11% and 10% of infecLons for those whose 
most recent SARS-CoV-2 vaccine was their second dose or booster respecLvely (Fig. 2k). 
 
Mathema4cal model fit to viral loads from 1510 SARS-CoV-2 infec4ons.  
To idenLfy factors underlying the varied viral shedding paRerns in the NBA cohort, we 
developed compeLng mechanisLc mathemaLcal models of viral and immune dynamics and 
selected the best model according to data fibng criteria. This model adapts previously 
published ordinary differenLal equaLons models for within-host SARS-CoV-2 infecLons by 
combining elements introduced by Goyal et al.11,22 and Ke et al.20,23 . MechanisLc assumpLons 
inherent to many pre-exisLng viral dynamic models include a viral load dependent infecLvity, 
viral producLon by infected cells, a limited number of suscepLble cells and a pre-producLon 
eclipse phase for infected cells. Other assumpLons that opLmized model fit included conversion 
of suscepLble cells to an infecLon-refractory state dependent on the number of infected cells 
(presumably represenLng innate responses to infecLon), linear reversion of these refractory 
cells to a suscepLble state, density-dependent death of infected cells as a proxy for an 
intensifying cytolyLc innate response to a higher burden of infecLon, and a delayed cytolyLc 
acquired immune response (Fig. 3a; Materials and Methods).  
 
We used a nonlinear, mixed-effects framework to esLmate model parameters for the 1510 
infecLons documented in 1442 individuals in the NBA cohort that had at least 4 quanLtaLve 
viral load measurements (Materials and Methods). We first used a representaLve subsample of 
these infecLons to compare model fits for the full model, illustrated in Fig. 3a and wriRen out in 
Eq. 1, as well as reasonable simplificaLons of the model, in which one or more immune 
mechanism was removed (Materials and Methods, Table S1). Under model selecLon criteria 
that balance model simplicity with accuracy, the best model to explain the NBA data from 
among those we considered was the full model without any terms removed. We then refit the 
best model to all 1510 infecLons. It is possible that a more complex model could describe the 
data even beRer; however, the fits that we achieve with this model were highly accurate (Fig. 
3b, Fig. S7).  
 
Differences in 4ming and intensity of immune response as an explana4on for heterogeneous 
shedding paFerns.  
We next sought to explore possible virologic and immunologic mechanisLc explanaLons for 
different observed viral shedding paRerns. For relevant model quanLLes, we calculated the 
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mean value within each dynamic group at each Lme point and a 95% confidence interval 
assuming normally distributed values. Viral loads projected by the model for each group (Fig. 
4a) resembled those from the actual data (Fig 2c). QuanLtaLve kineLc features extracted from 
model predicLons including peak viral load, Lme to peak, viral area under the curve and 
shedding kineLc group also agreed well with those extracted from the data (Fig S1a-f). Dynamic 
groups with later peak viral loads (G3, G5, G6) had a slower transiLon of suscepLble cells to a 
refractory state relaLve to groups with earlier peak viral loads (G1, G2, G4) (Fig 4b). 
Furthermore, the group with the lowest peak viral loads and earliest Lme to clearance, G1, had 
a markedly higher proporLon of cells entering the refractory state, and the key disLncLon 
between prolonged shedders with low peak viral load (G5) and those with high viral load (G6) 
was also the proporLon of refractory target cells (Fig 4b). The magnitude of the early cytolyLc 
immune response was markedly higher for group 2 compared to the other 5 groups, which had 
high peak viral loads but early clearance (Fig 4c). The relaLve ordering of the groups in terms of 
mean Lme to acquired immune onset (Fig 4d) mirrored the ordering of median clearance Lme 
for the 5 groups observed in the data (Fig 2d). The earliest late immune responses were also the 
most intense.  
 
We also compared the value of model parameters across the six dynamic groups (Fig S2). The 
per-infected cell conversion rate of suscepLble to refractory cells, 𝜙, was much more rapid for 
group 1 relaLve to the other groups, contribuLng to lower, earlier peak viral loads (Fig S2b). In 
contrast, groups 3, 5 and 6 reached peak viral load later due to lower product of viral infecLvity, 
𝛽, and viral producLon rate, 𝜋 (S2c-e). Group 2 had the most rapid clearance of the virus due to 
an elevated value of early clearance of infected cells, 𝛿, in comparison to the other groups (S2i). 
The high peaks observed in groups 4 and 6 were driven by a higher viral producLon rate, 𝜋, and 
lower rate of conversion of target cells to a refractory state, 𝜙, resulLng in the highest raLo 
between these two values (S2b,c,f). Conversely, group 5 had a lower raLo between these two 
parameter values (S2f), and thus a low peak despite prolonged shedding. This prolonged 
shedding observed in groups 5 and 6 resulted from a significantly later onset of acquired 
immunity compared to the other groups (S2k). Overall, these results suggest a complex 
interplay of viral and immune features dictate how individual infecLons differ according to peak 
viral load, viral expansion rate, viral clearance rate, and duraLon of shedding. 
 
As a sensiLvity analysis, we calculated the Pearson correlaLon coefficient between individual 
esLmates for each model parameter and 3 viral kineLc quanLLes predicted by the 
mathemaLcal model: log of peak viral load, Lme to peak viral load, and shedding duraLon (Fig. 
4e-g). The peak viral load correlated strongly with viral producLon rate, 𝜋, and had a strong 
inverse correlaLon with the rate of conversion of suscepLble cells to a refractory state, 𝜙 (Fig. 
4e). A linear model mapping log(𝜋/𝜙) to log peak viral load explained a large amount of 
variability (Fig. 4h). The Lming of peak viral load inversely correlated strongly with 𝜋, 𝛽, and 𝜙 
(Fig. 4f). We fit an exponenLal model for Lme to peak viral load relaLve to infecLon as a 
funcLon of log10(𝛽𝜋), which again explained a large amount of variability, 𝑅! 	= 	0.9 (Fig. 4i). 
Finally, the shedding duraLon correlated most strongly with the Lme of onset of acquired 
immunity in the model, 𝜏 (Fig. 4g, j).  
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We examined the correlaLons between esLmated model parameters and found several 
significant paRerns (Fig S3). Viral infecLvity, 𝛽, had a posiLve correlaLon with the rate at which 
suscepLble cells were driven to a refractory state, 𝜙. The refractory conversion rate also had a 
strong negaLve correlaLon with the rate of reversion to suscepLbility, 𝜌, and the intensity of 
early cytolyLc immune pressure, 𝛿. These two parameters, 𝜌  and 𝛿, were strongly posiLvely 
correlated. There was also a strong correlaLon between the intensity of early cytolyLc immune 
pressure, 𝛿, and late cytolyLc immune pressure, 𝑚.  
 
Lower peak viral load and earlier clearance during reinfec4on with omicron due to more 
effec4ve early immune responses and more rapid late responses.  
The NBA cohort data set documented iniLal infecLon and reinfecLon in 67 individuals. Five 
examples, along with corresponding model fits, are ploRed in Fig. 5a. Plots of the viral load 
during infecLons in all 67 individuals are included Fig. S4. Of the first infecLons, 52 were caused 
by a pre-delta variant and 15 by delta. For all individuals, the second infecLon was caused by an 
omicron variant. The mean peak viral load documented for a re-infecLon was 0.5 log lower than 
the mean for first infecLons. Though there was a slight negaLve correlaLon between peak viral 
load during the first infecLon and that of the second infecLon (Fig. 5b), the relaLonship was not 
staLsLcally significant (𝑟"#$%&'( 	= 	−	0.18, 𝑝	 = 0.15). The median Lme to clearance for 
reinfecLons was 7.5 days ader detecLon compared with 11 days ader detecLon for first 
infecLons (Fig. 5c).  
 
When comparing model parameter values for first versus second infecLons, we observed that 
three were significantly different (Fig. 5d). ReinfecLons had higher infecLvity, 𝛽, but lower viral 
replicaLon rate, 𝜋. This may reflect differences between omicron and earlier SARS-CoV-2 
variants, as well as early immune responses which contribute to lower peak viral loads. The 
Lming of the acquired immune response, 𝜏, was also earlier, during reinfecLon suggesLng more 
rapid acLvaLon of immune memory.  Model projecLons recapitulated viral load paRerns 
observed in the data (Fig 5e). We ploRed the immune terms from the model simulaLons for the 
two groups as well, and reinfecLon appeared to result in both more refractory cells (Fig 5f) and 
a more robust early immune response (Fig 5g). More significantly, the acquired immune 
response iniLated sooner and at a higher magnitude for reinfecLon (Fig 5h).  
 
Waning early immune response and strong ini4al clearance of infected cells as a cause of off-
therapy viral rebound.  
Recent studies have shown that viral rebound during the natural course of untreated SARS-CoV-
2 infecLon is relaLvely common, occurring in over 10% of cases by some esLmates37 
(hRps://www.fda.gov/media/166197/download). In their analysis of the NBA cohort, Hay et al. 
flagged 40 out of 1334 cases (3%) as rebound, defined by a non-monotonic sequence of test 
results36. As their most inclusive definiLon of rebound, they idenLfied cases that achieved an 
iniLal clearance of at least 2 days with cycle threshold greater than or equal to 30, followed by 
at least 2 days with cycle threshold < 30. 
 
We examined model simulaLons of infecLons in the NBA cohort, and defined infecLons as 
rebound if there were 2 or more peaks with height > 3 log10 RNA copies/ml and prominence > 1 
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log10 RNA copies/ml. Here we defined prominence as the height above the preceding local 
minima, as illustrated in (Fig. 6a). With this viral load-based criteria, we idenLfied 9.0% of the 
1510 cases as rebound. These cases are marked with an “R” and included first in Fig S7. Note 
that we were unable to connect viral rebound to recrudescence of COVID-19 symptoms because 
we do not have daily reports of symptom status.  
 
Considering the mean immune responses for these two groups, we observed several key 
differences. In cases of rebound (Fig 6b), suscepLble cells were lost more rapidly iniLally, but 
they were then replenished more rapidly from the refractory compartment (Fig. 6c-d). This 
allowed for a second surge of viral producLon, which had been reduced by fast early clearance 
of infected cells (Fig 6e). The delayed onset of the late acquired immune response also allowed 
sufficient Lme for this to occur before the infecLon was ulLmately cleared (Fig 6e). Cases with 
rebound had higher viral producLon rates, 𝜋, which is crucial for growth of the viral populaLon 
even with a reduced number of target cells. Rebound cases also had a higher early immune 
clearance rate, 𝛿, which was necessary to achieve the rapid iniLal clearance of infected cells 
that preserves suscepLble cells. Crucially, rebound cases also had a significantly higher reversion 
rate, 𝜌, to account for replenishment of suscepLble cells ader the first viral peak. To 
compensate for the higher viral producLon rate, the viral rebound group also had a more 
intense late immune killing rate, 𝑚 (Fig 6g). Rebound cases could also be further straLfied by 
Lming of the second peak with slightly different mechanisLc underpinnings (Fig. S5). 
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Discussion 
 
Viral kineLcs are vital to understanding the pathogenesis of infecLon and, ulLmately, to 
opLmizing therapies. Here we use a remarkable cohort from the NBA, which is unique both for 
its size and because it captures early pre-symptomaLc Lmepoints during infecLon, to describe 
the increasing variability in viral load paRerns observed in SARS-CoV-2 infected people. We 
observe that with a general increase in populaLon level immunity due to prior infecLon and 
vaccinaLon, peak viral load is oden lower and earlier with more rapid eliminaLon of virus.  
 
Our mathemaLcal model idenLfies testable mechanisLc hypotheses for these observed 
differences. We first predict that low peak viral loads are associated with lower viral producLon 
within infected cells and lower viral infecLvity. Moreover, for viral loads that also peak early 
(observed in group 1), the model predicts a rapid conversion of suscepLble cells to a refractory 
state. Both effects are compaLble with data observed in animal models and in vitro models 
describing effects of interferon effects which limit the extent of viral replicaLon and protect 
uninfected cells from viral entry38–42. Appropriate follow up experiments to validate this 
predicLon would include local sampling of nasal cytokines and other mediators of local 
immunity during criLcal early Lmepoints of infecLon as has been done in humans for other 
respiratory viral infecLons43. 
 
The magnitude of the early cytolyLc immune response, which wanes as the number of infected 
cells and viral load declines following peak, appears to predict an earlier and more effecLve late 
sustained immune response. In our model, we assumed this response does not dissipate with 
decrease in virus, so we hypothesize that most of the late response is acquired and due to 
either expanding T cell or anLbody levels. Prior work suggested that during primary infecLon, 
plasma SARS-CoV-2 IgG levels rise too late to explain reducLon in viral load44. However, the 
study was performed in an immunologically naïve cohort and needs to be reassessed in the 
current infecLon environment45,46. T cell mediated killing of infected cells may also assist in 
eliminaLon of infected cells during infecLon45,47. 
 
Our results suggest that the early/innate response is coupled to the effecLveness of the late 
acquired response. The mechanisms underlying this observaLon are unclear. One possibility is 
that a higher density of Lssue resident NK cells, B cells and T cells may exist ader first infecLon 
and vaccinaLon. In other viral infecLons, it has been observed that an increase in pre-infecLon 
Lssue resident T cells predicts earlier iniLaLon of a local innate and acquired response due to 
early anLgen recogniLon48,49. AlternaLvely, early binding and neutralizaLon of viruses due to 
pre-exisLng anLbodies may lower infecLvity. CorrelaLon between effecLve early and late 
responses was clearly observed during re-infecLon in individuals who had two infecLons during 
the observaLon window, suggesLng that an early component of acquired immune pressure may 
indeed be important. These model predicLons merit experimental follow up. 
 
Unfortunately, we are not able to link the heterogenous virologic paRerns observed in the NBA 
cohort with severity of symptoms or future development of post-acute sequelae of SARS-CoV-2 
infecLon as this data was not available. For mulLple other viruses, viral loads have been 
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idenLfied as relevant correlates of disease50–53, and late SARS-CoV-2 viral loads have been linked 
with severity of infecLon among hospitalized people54,55. During clinical trials, reducLons in 
nasal viral load due to monoclonal anLbodies, nirmatrelvir / ritonavir, and molnupiravir 
correlated with very large reducLons in the incidence of hospitalizaLon and death28,29. Yet, early 
remdesivir which had a large clinical benefit was associated with no viral reducLon in nasal 
passage30, highlighLng that key viral load surrogates may be in the lung rather than nasal 
passages22. In addiLon, because early and peak viral load measurements are so rarely obtained 
during COVID-19 infecLon, the clinical importance of these values remain unknown. 
 
Several further limitaLons of this work are important to highlight. An issue that is universal to 
the field is that our model does not capture anatomic compartmentalizaLon of viral shedding. A 
previous model demonstrated in non-human primates that SARS-CoV-2 kineLcs in the lung 
differ in subtle but important ways from those in the upper airways, and that these differences 
are parLcularly significant in the context of anLviral therapy22. It is likely that our subgroups of 
shedding may cluster differently if we had access to serial whole lung viral loads. The re-seeding 
of infecLon in the nose from the lungs or vice versa may also provide alternaLve explanaLons 
for the dynamics observed in this data set, parLcularly viral rebound. Unfortunately, such 
detailed studies are not available in any human cohort. Studies using saliva do suggest slightly 
different kineLcs than those from nasal swabs56, but it is doubyul that saliva captures total viral 
load in the lung. 
 
Another issue shared by all mathemaLcal models in the field is the lack of sufficiently granular, 
Lssue-based immune data to precisely model the innate and acquired immune response. 
Rather, our model uses several terms to capture the Lming and intensity of what is likely to be a 
complex, mulL-component response. Specifically, we use a density dependent killing term to 
capture early immunity: this assumes no memory and enhanced killing rates decrease as viral 
load decreases making this response most compaLble with innate immunity. As with mulLple 
other respiratory virus models and based on experimental data showing that interferon-alpha 
protects cells from infecLon, we also assume that infecLon temporarily makes suscepLble cells 
refractory to viral entry20–22,39,42. Finally, we assume a late, sustained immune response that 
varies by intensity and Lming, compaLble with an acquired memory response. 
 
A final limitaLon shared by all intra-host SARS-CoV-2 models in humans is that we are not able 
to measure potenLally important iniLal condiLons of infecLon, including viral inoculum and the 
number of immune cells within a relevant spaLal microenvironment of infecLon. Thus, though 
we esLmate the viral inoculum for each individual infecLon, the model may over ascribe 
observed differences in observed viral load trajectories to differences in immune responses 
rather than exposure viral load. 
 
In summary, we idenLfy disLnct shedding paRerns in adults with SARS-CoV-2 infecLon, with 
shorter, lower viral load infecLon more commonly observed in persons with omicron infecLon, 
prior vaccinaLon, and recent prior infecLon. The mechanisLc predictors of rapidly contained 
infecLon are more rapid conversion of suscepLble cells to a refractory state along with more 
rapid and intense late cytolyLc immune responses. 
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Materials and Methods 
 
Study Overview. 
We analyzed SARS-CoV-2 viral load data collected during untreated infecLons in the NBA cohort. 
We clustered this data into 6 dynamic groups, which are staLsLcally different in terms of peak 
viral load, Lme to peak viral load, area under the viral load curve, and Lme to clearance. We 
developed a family of candidate ordinary differenLal equaLon (ODE) mathemaLcal models 
inspired by previous models in the field. We then used model selecLon theory to compare 
mulLple instances of these models and determine which version the data supported most 
strongly. With a validated model of SARS-CoV-2 infecLon, we examined which parameter values 
differ to explain the varying viral shedding paRerns observed in the six dynamic groups. We also 
used this approach to explain the differing dynamics of first and second infecLons captured in 
the NBA cohort, and to explain the mechanisms underlying viral rebound.  
 
Data Pre-processing. 
We used data from the NBA cohort previously published by Hay et al.36 . The group documented 
2875 individual SARS-CoV-2 infecLons in 2678 people through frequent quanLtaLve PCR tesLng. 
First, we filtered this data to include only infecLons with at least 4 posiLve quanLtaLve samples 
to retain only those individuals with adequate viral dynamics data for model fibng. This yielded 
1510 infecLons in 1442 individuals, of which 177 were caused by a pre-VOC variant, 46 by 
alpha, 163 by delta, and 1124 by omicron (Fig. 1a). We further idenLfied a “well-documented” 
subset of these infecLons by filtering for infecLons that included test results through 20 days 
ader detecLon or infecLons with confirmed eliminaLon of virus prior to day 20 (two 
consecuLve negaLve tests). This well-documented group consisted of 810 individual infecLons 
in 768 people. We further filtered the well-documented group to include only those that had a 
negaLve test result within 2 days of detecLon, yielding 266 cases with both early detecLon and 
3 weeks of documentaLon.   
 
Quan4ta4ve Features of Viral Dynamics 
To convert cycle threshold (Ct) values to viral genome equivalents, we first averaged Ct1 and Ct2 
for each individual and then applied equaLon S2 from Kissler et al.57  That is, 
 

log)*([𝑅𝑁𝐴]) 	= (𝐶𝑡$+, − 	40.93733)/(−3.60971) + log)*(250), 
 
where the concentraLon of viral RNA is in copies/ml. Throughout the manuscript, we refer to 
this as log10 viral load. 
 
We calculated the peak viral load for a given infecLon as the maximum measured log10 viral load 
over all quanLtaLve data points. We calculated the area under the log10 viral load curve from 
the date of detecLon through the last quanLtaLve measure of viral load, linearly impuLng 
missing values between data points. Note that this quanLty is likely an underesLmate, 
parLcularly for individuals without confirmed clearance. We calculated the median Lme to 
clearance by idenLfying when the cumulaLve incidence curve for clearance of the virus crossed 
50%. The cumulaLve incidence curve is the inverse of the Kaplan-Meier curve for survival of the 
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virus. The Kaplan-Meier curve, KM, and confidence interval was computed using the Python 
package scikit-survival 0.21.0 (hRps://scikit-survival.readthedocs.io/en/stable/). The cumulaLve 
incidence curve is then 1-KM.  
 
Data Clustering 
We clustered the 810 well-documented infecLons into 6 dynamic groups using k-means 
clustering as implemented in the Python package scikit-learn 1.2.2 (hRps://scikit-
learn.org/stable/modules/generated/sklearn.cluster.KMeans.html). To construct a set of 
features for clustering, we considered a Lme window from the day infecLon was detected 
through 20 days ader detecLon. If any daily measurements were missing between recorded test 
values, we imputed the missing measurements linearly. If the last test date for an individual was 
prior to day 20, so there were missing daily measurements ader the last test, we appended 
negaLve test values to reach 20 days (Fig S6a). This only occurred for infecLons for which 
clearance was confirmed with 2 consecuLve negaLve tests, since we were used only well-
documented infecLons. We used these 21 daily test results as the features for k-means 
clustering. 
 
To select these hyperparameters for the k-means clustering, we tested values of k from 2 to 20 
for three possible interpolaLon methods, linear, quadraLc, or cubic spline, and two possible 
surveillance periods, 13 or 20 days (2 or 3 weeks) post detecLon. Fig. S6b shows the mean 
within-cluster sum of squared error for these different hyperparameter sebngs. Across the 
different modes of interpolaLon and duraLons of surveillance, linear interpolaLon up to 20 days 
post detecLon had the lowest error. Based on the locaLon of the “elbow” in the plots, we chose 
to proceed with k = 6 clusters. Using k < 6 results in less disLncLve behaviors between the 
groups, while using more clusters resulted in some non-interpretable cluster centers (Fig. S6c). 
 
Mathema4cal Model of SARS-CoV-2 Dynamics 
We considered several possible ordinary differenLal equaLons models for SARS-CoV-2 infecLon 
dynamics. The full model tracks the number of target cells that are suscepLble to infecLon (𝑆), 
target cells that are refractory to infecLon (𝑅), infected cells in an eclipse phase (𝐼-), infected 
cells acLvely producing virus (𝐼.), and SARS-CoV-2 virions (𝑉). SuscepLble cells are infected at 
rate 𝛽𝑆𝑉, and become refractory at rate 𝜙𝐼"𝑆. Refractory cells revert to a suscepLble state at 
rate 𝜌𝑅. When cells are first infected, they enter an eclipse phase, from which they transiLon to 
a state of producing virus at rate 𝑘.	ProducLvely infected cells are cleared at rate 𝛿𝐼/0), where 
the dependence on infected cells reflects an innate immune response with no memory. When 
the duraLon of infecLon surpasses Lme 𝜏, the clearance rate of infected cells increases by 
𝑚𝐼,	capturing the delayed onset of a cytolyLc acquired immune response with memory. 
ProducLvely infected cells produce virus at rate 𝜋, and free virions are cleared at rate 𝛾𝑉.  
Under these assumpLons, the model has the form: 
 

12
13
= −	𝛽𝑆𝑉	 − 	𝜙𝐼.𝑆 + 	𝜌𝑅   (1a) 

 
14
13
= 𝜙𝐼.𝑆	– 	𝜌𝑅     (1b) 
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15!
13
= 𝛽𝑆𝑉	– 𝑘𝐼-     (1c) 

 
15"
13
= 𝑘𝐼- − 𝛿𝐼./𝐼. 	− 	𝑚(𝑡)𝐼.  (1d) 

 
16
13
= 𝜋𝐼.	– 	𝛾𝑉     (1e) 

 

where M 		𝑚
(𝑡) = 0					𝑡 < 𝜏

		𝑚(𝑡) = 𝑚				𝑡 ≥ 𝜏.     (1f) 

 
As iniLal condiLons, we set (𝑆*, 𝑅*, 𝐼-*, 𝐼.*, 𝑉*) = (1	 × 107, 0, 0, 0, 𝑉*). Previous models of 
SARS-CoV-2 infecLon in the nasal compartment have used an iniLal value of 107 − 108 
suscepLble cells, based on esLmates that 2-20% of epithelial cells in the upper respiratory tract 
display the ACE 2 receptor5859,60. We assumed that the iniLal number of refractory cells is zero, 
i.e. because the early immune response is inacLve prior to infecLon. We iniLated simulaLons 
with zero infected cells, so 𝐼-* = 𝐼.* = 0, and a small viral inoculum to reflect the Lght 
boRleneck that transmission places on viral replicaLon. The number of virions present at the 
outset of infecLon was assumed to be below the limit of detecLon, but the precise inoculum 
varies for individuals. We also esLmated the onset of infecLon relaLve to detecLon, 𝑡*. In the 
NBA cohort, the mean Lme of symptom onset was the date of detecLon, so 𝑡* is correlated with 
the incubaLon period of SARS-CoV-2. With this in mind, we restricted esLmates of 𝑡* to fall 
between 0 and 20 days based on a 2022 review by Wu et al., which reported that across 142 
studies of SARS-CoV-2 infecLon, the incubaLon period ranged from 1.80 to 18.87 days61.  
 
To maintain idenLfiability, we fixed two parameter values, sebng the rate of viral producLon 
onset to be	𝑘	 = 	4	in accordance with Ke at al.23 and the rate of clearance of free virions to be  
𝛾 = 15 in accordance with Goyal et al.11 
 
Model Fi\ng and Selec4on. 
We fit the model in Eq. 1 to the well-documented, early detecLon subset of the NBA cohort 
data set, as well as simpler versions that eliminate one or more immune components and/or 
the eclipse phase, using a non-linear mixed effect approach62. With this approach, a viral load 
measurement from individual	𝑖 at Lme point 𝑘 is modeled as log)*(𝑦9:) = 𝑓6(	𝑡9: , 𝜃9) + 𝜖, 
where 𝑓6  represents the soluLon of the ODE model for the state variable describing the 
virus,  𝜃9  is the parameter vector for individual 𝑖, and 𝜖	~	𝑁(0, 𝜎!) is the measurement error for 
the log10-transformed viral load data. We fixed 𝜎! = 0.5 when assessing model fits, so that any 
differences in likelihood of the full model occur due to a change in agreement between model 
simulaLons and data rather than an increase in the esLmated magnitude of the measurement 
error. 
 
For model selecLon, we worked with the data from 266 infecLons with early detecLon and at 
least 3 weeks of follow-up or clearance. For viral load observaLons below the lower limit of 
quanLficaLon or marked as “assumed negaLve”, we used the probabilisLc model that Monolix 
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sodware provides for led-censored data (hRps://monolix.lixod.com/censoreddata/). The 
candidate models that we considered are listed in the supplementary material (Table S1). For 
each candidate model, we used the StochasLc ApproximaLon of the ExpectaLon MaximizaLon 
(SAEM) algorithm embedded in the Monolix sodware to obtain the Maximum Likelihood 
EsLmaLon (MLE) of the vector of fixed effects, 𝜃"'", and the MLE of the vector of standard 
deviaLons of the random effects, 𝜎;,  for the model parameters  𝛽, 𝜋, 𝜙, 𝜌, 𝛿, ℎ, 𝜏,𝑚,	 the delay 
between infecLon and data of detecLon, 𝑡*, and the iniLal viral inoculum, 𝑉* 
(hRps://monolix.lixod.com/tasks/populaLon-parameter-esLmaLon-using-saem/). For 
parameter values we considered a lognormal distribuLon across the populaLon. For the 
esLmated iniLal condiLons, we used a logit distribuLon to be able to enforce that they fall 
within reasonable ranges. The delay between infecLon and detecLon,	𝑡*, was assumed to 
follow a logit distribuLon with minimum 0 and maximum 20 days. The viral inoculum was 
assumed to follow a logit distribuLon with minimum 1 and maximum 250.  
 
We ran the SAEM algorithm six Lmes for each model using randomly selected iniLal values for 
the esLmated parameters. Using the parameter set with the highest likelihood, we computed 
the Akaike InformaLon Criterion (AIC) for each model. Recall that 𝐴𝐼𝐶 = −2max(log ℒ) + 2𝑚 
where ℒ is the likelihood that the data was generated by this model with these parameter 
values and 𝑚 is the number of model parameters. Hence smaller AIC scores indicate that a 
model is staLsLcally more likely to explain the data. The model with the smallest AIC score in 
the iniLal model selecLon phase was the full model with all immune components included and 
an eclipse phase. All AIC scores are recorded in Table S1. 
 
For the best fibng model, there were significant correlaLons between the random effects of 
model parameters 𝛽, 𝜋,  𝜙, 𝜌, 𝛿,𝑚,	and 𝜏 as well as the date of infecLon relaLve to detecLon, 
𝑡*. We allowed for linear correlaLons between these parameters in the model 
(hRps://monolix.lixod.com/staLsLcal-model/individual-model/individualdistribuLon/). This 
further improved the AIC score of the model by 161 points. AIC scores comparing alternaLve 
correlaLon structures are recorded in Table S2. The correlaLon structure of the final set of 
parameter esLmates is shown in Figure S3. 
 
Once the final model was selected, we ran the SAEM algorithm in Monolix to esLmate 
parameters for all 1510 infecLons. The resulLng esLmated parameter values were used for all 
model-based results. PopulaLon parameter values are included in Table S3 and individual model 
fits are shown in Figure S7. EsLmated individual parameter values are accessible on github at 
hRps://github.com/lacyk3/SARS-CoV-2KineLcs. 
 
Data availability 
The data analyzed in this work was previously published by Hay et al. and is available on github 
at hRps://github.com/gradlab/SC2-kineLcs-immune-history.  
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Figures 
 

 
 

Figure 1: Viral kine/cs by variant in the Na/onal Basketball Associa/on cohort from June 2020-January 2022. 1510 SARS-CoV-
2 infec2ons are documented. Time series are stra2fied by variant with individual viral loads ploDed in color, the median viral 
load ploDed with a solid black line, and the 25th and 75th percen2les ploDed in dashed black lines for (A) pre-variant of concern 
viruses, (B) alpha, (C) delta, and (D) omicron infec2ons. (E) Bubble plot showing the correla2on between variant of infec2on and 
vaccina2on status of the individual. Both the color and the size of the circle indicate the number of infec2ons in each category. 
(F) Addi2onal informa2on about infec2ons includes age, presence of symptoms, re-infec2on status, and pre-infec2on an2body 
2ter following vaccina2on.  

(III)

C

E

delta
n = 163

omicron
n = 1124

pre-VOC
n = 177

SymptomsAge

Diagnosis
Post-vaccination 

SARS-CoV-2 IgG titer

A

Pe
rc

en
ta

ge
 o

f 
 c

as
es

alpha
n = 46

B

D

Va
cc

in
at

io
n 

st
at

us

F (II)

17%

42%42%

12%

42%
46%

(IV)

infection

24652

6137 8

21 2

949

0 9 552

215

76

Pre-Delta

boosted

2nd dose

1st dose

un-
vaccinated

unknown

73%

17%
10%

19%
10%

30%
40%

(I)

median
25-75%

Number of cases

infection
Variant

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.20.23294350doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.20.23294350
http://creativecommons.org/licenses/by-nc/4.0/


 22 

 
 

Figure 2: Dis/nct viral dynamic profiles in the Na/onal Basketball Associa/on cohort from June 2020-January 2022. (A) 
Trajectories stra2fied by cluster assignment aQer k-means clustering with k = 6. Cluster centers are shown in black. (B) Heat map 
of log viral load over 2me. Each row corresponds to an infec2on and trajectories are ordered according to cluster. (C) Cluster 
centers ploDed on the same axis demonstrate differing peak viral loads, 2me of viral peak, clearance rate and 2me to clearance 
by cluster. (D) The propor2on of infec2ons cleared over 2me for each cluster with 95% confidence interval shaded. Boxplots of (E) 
area under the log10 viral load curve, (F) peak viral load for different dynamic groups, and (G) days between detec2on and peak 
vial load. According to a Mann-Whitney U-test, dis2nc2ons in the mean for all possible pairs of groups are significant (𝑝!"#$%&'" 
< .05) except for the pairs marked “ns.” In the final row, stacked bar charts indicate the percentage of cases that fall into each 
dynamic group when cases are stra2fied by (H) age group, (I) symptom status, (J) infec2ng variant, and (K) vaccina2on status. 
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Figure 3: Mechanis/c mathema/cal model with fits to viral loads from each cluster. (A) Schema2c of the ordinary differen2al 
equa2ons model used to simulate SARS-CoV-2 infec2on with state variables indicated by capital leDers, interac2ons indicated by 
arrows and parameters indicated by symbols adjacent to arrows. The model contains an early and late cytoly2c immune 
response. (B) Examples of data from individual infec2ons and corresponding model simula2ons colored according to cluster 
iden2fied via k-means clustering as in Fig 2 with group 1 in blue, group 2 in green, group 3 in yellow, group 4 in orange, and 
group 5 in red and group 6 in purple. The black examples were not included in cluster analysis. The model also captures instances 
of rebound or non-monotonic clearance. 
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Figure 4: Mechanis/c differences between dynamic groups. Panels (A-D) show the mean of key quan22es in the mechanis2c 
model for each group over 2me with 95% confidence interval shaded. The quan22es are (A) log viral load,	𝑙𝑜𝑔()( 𝑉), (B) number 
of cells that are refractory to infec2on likely due to interferon response, 𝑅, (C) early clearance rate of infected cells due to 
density-dependent, likely innate immune responses, 𝛿𝐼*, and (D) late clearance rate of infected cells likely due to acquired 
immune responses,  𝑚(𝑡). During persistent infec2on (G6), suscep2ble cells become refractory slowly, the early cytoly2c 
responses are weak, and the late immune responses occur later and are less intense. Infec2ons with high peak viral load that are 
cleared more rapidly (G2) have more rapid ini2al viral growth and more rapid and intense cytoly2c immune responses rela2ve to 
G6. Rapidly cleared, low viral load infec2ons (G1) are notable for a rapid conversion of a larger por2on of suscep2ble cells to a 
refractory state and a more rapid and potent acquired immune response. The Pearson correla2on coefficient,	𝑟+, between model 
parameters and kine2c quan22es (E) peak viral load, (F) 2me to peak viral load, and (G) shedding dura2on provides insight into 
the sensi2vity of model output to changes in parameters. (H) Peak height is largely explained by the ra2o of the viral produc2on 
rate over the rate of conversion of suscep2ble cells to a refractory state. (I) Time to peak viral load is largely explained by viral 
produc2on rate and infec2vity. (J) Shedding dura2on is largely explained by the 2me of ac2va2on of the acquired immune 
response. 
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Figure 5: Mechanis/c underpinning of more rapid clearance of SARS-CoV-2 during re-infec/on versus ini/al infec/on. Ini2al 
infec2on and re-infec2on were documented for 67 individuals in the NBA cohort. (A) Examples of data and model fits for 
infec2on and reinfec2on in the same individual (B) As measured from the data, peak viral load of reinfec2on against peak viral 
load of first infec2on. In all cases the variant causing the reinfec2on was omicron, and the variant causing the first infec2on was 
either delta or a pre-delta variant. The mean peak viral load was around 0.5 log lower for second infec2on (t-test sta2s2c = 2.26, 
p = .0254) (C) Propor2on of infec2ons cleared for reinfec2on (blue) and first infec2ons (gray) over 2me, as measured from the 
data. Median 2me to clearance is 7.5 vs. 12 days since detec2on. (D) Boxplots of es2mated individual parameters for infec2on 
and reinfec2on that are significantly different between the two groups (𝑝!"#$%&'"	< 0.05 for Mann-Whitney U-test). During re-
infec2on with omicron, viral produc2on was lower though infec2vity was higher.  The onset of the late immune response also 
occurs significantly earlier.  (E) Mean viral load, (F) number of refractory cells, (G) early clearance rates, and (H) late clearance 
rates over 2me for the two groups as predicted by mechanis2c model.  
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Figure 6: Model fiPng to viral rebound in the NBA cohort. (A) We classified infec2ons as examples of viral rebound if there are 
at least two peaks in the model simula2on with height of 4 logs and prominence of 1 log. Mean (B) viral load, (C) propor2on of 
target cells that are refractory, (D) number of suscep2ble cells, (E) rate of early clearance, and (F) rate of late clearance as 
predicted by our mathema2cal model for rebound vs. non-rebound cases in red and blue respec2vely. 95% confidence interval 
shaded. (G) Distribu2on of individual parameter es2mates for the rebound vs. non-rebound cases. Only those for which the 
mean differs significantly are displayed (𝑝!"#$%&'"  < .05 for Mann-Whitney U test).   
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