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Abstract 
The viral kinetics of documented SARS-CoV-2 infections exhibit a high degree of inter-individual 
variability. We identified six distinct viral shedding patterns, which differed according to peak 
viral load, duration, expansion rate and clearance rate, by clustering data from 768 infections in 
the National Basketball Association cohort. Omicron variant infections in previously vaccinated 
individuals generally led to lower cumulative shedding levels of SARS-CoV-2 than other 
scenarios. We then developed a mechanistic mathematical model that recapitulated 1510 
observed viral trajectories, including viral rebound and cases of reinfection. Lower peak viral 
loads were explained by a more rapid and sustained transition of susceptible cells to a 
refractory state during infection, as well as an earlier and more potent late, cytolytic immune 
response. Our results suggest that viral elimination occurs more rapidly during omicron 
infection, following vaccination, and following re-infection due to enhanced innate and 
acquired immune responses. Because viral load has been linked with COVID-19 severity and 
transmission risk, our model provides a framework for understanding the wide range of 
observed SARS-CoV-2 infection outcomes.  
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Introduction 
 
COVID-19 public health emergency status has lapsed in the United States, but community levels 
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain significant 
(https://covid.cdc.gov/covid-data-tracker/#datatracker-home). SARS-CoV-2 immunity in the 
population is now highly heterogeneous due to varying degrees of prior infection and 
vaccination1.  Also, successive circulating SARS-CoV-2 variants of concern (VOC) with different 
immune evasion and infectivity properties continue to emerge. This has resulted in a wider 
variability of viral shedding patterns than those observed during infection with the ancestral 
strain in the early months of 20202,3. Understanding the heterogeneous upper respiratory tract 
(URT) kinetics of SARS-CoV-2 enables informed design of health interventions such as testing, 
isolation, quarantine, and drug therapies.  
 
Mathematical models are a vital tool  for understanding mechanisms underlying observed 
patterns of viral expansion and clearance4–9 . To date, studies fitting SARS-CoV-2 dynamic 
models to viral load trajectories have estimated the timing of innate and acquired immune 
responses and predicted  transmission parameters, including super-spreader events10–22. These 
models facilitated estimates of key quantities such as expected duration of the infectious 
period and the timing of peak viral load relative to symptom onset20,23–25. They also provided a 
theoretical means for testing treatment regimens and predicted that treatment within 5 days of 
symptom onset would likely be associated with higher efficacy11,22,24,26,27, an outcome that has 
since been verified in multiple clinical trials28–30. These models were also the first to suggest 
that viral rebound may occur in the context of early antiviral treatments11. 
 
However, early modeling studies only considered data from a small number of infected 
individuals11,20,22–27,31–35, and often drew either entirely from previously uninfected and/or 
unvaccinated cohorts13. Another consistent limitation was that most available data did not 
capture early timepoints during the pre-symptomatic phase of infection. Model results are 
therefore, not easily generalized to current SARS-CoV-2 conditions. 
 
The National Basketball Association’s (NBA) daily testing program occurred regardless of 
symptoms and identified 2,875 infections between June 2020 and January 2022, spanning the 
alpha, delta, and early omicron VOC waves, as well as the roll-out of vaccines and boosters.  
Hay et al. used a statistical approach to quantify the impact of immune history and variant on 
SARS-CoV-2 viral kinetics and infection rebound in this data set36. However, a more mechanistic 
modeling approach is required to understand observed kinetic variability in this cohort. 
 
Here, we identify six distinct shedding patterns in the NBA cohort data. We then compare how 
well candidate models which extend the classical target-cell limited model previously published 
by Goyal et al.11,22 and Ke at al.20,23 recapitulate the longitudinal upper respiratory tract (URT) 
viral load data from 1510 sufficiently documented infections. After obtaining data-validated 
parameter estimates for each individual infection, we identify the factors underlying differing 
rates of viral expansion and clearance, peak viral loads, and duration of infection observed in 
the data. We use the model to identify differences between the timing and intensity of the 
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immune response during initial and re-infections and identify a potential explanation for viral 
rebound observed in the cohort. 
 
Results 
 
Viral shedding kinetics according to SARS-CoV-2 VOC.  
We first analyzed viral kinetics observed in the cohort according to VOC. For pre-VOC, alpha, 
delta, and omicron variants, we observed variable kinetics among cohort participants. Median 
values differed between variants, with omicron variant having slightly lower peak viral loads 
and earlier clearance, while delta had the highest peak viral loads and pre-VOC had the longest 
time to clearance (Fig 1a-d). A high proportion of the infections caused by omicron variants 
occurred in participants who had received either two or three vaccine doses, whereas pre-delta 
infections mostly occurred in unvaccinated individuals (Fig 1e).  
 
The age structure of the NBA cohort differs significantly from the general population. Of the 
cases documented, 46% occurred in individuals under the age of 30, 42% occurred in individuals 
between the ages of 30 and 50, and only 12% occurred in individuals over the age of 50 (Fig 1f). 
Symptom status was noted for 59% of infections, of which 71% were symptomatic (Fig 1f). The 
level of post-vaccination, pre-infection SARS-CoV-2 IgG was measured in 60% of infections. 
When stratifying patients into tertiles, Hay et al. identified low antibody titers as less than 125 
(arbitrary units [AU]/ml), mid-range titers as greater than 125 AU but less than 250 AU, and 
high titers as greater than 250 AU with the most infections occurring in the highest tertile (Fig 
1f). 17% of observed infections were reinfections of individuals followed longitudinally (Fig 1f). 
 
Six distinct SARS-CoV-2 shedding patterns.  
We identified a subset of infections in the NBA cohort as “well-documented” if they had at least 
4 quantitative positive viral load measurements starting within 5 days of detection, and if 
infection was documented for 3 weeks, or viral elimination was confirmed with 2 sequential 
negative test results. This reduced the data set to 810 well-documented infections. To eliminate 
intra-individual variability from this data set, we retained one infection from individuals with 
multiple documented infections further narrowing our focus to 768 infections. We then applied 
k-means clustering to the viral load data, clustering infections into 6 distinct viral shedding 
patterns (Fig. 2a-c) which differed according to time to viral elimination (Fig. 2c,d), area under 
the viral curve (Fig. 2c,e), peak viral load (Fig. 2c,f) and time to peak (Fig. 2c,g). 
 
The first group had low peak viral loads and early median time to clearance (Fig. 2a-g). The 
second group had a slightly earlier and significantly higher peak than group 1, but similarly 
short duration (Fig 2a-g). The third group had a similar peak viral load compared to group 2, but 
with a longer time to peak viral load and later clearance (Fig 2a-g). The fourth group had the 
fastest expansion rate, reaching a high, early peak viral load, but maintaining similar median 
time to clearance as group 3 (Fig 2a-g). The fifth group had the slowest expansion rate, taking 
the longest time to reach the second lowest peak viral load and had the longest median time to 
clearance among the groups (Fig 2a-g). In contrast with the prolonged low-level shedding of 
group 5, the sixth group had high, somewhat early peak and a long shedding duration (Fig 2a-g).  
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The proportion of cases that fell into each dynamic group varied when we stratified by 
characteristics included in the data set. The dynamic groups with highest AUC, groups 5 and 6, 
made up 39% of the infections in the 50 plus age group, whereas 21% of infections in the under 
30 group were in the high AUC groups (Fig. 2h). Among confirmed asymptomatic infections, 
29% of cases fell into group 1, defined by low peak and early time to clearance, relative to only 
14% of confirmed symptomatic cases; the slowly expanding group 3 cases were also less likely 
to be symptomatic while high, early peak group 4 cases were more often symptomatic (Fig. 2i). 
High AUC shedding patterns were also more prevalent among infections with SARS-CoV-2 
variants from earlier in the pandemic, making up 62% of pre-VOC infections, 27% of delta 
infections, and only 8% of omicron infections (Fig. 2j). Amongst unvaccinated individuals, high 
AUC infection patterns were much more frequent—63% of infections in unvaccinated 
individuals fell into groups 5 and 6, compared with 11% and 9% of infections for those whose 
most recent SARS-CoV-2 vaccine was their second dose or booster respectively (Fig. 2k). 
 
Mathematical model fit to viral loads from 1510 SARS-CoV-2 infections.  
To identify factors underlying the varied viral shedding patterns in the NBA cohort, we 
developed competing mechanistic mathematical models of viral and immune dynamics and 
selected the best model according to data-fitting criteria. The most complex model tested 
adapts previously published ordinary differential equations models for within-host SARS-CoV-2 
infections by combining elements introduced by Goyal et al.11,22 and Ke et al.20,23 . For this 
model we made mechanistic assumptions inherent to many pre-existing viral dynamic models 
including a viral load dependent infectivity, viral production by infected cells, a limited number 
of susceptible cells, and a pre-production eclipse phase for infected cells. The possible immune 
mechanisms included in the model were conversion of susceptible cells to an infection-
refractory state dependent on the number of infected cells (presumably representing innate 
responses to infection), density-dependent death of infected cells as a proxy for an intensifying 
cytolytic innate response to a higher burden of infection, and a delayed cytolytic acquired 
immune response (Fig. 3a; Materials and Methods).  
 
We used a nonlinear, mixed-effects framework to estimate model parameters for the 1510 
infections documented in 1442 individuals in the NBA cohort that had at least 4 quantitative 
viral load measurements (Materials and Methods). We first used a representative subsample of 
these infections to compare model fits for the full model, illustrated in Fig. 3a and written out 
in equation (1), and reasonable simplifications, in which one or more immune mechanism was 
removed (Materials and Methods, Table S1). Under model selection criteria that balance 
simplicity with accuracy, the best model to explain the NBA data was the full model except for  
the density-dependent death of infected cells. This model has been previously studied by Ke et 
al.20 We then refit the best model to all infections. It is possible that models outside of the 
collection tested here could describe the data better; however, the fits that we achieve with 
this model were highly accurate for most members of the cohort from all 6 shedding clusters 
(Fig. 3b, Fig. S6).  
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Differences in timing and intensity of immune response as an explanation for heterogeneous 
shedding patterns.  
We next sought to explore possible virologic and immunologic explanations for different 
observed viral shedding patterns. For relevant model quantities, we calculated the mean within 
each dynamic group at each time point and a 95% confidence interval, assuming normally 
distributed values. Mean viral loads projected by the model for each group (Fig. 4a) resembled 
those from the actual data (Fig 2c). Quantitative kinetic features extracted from model 
simulation output including peak viral load (Fig S1a), time to peak (Fig S1b), viral area under the 
curve (Fig S1c), and shedding kinetic group also agreed well with those extracted from the 
cohort data (Fig S1d-g). Projections for suscecptible cells and infected cells suggest dynamics 
which track closely to viral load that differ accordingly among shedding subgroups (Fig. 4b,c). 
 
To delineate mechanistic drivers of shedding variability, we calculated the Pearson correlation 
coefficient between individual estimates for each model parameter and 4 viral kinetic 
quantities predicted by the mathematical model: log of peak viral load, time to peak viral load, 
shedding duration, and area under the log viral load curve (Fig. S2a-d). Peak viral load 
correlated strongly with viral production rate, 𝜋, and had a strong inverse correlation with the 
rate of conversion of susceptible cells to a refractory state, 𝜙 (Fig. S2a). A linear model mapping 
log(𝜋/𝜙) to log peak viral load predicted by the model explained a large amount of variability 
(Fig. S2e). The timing of peak viral load inversely correlated strongly with 𝜋, 𝛽, and 𝜙 (Fig. S2b). 
We fit an exponential model for time to peak viral load relative to infection as a function of 
log10(𝛽𝜋), which again explained a large amount of observed variability, 𝑅! 	= 	0.76 (Fig. S2f).  
 
Shedding duration correlated most strongly with the time of onset of acquired immunity in the 
model, 𝜏 (Fig. S2c). Overall, the value of 𝜏 did not predict the time of clearance very well. This is 
because for a significant number of individuals particularly in groups 1-4, acquired immunity 
was established after the virus was already cleared (Fig S2g). In groups 5 and 6, timing of 
acquired immunity onset was more predictive of shedding duration (𝑅! 	= 	0.61) because 
acquired immunity was usually established before the virus was cleared. Numerous model 
parameters influenced viral AUC though 𝜏 and 𝜙 were most important (Fig S2d). 
 
The viral shedding pattern for group 1 was notable for a low peak and early clearance of 
infection (Fig S2h). These mild virologic outcomes occurred due to rapid generation of 
refractory cells. Early onset of acquired immune pressure was only occasionally necessary for 
viral clearance (Fig. 4d-f, Fig S2j). The higher viral peak in group 2 was driven by relatively 
higher values of viral production and viral infectivity and low conversion to a refractory state 
(Fig. S2j-l). In group 2 infections, innate and acquired immunity both play a role in the clearance 
of infected cells (Fig. 4e). Infections classified as group 3 were distinguished by a slower 
upslope, resulting from low average values of both viral production and infectivity (Fig. S2k,l). 
Group 4 infections had a rapid, high peak viral load due to high viral production and infectivity, 
as well as a relatively low average values for 𝜙, the conversion to refractory state. Higher values 
of viral production and viral infectivity and low conversion to a refractory state mean that these 
infections rapidly burn through susceptible cells and target cell limitation slows the infection 
(Fig. 4b, Fig.S2 j-l). Only when the viral load was already decreasing did acquired immunity 
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typically initiate to help clear the infection (Fig. 4e). Infections in group 5 had a late, low peak 
and a long duration. Similar to group 3, the late peak was due to low rates of viral production 
and low infectivity (Fig. S2k-l). However, unlike group 3, these individuals also had low values of 
infected cell clearance, 𝛿, and a very late onset of acquired immunity 𝜏, allowing infection to 
persist (Fig. S2n-o). Finally, group 6 consisted of long infections with a high peak viral load. 
These infections were distinguished by high viral production and infectivity (Fig. S2k-l), and 
globally weak immune responses including refractory cell conversion (Fig. S2j) and time-
independent infected cell clearance rates (Fig. S2n). Thus, late-acting acquired immunity was 
often required to clear the infection (Fig. 4e and Fig. S2o,q),  Overall, these results suggest that 
a complex interplay of viral and immune features dictate how individual infections differ 
according to peak viral load, viral expansion rate, viral clearance rate, and duration of shedding. 
 
We next examined correlations between estimated model parameters and found several 
significant patterns (Fig S3). Viral infectivity, 𝛽, had a strong positive correlation with viral 
production rate, 𝜋. The viral production rate also had a positive correlation with the intensity of 
time-independent cytolytic immune pressure, 𝛿. There was a strong negative correlation 
between the rate of reversion from refractory back to susceptible cells, 𝜌, and time of onset of 
late cytolytic immune pressure, 𝜏. These results may suggest that viral fitness properties are 
related or that the durability of early innate responses is inversely correlated with the onset of 
delayed acquired immunity, but we cannot disentangle true biological correlations from 
potential identifiability challenges in the model structure. 
 
Lower peak viral load and earlier clearance during re-infection with omicron due to more 
effective early immune responses and more rapid late responses.  
The NBA cohort data set documented initial infection and reinfection in 67 individuals (Fig. 5a, 
S4). Of the first infections, 52 were caused by a pre-delta variant and 15 by delta. For all 
individuals, the second infection was caused by an omicron variant. The mean peak viral load 
documented in the URT for a re-infection was 0.5 log10 viral RNA copies/ml  lower than the 
mean for first infections. Though there was a slight negative correlation between peak viral 
load during the first infection and that of the second infection (Fig. 5b), the relationship was not 
statistically significant (𝑟"#$%&'( 	= 	−	0.18, 𝑝	 = 0.15). The median time to clearance for 
reinfections was 7.5 days after detection compared with 11 days after detection for first 
infections (Fig. 5c). Using a slightly different data from the NBA cohort, Kissler et al. found 
evidence that an individual’s relative clearance speed is roughly preserved across infections37, 
prompting us to investigate whether this relationship, or others, appear in our model fits. We 
tested whether relative viral peak, time to peak, infection duration, or area under the curve 
were conserved by looking at the pearson correlation and did not find any significant 
relationships (p<0.05). We also checked whether estimated parameter values were conserved 
across sequential infections in the same individual, and again found no significant correlations 
across infections in the same individual. 
 
Two model parameter values were significantly different between first versus second infections 
(Fig. 5d). Reinfections had higher values of 𝜙,	indicating a faster conversion of susceptible cells 
to a refractory state. This more potent early immune responses contributed to lower peak viral 
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loads. The timing of the acquired immune response, 𝜏, was also earlier, during reinfection 
suggesting more rapid activation of immune memory.  We found that parameter values 
estimated during first infection were not predictive of parameter values estimated for a 
sequential infection in the same individual. Mean model projections recapitulated viral load 
patterns observed in the data (Fig 5e). We plotted cell populations from the model simulations 
for the two groups, and reinfection appeared to result in more refractory cells (Fig 5f) and a 
smaller decrease in susceptible cells (Fig 5g). The acquired immune response initiated sooner 
and at a higher magnitude during re-infection (Fig 5h).  
 
Waning early immune response and strong initial clearance of infected cells as a cause of off-
therapy viral rebound.  
Recent studies have shown that viral rebound during the natural course of untreated SARS-CoV-
2 infection is relatively common, occurring in over 10% of cases by some estimates38 
(https://www.fda.gov/media/166197/download), though rates vary according to definition. In 
their analysis of the NBA cohort, Hay et al. flagged 40 out of 1334 cases (3%) as rebound, 
defined by a non-monotonic sequence of test results36. As their most inclusive definition of 
rebound, they identified cases that achieved an initial clearance of at least 2 days with cycle 
threshold greater than or equal to 30, followed by at least 2 days with cycle threshold < 30. 
 
We defined simulated infections as rebound if there were 2 or more peaks with height > 3 log10 
RNA copies/ml and prominence > 0.5 log10 RNA copies/ml. We defined prominence as the 
height above the preceding local minima, as illustrated in (Fig. 6a). With these criteria, we 
identified 7.0% of the 1510 cases as rebound. These cases are marked with an “R” and included 
first in Fig S6. Note that we were unable to connect viral rebound to recrudescence of COVID-
19 symptoms because we do not have daily reports of symptom status.  
 
We observed several differences between rebound and non-rebound infection. In cases of 
rebound, susceptible cells were lost more rapidly initially but also replenished earlier from the 
refractory compartment (Fig. 6b). On average, rebound trajectories had both an earlier peak in 
infected cells and an earlier, higher peak in refractory cells (Fig. 6c-d). The large number of 
refractory cells drives a more rapid replenishment of susceptible cells. The persistence of 
infected cells with re-emrgence of susceptible cells allowed for a second surge of viral 
production, which had been reduced by fast early clearance of infected cells (Fig 6e). The 
delayed onset of the late acquired immune response also allowed sufficient time for this to 
occur before the infection was ultimately cleared (Fig 6e-f). Cases with rebound had higher viral 
production rates, 𝜋, and higher viral infectivity, 𝛽,  which combined to allow for growth of the 
viral population even with a reduced number of target cells. Rebound cases also had a higher 
clearance rate, 𝛿, and a faster conversion of susceptible cells to a refractory state. Together, 
these forces preserve susceptible cells through the rapid initial clearance of infected cells and 
protection in a refractory state. Notably, rebound cases did not have a significantly higher 
reversion rate, 𝜌, to account for replenishment of susceptible cells after the first viral peak. 
Rather, the faster replenishment of susceptible cells occurs due to the high number of 
refractory cells. The viral rebound group also had a delayed onset of late immune killing, 𝜏, 
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which allowed time for two peaks to occur before pressure from the acquired immune system 
cleared the infection  (Fig 6g).  
 
Discussion 
 
Viral kinetics are vital to understanding the pathogenesis of infection and, ultimately, to 
optimizing therapies. Here, we use a remarkable cohort from the NBA, which is unique both for 
its size and because it captures early pre-symptomatic timepoints during infection, to describe 
the increasing variability in viral load patterns observed in SARS-CoV-2 infected people. We 
observe that with a general increase in population level immunity due to prior infection and 
vaccination, peak viral load is often lower and earlier with more rapid elimination of virus.  
 
Our mathematical model identifies testable mechanistic hypotheses for these observed 
differences. We first predict that low peak viral loads are associated with lower viral production 
within infected cells and lower viral infectivity. Moreover, for viral loads that also peak early 
(observed in group 1), the model predicts a rapid conversion of susceptible cells to a refractory 
state. Both effects are compatible with data observed in animal models and in vitro models 
describing effects of interferon which limit the extent of viral replication and protect uninfected 
cells from viral entry39–43. Appropriate follow up experiments to validate this prediction would 
include local sampling of nasal cytokines and other mediators of local immunity during critical 
early timepoints of infection as has been done in humans for other respiratory viral infections44. 
 
Different viral shedding patterns are also driven by varying balances between the magnitude of 
the early cytolytic immune response, which wanes as the number of infected cells and viral load 
declines following peak, and the late sustained immune response. In our model, we assumed 
this response does not dissipate with decrease in virus, so we hypothesize that most of the late 
response is acquired and due to either expanding T cell or antibody levels. Prior work suggested 
that during primary infection, plasma SARS-CoV-2 IgG levels rise too late to explain reduction in 
viral load45. However, this study was performed in an immunologically naïve cohort and needs 
to be reassessed in the current infection environment46,47. T cell mediated killing of infected 
cells may also assist in elimination of infected cells during infection46,48. The results from our 
study suggest that at the time of the NBA cohort, substantial differences in timing and intensity 
of acquired immune responses were still present and contributed to variability in viral kinetics. 
 
Our results suggest that upon reinfection, the early/innate response and the late acquired 
response are both more effective. The mechanisms underlying this observation are unclear. 
One possibility is that a higher density of tissue resident NK cells, B cells and T cells may exist 
after first infection and vaccination. In other viral infections, it has been observed that an 
increase in pre-infection tissue resident T cells predicts earlier initiation of a local innate and 
acquired response due to early antigen recognition49,50. These model predictions merit 
experimental follow up. 
 
Unfortunately, we are not able to link the heterogenous virologic patterns observed in the NBA 
cohort with severity of symptoms or future development of post-acute sequelae of SARS-CoV-2 
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infection as this data was not available. For multiple other viruses, viral loads have been 
identified as relevant correlates of disease51–54, and late SARS-CoV-2 viral loads have been 
linked with severity of infection among hospitalized people55,56. During clinical trials, reductions 
in nasal viral load due to monoclonal antibodies, nirmatrelvir / ritonavir, and molnupiravir 
correlated with very large reductions in the incidence of hospitalization and death28,29. Yet, 
early remdesivir which had a large clinical benefit was associated with no viral reduction in 
nasal passage several days after treatment30, highlighting that key viral load surrogates may be 
in the lung rather than nasal passages or that early viral loads are more predictive of 
outcome22. Because early and peak viral load measurements are so rarely obtained during 
COVID-19 infection, the clinical importance of these values remain unknown. 
 
Several further limitations of this work are important to highlight. An issue that is universal to 
the field is that our model does not capture anatomic compartmentalization of viral shedding. 
Our previous model demonstrated in non-human primates that SARS-CoV-2 kinetics in the lung 
differ in subtle but important ways from those in the upper airways, and that these differences 
are particularly significant in the context of antiviral therapy22. It is likely that our subgroups of 
shedding may cluster differently if we had access to serial whole lung viral loads. The re-seeding 
of infection in the nose from the lungs or vice versa may also provide alternative explanations 
for the dynamics observed in this data set, particularly viral rebound. Unfortunately, such 
detailed studies are not available in any human cohort. Studies using saliva do suggest slightly 
different kinetics than those from nasal swabs57, but it is doubtful that saliva captures total viral 
load in the lung. 
 
Another issue shared by all mathematical models in the field is the lack of sufficiently granular, 
tissue-based immune data to precisely model the innate and acquired immune responses. 
Rather, our model uses several terms to capture the timing and intensity of what is likely to be 
a complex, multi-component response. As with multiple other respiratory virus models and 
based on experimental data showing that interferon-alpha protects cells from infection, we 
assume that infection temporarily makes susceptible cells refractory to viral entry20–22,40,43. 
Finally, we assume a late, sustained immune response that varies by intensity and timing, 
compatible with an acquired memory response. 
 
A final limitation shared by all intra-host SARS-CoV-2 models in humans is that we are not able 
to measure potentially important initial conditions of infection, including viral inoculum and the 
number of immune cells within a relevant spatial microenvironment of infection. Thus, the 
model may over ascribe observed differences in observed viral load trajectories to differences 
in immune responses rather than exposure viral load. 
 
In summary, we identify distinct shedding patterns in adults with SARS-CoV-2 infection, with 
shorter, lower viral load infection more commonly observed in persons with omicron infection, 
prior vaccination, and recent prior infection. The mechanistic predictors of rapidly contained 
infection are more rapid conversion of susceptible cells to a refractory state along with more 
rapid and intense late cytolytic immune responses. 
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Materials and Methods 
 
Study Overview. 
We analyzed SARS-CoV-2 viral load data collected during untreated infections in the NBA 
cohort. We clustered this data into 6 dynamic groups, which were statistically different in terms 
of peak viral load, time to peak viral load, area under the viral load curve, and time to 
clearance. Drawing on previous models in the field, we developed a set of candidate ordinary 
differential equation (ODE) mathematical models. We then used model selection theory to 
determine which version the data supported most strongly. With a validated model of SARS-
CoV-2 infection, we examined which parameter values differ to explain the variable viral 
shedding patterns observed in the six dynamic groups. We also used this approach to explain 
the differing dynamics of first and second infections captured in the NBA cohort, and to explain 
the mechanisms underlying viral rebound.  
 
Data Pre-processing. 
We used data from the NBA cohort previously published by Hay et al.36 . The group 
documented 2875 individual SARS-CoV-2 infections in 2678 people through frequent 
quantitative PCR testing. First, we filtered this data to include only infections with at least 4 
positive quantitative samples to provide adequate viral dynamics data for model fitting. This 
yielded 1510 infections in 1442 individuals, of which 177 were caused by a pre-VOC variant, 46 
by alpha, 163 by delta, and 1124 by omicron (Fig. 1a). We further identified a “well-
documented” subset of these infections by filtering for infections that had their first 
quantitative test within 5 days of detection and included test results through 20 days after 
detection or confirmed elimination of virus prior to day 20 (two consecutive negative tests). 
This well-documented group consisted of 810 individual infections in 768 people. For clustering, 
we randomly chose one infection to retain from each individual with multiple documented 
infections, resulting in a group of 768 infections in 768 individuals. We also filtered the well-
documented group for infections with a negative test result within 2 days prior to detection, 
yielding 266 cases with both early detection and 3 weeks of documentation.  We refer to this 
subset as “fully documented.” 
 
Quantitative Features of Viral Dynamics 
To convert cycle threshold (Ct) values to viral genome equivalents, we averaged Ct1 and Ct2 for 
each individual and applied equation S2 from Kissler et al.58  That is, 
 

log)*([𝑅𝑁𝐴]) 	= (𝐶𝑡$+, − 	40.93733)/(−3.60971) + log)*(250), 
 
where the concentration of viral RNA is in copies/ml.  
 
We calculated the peak viral load for a given infection as the maximum measured log10 viral 
load over all quantitative data points and the time to peak viral load was the day of this 
measurement. We calculated the area under the log10 viral load curve from the date of 
detection through the last quantitative measure of viral load, linearly imputing missing values 
between data points. Note that this quantity is an underestimate for individuals without 
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confirmed clearance. We calculated the median time to clearance by identifying when the 
cumulative incidence curve for clearance of the virus crossed 50%. The cumulative incidence 
curve is the inverse of the Kaplan-Meier curve for survival of the virus. The Kaplan-Meier curve, 
KM, and confidence interval was computed using the Python package scikit-survival 0.21.0 
(https://scikit-survival.readthedocs.io/en/stable/). The cumulative incidence curve is then 1-
KM.  
 
Data Clustering 
We clustered well-documented infections into 6 dynamic groups using k-means clustering as 
implemented in the Python package scikit-learn 1.2.2 (https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.KMeans.html). As input features, we used 
these 21 daily test results. These came from the day infection was detected through 20 days 
after detection. If any daily measurements were missing between recorded test values, we 
imputed the missing measurements linearly. If the last test date for an individual was prior to 
day 20, so there were missing daily measurements after the last test, we appended negative 
test values to reach 20 days (Fig S5a). This occurred only for infections for which clearance was 
confirmed with 2 consecutive negative tests, since we clustered well-documented infections. 
 
To select these hyperparameters for the k-means clustering, we tested values of k from 2 to 20 
for three possible interpolation methods, linear, quadratic, or cubic spline, and two possible 
surveillance periods, 13 or 20 days post detection (2 or 3 weeks surveillance). Comparing these 
scenarios, linear interpolation up to 20 days post detection had the lowest within cluster sum of 
squares (Fig. S5b). Based on the location of the “elbow” in the plots, we chose to proceed with 
k = 6 clusters. Using k < 6 results in less distinctive behaviors between the groups, while using 
more clusters resulted in some non-interpretable cluster centers (Fig. S5c-g). 
 
Mathematical Model of SARS-CoV-2 Dynamics 
We considered several ordinary differential equations models for SARS-CoV-2 infection 
dynamics. The full model tracks the number of target cells that are susceptible to infection (𝑆), 
target cells that are refractory to infection (𝑅), infected cells in an eclipse phase (𝐼-), infected 
cells actively producing virus (𝐼.), and SARS-CoV-2 virions (𝑉). Susceptible cells are infected at 
rate 𝛽𝑆𝑉, and become refractory at rate 𝜙𝐼"𝑆. Refractory cells revert to a susceptible state at 
rate 𝜌𝑅. When cells are first infected, they enter an eclipse phase, from which they transition to 
a state of producing virus at rate 𝑘.	Productively infected cells are cleared at rate 𝛿𝐼./0), where 
the dependence on infected cells reflects an innate immune response with no memory. When 
the duration of infection surpasses time 𝜏, the clearance rate of infected cells increases by 
𝑚𝐼. ,	capturing the delayed onset of a cytolytic acquired immune response with memory. 
Productively infected cells produce virus at rate 𝜋, and free virions are cleared at rate 𝛾𝑉.  
Under these assumptions, the model has the form: 
 

12
13
= −	𝛽𝑆𝑉	 − 	𝜙𝐼.𝑆 + 	𝜌𝑅   (1a) 

 
14
13
= 𝜙𝐼.𝑆	– 	𝜌𝑅     (1b) 
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15!
13
= 𝛽𝑆𝑉	– 𝑘𝐼-     (1c) 

 
15"
13
= 𝑘𝐼- − 𝛿𝐼./𝐼. 	− 	𝑚(𝑡)𝐼.  (1d) 

 
16
13
= 𝜋𝐼.	– 	𝛾𝑉     (1e) 

 

where M 		𝑚
(𝑡) = 0					𝑡 < 𝜏

		𝑚(𝑡) = 𝑚				𝑡 ≥ 𝜏.     (1f) 

 
To ensure that the model did not predict spurious oscillations in viral dynamics, we enforced 
that viral production was zero when 𝐼. was less than 1. In the optimal model, the parameter h = 
0 for all individuals, so the early per-cell clearance rate of infected cells is not density 
dependent. 
 
As initial conditions, we set (𝑆*, 𝑅*, 𝐼-*, 𝐼.*, 𝑉*) = (1	 × 107, 0, 0, 0, 𝑉*). Previous models of 
SARS-CoV-2 infection in the nasal compartment have used an initial value of 107 − 108 
susceptible cells, based on estimates that 2-20% of epithelial cells in the upper respiratory tract 
display the ACE 2 receptor59,60,61. We assumed that the initial number of refractory cells is zero, 
because the early immune response is inactive prior to infection. We initiated simulations with 
zero infected cells, so 𝐼-* = 𝐼.* = 0, and a small viral inoculum to reflect the tight bottleneck 
that transmission places on viral replication. The number of virions present at the outset of 
infection was assumed to be below the limit of detection, but the precise inoculum was initially 
allowed to vary for individuals. During model fitting, we estimated the onset of infection 
relative to detection (date of first positive test), noting this difference as 𝑡*. Among individuals 
in the NBA cohort for whom symptom onset was known, the mean time of symptom onset was 
the date of detection, so 𝑡* is correlated with the incubation period of SARS-CoV-2. With this in 
mind, we restricted estimates of 𝑡* to fall between 0 and 20 days based on a 2022 review by 
Wu et al., which reported that across 142 studies of SARS-CoV-2 infection, the incubation 
period ranged from 1.80 to 18.87 days62.  
 
To maintain identifiability, we fixed two parameter values, setting the rate of viral production 
onset to be	𝑘	 = 	4	in accordance with Ke at al.23 and the rate of clearance of free virions to be  
𝛾 = 15 in accordance with Goyal et al.11 
 
Model Fitting and Selection. 
We fit the model in Eq. 1, as well as simpler versions that eliminate one or more immune 
components and/or the eclipse phase, to data from the NBA cohort using a non-linear mixed 
effect approach63. With this approach, a viral load measurement from individual	𝑖 at time point 
𝑘 is modeled as log)*(𝑦9:) = 𝑓6(	𝑡9: , 𝜃9) + 𝜖, where 𝑓6  represents the solution of the ODE 
model for the state variable describing the virus,  𝜃9  is the parameter vector for individual 𝑖, and 
𝜖	~	𝑁(0, 𝜎!) is the measurement error for the log10-transformed viral load data. Furthermore, 
in the population model, each individual’s parameters can be written as the sum of the average 
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population value, 𝜃"'"	,	and a random effect encompassing their deviation from the average,	
𝜂9 . That is, the parameters for individual i are given by  𝜃9 = 𝜃"'" + 𝜂9. We fixed 𝜎 = 0.5 log10 
viral RNA copies/ml when comparing model fits, so that any differences in likelihood of the full 
model occur due to a change in agreement between model simulations and data rather than a 
drastic increase in the estimated magnitude of the measurement error. 
 
For model selection, we first worked with the 266 fully documented infections (early detection 
and at least 3 weeks of follow-up or confirmed clearance). In addition to the raw data, for 
individuals without confirmed elimination we imputed 5 “assumed negative” test results at 2-
day intervals starting at 40 days post-detection. Out of the 1510 infections considered in model 
fitting, 629 had regular measurements past 40 days and 99.5% of tests collected past day 40 
were negative. For viral load observations below the lower limit of quantification or marked as 
“assumed negative”, we used the probabilistic model that Monolix software provides for left-
censored data (https://monolix.lixoft.com/censoreddata/).  
 
The candidate models that we considered are listed in the supplementary material (Table S1). 
For each candidate model, we used the Stochastic Approximation of the Expectation 
Maximization (SAEM) algorithm embedded in the Monolix software to obtain the Maximum 
Likelihood Estimation (MLE) of the vector of fixed effects, 𝜃"'", and the MLE of the vector of 
standard deviations of the random effects, 𝜎;,  for the model parameters  𝛽, 𝜋, 𝜙, 𝜌, 𝛿, ℎ, 𝜏,𝑚,	 
the delay between infection and date of detection, 𝑡*, and the initial viral inoculum, 𝑉* 
(https://monolix.lixoft.com/tasks/population-parameter-estimation-using-saem/). We assumed 
a lognormal distribution for parameter values, and a logit distribution for initial conditions. The 
delay between infection and detection, 𝑡*, was assumed to fall between 0 and 20 days. The 
viral inoculum was assumed to fall between 0 and 250 log10 viral RNA copies/ml.   
 
We ran the SAEM algorithm six times for each model using randomly selected initial values for 
the estimated parameters. Using the parameter set with the highest likelihood, we computed 
the Akaike Information Criterion (AIC) for each model. Recall that 𝐴𝐼𝐶 = −2max(log ℒ) + 2𝑚 
where ℒ is the likelihood that the data was generated by this model with these parameter 
values and 𝑚 is the number of model parameters. Hence smaller AIC scores indicate that a 
model is statistically more likely to explain the data. The model with the smallest AIC score in 
the initial model selection phase included an eclipse phase, a refractory cell compartment and 
time-dependent clearance of infected cells, but not density dependent clearance. All AIC scores 
are recorded in Table S1. 
 
The best fit run for the optimal model estimated very little variation in the viral inoculum 
between individuals. The population average was, 𝑉*_"'" 	= 	97.3	 while the standard deviation 
of the distribution of random effects was only 𝜔6* 	= 	0.05, suggesting that fixing this 
parameter at the same value for all individuals may still allow for reasonable fits. We fixed 
𝑉*	near the estimated population mean, 𝑉* 	= 	97 for all individuals and re-ran the SAEM 
algorithm. This yielded very similar fits to the best fit from Table S1 with a slightly lower AIC 
score of 13731 compared to 13738. While we expect that the actual viral exposure initiating 
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individual infections in the NBA cohort varied, this suggests that estimating 𝑉*, 𝜋, 	and	𝑡* 
simulataneously for each individual does not lend additional flexibility. For further model 
fitting, we kept 𝑉* fixed at 97. 
 
To test whether variability in viral dynamics can be attributed to differences in prior exposure, 
age, or infecting lineage, we performed one-way ANOVA for the random effects of each of the 
estimated model parameters against these covariates (implemented in monolix). In this case, the 
null-hypothesis is that the mean of the random effects (calculated from the individual parameters 
sampled from the conditional distribution) is the same for each category of the categorical 
covariate. Ranking all possible covariates by their p-value, the most likely covariate was between 
the onset of acquired immunity and vaccination status. We tried adding this as a covariate to the 
model, which allows for a perturbation of the population mean, 𝜏"'", by some value 𝛽=_𝑗 for each 
possible vaccination status j. Including this covariate improved the model fit according to AIC 
score, improving from 13731 to 13627. We next checked whether this was a meaningful addition 
to the model with the Wald test, which tests the null hypothesis that 𝛽=_𝑗 = 0 for each possible 
vaccination status j. Infections in unvaccinated individuals were significantly different from 
infections in individuals who had been boosted (𝛽=	_0	 doses = 0.73, p <2.2e-16)  and the group 
that had no record(𝛽=	_ no record = 0.44, p=6.77e-7). However, individuals who had received 1, 
2 or 3+ vaccinations were not significantly different from each other (𝛽=	_ 1dose = -.36 , p=3.6e-
1 ; 𝛽=	_ 2 dose = -.076, p=3.18e-1). This prompted us to regroup vaccination status into a new 
categorical covariate, indicating unvaccinated, at least one dose, or no record. With this model, 
the onset of acquired immunity differed significantly for infections in unvaccinated individuals 
vs. those who received at least one dose of the vaccine (𝛽=	_ >1dose =  -0.8, p<2.2e-16 ), but the 
difference between infections in unvaccinated individuals and those with no record was not 
significant (𝛽=	_ no record= -0.2, p = 2.03e-2). Then we regrouped vaccination status into just two 
categories, one being individuals who are unvaccinated or have no record and the second being 
individuals with a record of 1 or more SARS-CoV-2 vaccinations. We repeated this process of 
choosing one new covariate to add according to the lowest significant p-value resulting from the 
ANOVA, testing its utility using the AIC and Wald test, and coarsening the categorization if 
indicated, until no further significant p-values resulted from the ANOVA. This resulted in three 
covariates, unvaccinated/ no record versus at least one recorded vaccination modified the onset 
of acquired immunity 𝜏  and the infecting lineage being pre-VOC/delta versus omicron versus 
unknown modified both the onset of acquired immunity 𝜏	and the rate at which susceptible cells 
enter a refractory state, 𝜙. Including these covariates reduced the AIC score by 149 to 13589. 
The models tested along the way are reported in Table S2. 
 
For the best fitting model, there were significant correlations between the random effects of 
model parameters 𝛽, 𝜋	and 𝛿, as well as 𝜌 and 𝜏. We started with the best model from Table S2 
and allowed for linear correlations between these parameters in the final model 
(https://monolix.lixoft.com/statistical-model/individual-model/individualdistribution/). This 
further improved the AIC score by 111 points (Table S3). The correlation structure of the final 
set of parameter estimates is shown in Figure S3 and the correlations between the random 
effects can be found on the github page at https://github.com/lacyk3/SARS-CoV-2Kinetics. 
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Once the final model was selected, we further restricted the standard deviation of the 
measurement error to 𝜎 = 0.4 log10 viral RNA copies/ml to capture examples of viral reboundin 
the data and ran the SAEM algorithm in Monolix to estimate parameters for all 1510 infections. 
Population parameter values are included in Table S4 and individual model fits are shown in 
Figure S6. Estimated individual parameter values are accessible at 
https://github.com/lacyk3/SARS-CoV-2Kinetics.  
 
Statistics 
When comparing quantitative features and parameter values across different groups, we used 
a two-sided Mann-Whitney U-test. When assessing significance of the results, we adjusted p 
values using the Bonferroni correction for the number of comparisons before comparing 
against a significance threshold of p > 0.05.  
 
Data and Code availability 
The data analyzed in this work was previously published by Hay et al. and is available on github 
at https://github.com/gradlab/SC2-kinetics-immune-history. The code for generating all 
analysis and figures included in this manuscript is available at https://github.com/lacyk3/SARS-
CoV-2Kinetics. 
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Figures 
 

 
Figure 1: Viral kine/cs by variant in the Na/onal Basketball Associa/on cohort from June 2020-January 2022. 1510 SARS-CoV-
2 infec2ons are documented. Time series are stra2fied by variant with individual viral loads ploDed in color, the median viral 
load ploDed with a solid black line, and the 25th and 75th percen2les ploDed in dashed black lines for (a) pre-variant of concern 
viruses, (b) alpha, (c) delta, and (d) omicron infec2ons. (e) Bubble plot showing the rela2onship between variant of infec2on and 
vaccina2on status of the individual. Both the color and the size of the circle indicate the number of infec2ons in each category. (f) 
Addi2onal informa2on about infec2ons includes age, presence of symptoms, re-infec2on status, and pre-infec2on an2body 2ter 
following vaccina2on.  
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Figure 2: Dis/nct viral dynamic profiles in the Na/onal Basketball Associa/on cohort from June 2020-January 2022. (a) 
Trajectories stra2fied by cluster assignment aNer k-means clustering with k = 6. Cluster centers are shown in black. (b) Heat map 
of log viral load over 2me. Each row corresponds to an infec2on and trajectories are ordered according to cluster. (c) Cluster 
centers ploDed on the same axis demonstrate differing peak viral loads, 2me of viral peak, clearance rate and 2me to clearance 
by cluster. (d) The propor2on of infec2ons cleared over 2me for each cluster with 95% confidence interval shaded. Boxplots of (e) 
area under the log10 viral load curve, (f) peak viral load for different dynamic groups, and (g) days between detec2on and peak 
viral load. According to a Mann-Whitney U-test, dis2nc2ons in the mean for all possible pairs of groups are significant (𝑝!"#$%&'" 
< .05) except for the pairs marked “ns.” In the final row, stacked bar charts indicate the percentage of cases that fall into each 
dynamic group when cases are stra2fied by (h) age group, (i) symptom status, (j) infec2ng variant, and (k) vaccina2on status. 
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Figure 3: Mechanis/c mathema/cal model with fits to viral loads from each cluster. (a) Schema2c of the ordinary differen2al 
equa2ons model used to simulate SARS-CoV-2 infec2on with state variables indicated by capital leDers, interac2ons indicated by 
arrows and parameters indicated by symbols adjacent to arrows. The model contains an early and late cytoly2c immune 
response. (b) Examples of data from individual infec2ons and corresponding model simula2ons colored according to cluster 
iden2fied via k-means clustering as in Fig 2 with group 1 in blue, group 2 in green, group 3 in yellow, group 4 in orange, and 
group 5 in red and group 6 in purple. The black examples were not included in cluster analysis. The model also captures instances 
of rebound or non-monotonic clearance. 
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Figure 4: Mechanis/c differences between dynamic groups. Panels (a-d) show the mean viral load and cell popula2ons in the 
mechanis2c model for each group over 2me with 95% confidence interval shaded. The quan22es are (a) log viral 
load,	𝑙𝑜𝑔()( 𝑉), (b) number of suscep2ble cells,	𝑙𝑜𝑔()( 𝑆), (c) number of ac2ve infected cells, 	𝑙𝑜𝑔()( 𝐼)	and (d) the number of 
cells refractory to infec2on	𝑙𝑜𝑔()( 𝑅).  Next, we plot the mean and standard devia2on of immune pressures over 2me for each 
dynamic group. Panel (e) shows the infected cell clearance due to both constant cytoly2c ac2vity and delayed immune pressure. 
Panel (f) shows the conversion of suscep2ble cells to a refractory state. 
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Figure 5: Mechanis/c underpinning of more rapid clearance of SARS-CoV-2 during re-infec/on versus ini/al infec/on. Ini2al 
infec2on and re-infec2on were documented for 67 individuals in the NBA cohort. (a) Examples of data and model fits for 
infec2on and reinfec2on in the same individual (b) As measured from the data, peak viral load of reinfec2on against peak viral 
load of first infec2on. In all cases the variant causing the reinfec2on was omicron, and the variant causing the first infec2on was 
either delta or a pre-delta variant. The mean peak viral load was around 0.5 log lower for second infec2on (t-test sta2s2c = 2.26, 
p = .0254) (c) Propor2on of infec2ons cleared for reinfec2on (blue) and first infec2ons (gray) over 2me, as measured from the 
data. Median 2me to clearance is 7.5 vs. 12 days since detec2on. (d) Boxplots of es2mated individual parameters for infec2on 
and reinfec2on that are significantly different between the two groups (𝑝!"#$%&'"	< 0.05 for Mann-Whitney U-test). During re-
infec2on with omicron, the rate that suscep2ble cells convert to a refractory state is higher and the onset of the late immune 
response occurs significantly earlier.  (e) Mean viral load, (f) number of refractory cells, (g) number of suscep2ble cells, and (h) 
late clearance rates over 2me for the two groups as predicted by mechanis2c model.  
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Figure 6: Model fiPng to viral rebound in the NBA cohort. (a) We classified infec2ons as examples of viral rebound if there are 
at least two peaks in the model simula2on with height of 3 logs and prominence of 0.5 log. Mean (b) number of suscep2ble cells, 
(c) number of ac2ve infected cells, (d) number of target cells that are refractory, (e) viral load, and (f) rate of late clearance as 
predicted by our mathema2cal model for rebound vs. non-rebound cases in red and blue respec2vely. 95% confidence interval 
shaded. (g) Distribu2on of individual parameter es2mates for the rebound vs. non-rebound cases. Only those for which the mean 
differs significantly are displayed (𝑝!"#$%&'"  < .05 for Mann-Whitney U test).   
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