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23 Abstract

24 This cross-sectional study aimed to identify and validate cut-points for measuring physical 

25 activity using Axivity AX6 accelerometers positioned at the shank in older adults. Free-living 

26 physical activity was assessed in 35 adults aged 55 and older, where each participant wore a shank 

27 mounted Axivity and a waist mounted ActiGraph simultaneously for 72 hours. Optimized cut-

28 points for each participant’s Axivity data were determined using an optimization algorithm to align 

29 with ActiGraph results. To assess validity between the physical activity assessments from the 

30 optimized Axivity cut-points, a leave-one-out cross validation was conducted. Bland-Altman plots 

31 with 95% limits of agreement, intraclass correlation coefficients (ICC), and mean differences were 

32 used for comparing the systems. The results indicated good agreement between the two 

33 accelerometers when classifying sedentary behaviour (ICC = 0.85) and light physical activity (ICC 

34 = 0.80), and moderate agreement when classifying moderate physical activity (ICC = 0.67) and 

35 vigorous physical activity (ICC = 0.70). Upon removal of a significant outlier, the agreement was 

36 slightly improved for sedentary behaviour (ICC = 0.86) and light physical activity (ICC = 0.82), 

37 but substantially improved for moderate physical activity (ICC = 0.81) and vigorous physical 

38 activity (ICC = 0.96). Overall, the study successfully demonstrated the capability of the resultant 

39 cut-point model to accurately classify physical activity using Axivity AX6 sensors placed at the 

40 shank. 

41 Introduction

42 Physical activity (PA) for the aging population has been identified as a protective factor 

43 for various musculoskeletal disorders and noncommunicable diseases [1]. Even with the well-

44 known benefits of PA, many older adults are representative of the most inactive portion of the 
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45 population [2]. Thus, an accurate assessment of PA can help to provide insight on the overall health 

46 and rehabilitation of the aging population. Traditionally, PA data has been collected using self-

47 reported measures such as questionnaires, activity logs, interviews, and diaries [3]. Common PA 

48 self-report tools include the Physical Activity Scale for the Elderly (PASE), the International 

49 Physical Activity Questionnaire (IPAQ), and the Short Questionnaire to Assess Health-Enhancing 

50 Physical Activity (SQUASH)  [4, 5, 6]. However, these measures are subject to recall and social 

51 desirability biases [7]. Furthermore, many have difficulties distinguishing between different PA 

52 intensities in questionnaires [8, 9]. Consequently, these subjective measures lack accuracy, as they 

53 often over- or underestimate the true levels of PA [10].

54 With the advent of wearable accelerometers, researchers can overcome these limitations 

55 and obtain objective measures of PA. These accelerometers can be worn outside of the lab and 

56 collect free-living data for multiple days, thereby providing a more comprehensive understanding 

57 of an individual’s PA levels [7].  Among these devices, ActiGraph devices are widely used as the 

58 gold standard for clinical and research-based PA assessment, with over 20,000 papers published 

59 on its use in the past two decades [11]. 

60 The quantification of PA levels using these devices typically involves assessing time spent 

61 in different PA intensity ranges such as sedentary behaviour (SB), light physical activity (LPA), 

62 moderate physical activity (MPA) and vigorous physical activity (VPA). This is achieved by 

63 measuring the magnitude of three-dimensional acceleration signals, known as the resultant 

64 acceleration. The resultant accelerations are then used to determine activity counts, with higher 

65 accelerations resulting in greater the number of activity counts measured per minute [7]. 

66 Subsequently, cut-points are applied to these activity counts to classify the PA intensity, 
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67 delineating data into the different categories of SB, LPA, MPA, and VPA. These cut-points are 

68 specific to the wear location of the device. 

69 The ActiGraph GT9X Link, equipped with an inertial measurement unit (IMU) including 

70 accelerometer, gyroscope, and magnetometer sensors, is one device commonly used for collecting 

71 PA data. These devices can be worn at the wrist, waist, and the ankle but require different cut-

72 point models for each site as the level of accelerations vary between segments [12]. Therefore, 

73 deploying a sensor at any new location would require updating and validating a new set of cut-

74 points for that placement site. While wrist, waist, and ankle placements offer sufficient flexibility 

75 for assessing PA, recent advancements in sensor capabilities, including improved data quality, 

76 higher frequency measurements, and enhanced data storage and battery life, have opened up many 

77 new possibilities for free-living PA assessments.

78 Most notably, wearable sensors are being increasingly used to assess free-living gait. Free-

79 living gait gives us the opportunity to gain insight into the motion of the limbs in an ecologically 

80 valid, real-world setting, rather than a conventional gait lab. While conventional gait labs are 

81 widely used in gait research, they are highly controlled settings and may be non-representative of 

82 an individual’s daily, functional gait [13]. Axivity sensors are an example of IMU sensors that 

83 have been used in gait research surrounding physical function and disease state [14], but also 

84 possess PA assessment capability given their potential for high frequency data collections with 

85 enhanced data storage and battery life. 

86 While there are a wide variety of placement sites used to acquire free-living gait data, a 

87 common placement to assess movement and impact accelerations near the knee is the proximal 

88 shank [15, 16, 17]. This placement site may offer insights into the progression of musculoskeletal 

89 and neurological diseases, such as knee osteoarthritis and Parkinson’s through gait assessments 
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90 [18, 19]. Although this sensor placement can be ideal in assessing free-living gait, there are no 

91 methods or cut-points available to determine PA from sensors worn at this wear location.  As such, 

92 obtaining concurrent PA data while measuring free-living gait would inefficiently require another 

93 sensor placed at one of the previously validated sites. 

94 Therefore, the purpose of this study is to develop and validate cut-points for a free-living 

95 gait-capable sensor, the Axivity AX6, placed at the proximal shank by comparing it to the gold 

96 standard waist-mounted ActiGraph GT9X. It was hypothesized that the agreement of SB and LPA 

97 would be higher than the agreement of MPA and VPA. The outcomes compared between the 

98 sensors were the percentage of time spent in the different PA intensities: SB, LPA, MPA, and VPA 

99 for a total wear time of 72 hours. 

100 Methods

101 Participants

102 Thirty-five adults over the age of 55 years (18F, age: 71 ± 9 years, height: 167.28 ± 9.79 

103 cm, mass: 76.50 ± 15.10 kg, BMI: 27.00 ± 3.62 kg/m2 ) were recruited in this cross-sectional 

104 validation study. The inclusion criteria included anyone over the age of 55 years that could 

105 ambulate without any walking aids. Participants were recruited from the Physical Activity Centre 

106 of Excellence (PACE) at McMaster University, a centre which encourages community exercise 

107 and rehabilitation for older adults, from January 12, 2023 to March 23, 2023. All participants 

108 provided their written informed consent prior to enrolling in this study. This study was approved 

109 by the McMaster Research Ethics Board, Hamilton, ON. 

110

111 Procedures
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112 Participants were asked to report their age, sex, height, mass. Each subject reported if they 

113 had received any lower limb injuries in the past year, had been diagnosed with osteoarthritis, and 

114 if they had received any lower limb replacement surgeries. Two wearable sensors were used to 

115 concurrently collect free-living PA data for 72 consecutive hours. The first of which was the gold 

116 standard ActiGraph GT9X (ActiGraph LLC, FL, United States) which was worn by each 

117 participant above the right iliac crest with a waistband and pouch which held the 

118 device.  Participants were encouraged to ensure the pouch sat above their right hip for the full 72 

119 hours. Participants were instructed to only take off the waistband to shower or bath, and if 

120 necessary, while sleeping, and wear it immediately upon waking and after their shower or bath. 

121 The ActiGraph was initialized to start collecting ±8g accelerometer data at 100 Hz simultaneously 

122 with the Axivity for 72 hours through the ActiLife v6.13.4 software. The ‘idle’ sleep mode in the 

123 ActiLife software was disabled for the ActiGraph sensors. 

124 The sensor to be validated was the Axivity AX6 (Axivity Ltd, Newcastle upon Tyne, 

125 United Kingdom) which was placed below the right knee, medial and inferior to the right tibial 

126 tuberosity, of each participant using SIMPATCH adhesive patches. The Axivity accelerometer 

127 was initialized through the Open Movement software (OMGui, version 1.0.0.44) and recorded ±8g 

128 accelerometer data at 100Hz, as well as ±1000°/s gyroscope data that was not analyzed in the 

129 current study. Participants were shaved with an electric razor (Philips OneBlade, Amsterdam, 

130 Netherlands) before the sensors were placed to ensure the sensors were both comfortable and 

131 adhered to the skin well for the entirety of the 72 hours. 

132

133 Data analysis 
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134 Following the retrieval of the sensors after 72 hours of wear, the data from the ActiGraphs 

135 were downloaded and processed through the ActiLife software. Each participants’ data was 

136 categorized into SB, LPA, MPA, and VPA using the Freedson cut-points and 60-second epochs 

137 [20] which are available through the ActiLife software. The percentage of time spent in the 

138 different intensities was computed by the ActiLife software, based on the activity counts per 

139 minute. The time totalled to 72 hours for each participant. 

140 Raw from the Axivity sensor were downloaded through the OpenMovement software 

141 (OMGui) and saved in a binary CWA file. An open-source MATLAB (MathWorks, Natick, MA, 

142 USA) script by Felix Liu [21], which uses methods published by Brønd, Andersen, and Arvidsson 

143 [22] was used to generate ActiGraph equivalent activity counts per minute from Axivity 

144 accelerometers. The activity counts for each participant were categorized into PA intensities using 

145 optimized cut-points for each participant. However, using the same cut-point values applied to the 

146 waist data would results in invalid data given the difference in acceleration signals across these 

147 sites [23]. Therefore, to optimize a new set of cut-points for the shank-placed Axivity sensor, an 

148 optimization algorithm in MATLAB was created, using the Global Optimization Toolbox [24]. 

149 Fig 1 outlines the optimization algorithm and resulting cross validation. In short, this optimization 

150 algorithm was given raw Axivity acceleration data, an initial starting set of cut-points based on 

151 pilot testing of data collected prior to this study, and the gold-standard results obtained from the 

152 ActiGraph (i.e., time spent in SB, LPA, MPA, VPA). It then sequentially optimized the cut-points 

153 for the Axivity data by first evaluating SB, then LPA, MPA, and finally VPA, resulting in three 

154 values to distinguish SB, LPA, MPA, and VPA. In other words, the optimization algorithm was 

155 given the raw data from the Axivity at the shank and asked to find the cut-points that best 

156 approximated the results from the waist-mounted ActiGraph. This optimization occurred at the 
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157 individual level, resulting in 35 distinct sets of cut-points (i.e., one set for each participant). To 

158 generate a cross-validated set of cut-points that were blinded from each individual’s result, a leave-

159 one-out cross validation (LOOCV) was applied. This involved averaging the cut-points from 34 

160 participants (i.e. all other participants) into a single set of cut-points that could then be applied to 

161 the data of the left-out subject. Consequently, the PA data generated for each subject was solely 

162 based on the optimized results from the other 34 subjects, ensuring complete blinding to the 

163 information of the excluded subject.

164

165 Fig 1. Flowchart of Leave-one-out cross validation analysis. 

166 Statistical analysis

167 The agreement between the ActiGraph and the LOOCV Axivity results for each PA 

168 intensity: SB, LPA, MPA, and VPA, were assessed using Bland-Altman plots with 95% limits of 

169 agreement (LOA; mean difference of methods ±1.96 SD) [25]. Additionally, intraclass correlation 

170 coefficients (ICC; single measure, absolute agreement) with 95% confidence intervals (CIs) were 

171 computed for each intensity to measure reliability of the Axivity. The ICC values were interpreted 

172 as poor (ICC < 0.5), moderate (0.5 < ICC <0.75), good (0.75 < ICC< 0.9), and excellent (ICC > 

173 0.9) [26]. The agreement between the ActiGraph and individually optimized Axivity results were 

174 also computed, to serve as a comparison of the training data (i.e., individually optimized) versus 

175 the generalizable, cross-validated results.

176

177 Results

178 Participant demographics are reported in Table 1. While 35 individuals were recruited for 

179 the study, one participants’ data was omitted from the analysis due to early removal of the Axivity 
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180 sensor. Results from the training model and the LOOCV analysis are shown in Table 2. Individual 

181 results from the LOOCV analysis are shown in the Bland-Altman plots in Fig 2. The results from 

182 the optimized cut-points training model matched closely with the ActiGraph results and all 

183 intensities had excellent agreement, as expected given they are individually optimized. When 

184 performing the LOOCV analysis, results showed the SB and LPA have good reliability, with mean 

185 differences of 2.40% and 2.37%, respectively. Whereas the MPA and VPA have moderate 

186 reliability and mean differences of 0.51% and 0.10% respectively. 

187 Table 1. Participant Demographics.

Age 71 ± 9 years
Male 48.6 %
Height 167.3 ± 9.8 cm
Mass 76.5 ± 15.1 kg
BMI 27.0 ± 3.6 kg/m2 
Previous Lower Limb Surgeries 5.7%
Previous Lower Limb 
Replacements 

11.4%

Diagnosed Osteoarthritis 31.4%
Mean Oxford Knee Scorea 37.3 ± 7.1

188 aThe Oxford Knee Score measures an individual’s daily level of function, and how they have been 
189 impacted by pain in their knees. Participants only filled out the OKS questionnaire if they indicated 
190 they had osteoarthritis in either or both of their knees. Scores range from 0 to 48, with 48 
191 representing maximal functioning knees [27]. A score ranging from 30 to 39 may indicate mild to 
192 moderate knee osteoarthritis [28]. 
193

194 Table 2. Results.

Training Model LOOCV Analysis
PA 

Intensity
ICC Mean  

Difference  
(%)

95% 
Limits of 

Agreemen
t

ICC Mean 
Difference 

(%)

95% 
Limits of 

Agreemen
t

Sedentary 0.99 (0.99, 
1.0)

0.01 ± 0.01 -0.02, 0.02 0.85 (0.73, 
0.92)

2.40 ± 1.84 -6.11, 5.85

Light 0.99 (0.99, 
1.0)

0.01 ± 0.01 -0.02, 0.02 0.80 (0.65, 
0.9)

2.37 ± 1.97 -5.93, 6.25
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Moderate 0.98 (0.96, 
0.99)

0.05 ± 0.22 -0.03, 0.03 0.67 (0.44, 
0.82)

0.51 ± 0.70 -1.96, 1.82

Vigorous 0.96 (0.93, 
0.98)

0.04 ± 0.22 -0.02, 0.02 0.70 (0.48, 
0.84)

0.10 ± 0.73 -1.96, 1.30

195

196 Fig 2. Bland-Altman plot of the time spent in different PA intensities in minutes, for 
197 agreement between the Axivity and the ActiGraph in the LOOCV analysis. 
198

199 After initial data analysis, a significant outlier was identified in the LOOCV analysis. 

200 Outliers were defined as data points that deviated significantly from the remaining values of the 

201 dataset, using a criterion of falling outside three standard deviations from the mean value. Based 

202 on this criterion, one participant was considered an outlier in the LOOCV dataset. In order to 

203 ensure the integrity of the results and subsequent cut-point models, a careful decision was made to 

204 exclude this outlier from the analysis. By removing this outlier from the dataset, we aimed to 

205 achieve a more representative dataset for further analysis. Following the outlier’s removal, ICCs 

206 for SB, LPA, and MPA showed good agreement, while the ICC for VPA showed excellent 

207 agreement, as depicted in Table 3. Individual results from the LOOCV analysis with the outlier 

208 removed are shown in the Bland-Altman plots in Fig 3.

209 Table 3. Results with outlier removed.

Training Model LOOCV Analysis
PA 

Intensity
ICC Mean

Difference 
(%)

95% 
Limits of 

Agreement

ICC Mean 
Difference 

(%)

95% 
Limits of 

Agreement

Sedentary 0.99 (0.99, 
1.0)

0.01 ± 0.01 -0.03, 0.02 0.86 (0.74, 
0.93)

2.34 ± 1.83 -5.88, 5.88

Light 0.99 (0.99, 
1.0)

0.01 ± 0.01 -0.03, 0.03 0.82 (0.66, 
0.91)

2.28 ± 1.94 -5.92, 5.94

Moderate 0.98 (0.96, 
0.99)

0.01 ± 0.01 -0.03, 0.03 0.81 (0.64, 
0.90)

0.42 ± 0.46 -1.20, 1.27
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Vigorous 0.96 (0.93, 
0.98)

0.004 ± 
0.01

-0.02, 0.02 0.96 (0.92, 
0.98)

0.10 ± 0.23 -0.53, 0.45

210

211
212 Fig 3. Bland-Altman plot of the time spent in different PA intensities in minutes, for 
213 agreement between the Axivity and the ActiGraph in the LOOCV analysis, with the outlier 
214 removed. 
215
216 Based on these results, the resultant cut-points developed for the Axivity accelerometer, 

217 when placed below the knee, were computed as the average of the 34 participants and are shown 

218 in Table 4.  Also shown in Table 4 are the cut-points after the outlier was removed, which is the 

219 more representative set of cut-points to use for accelerometers worn at the shank.

220 Table 4. Resultant Cut-points. 

Counts per Minute
Intensity Complete Dataset Outlier Removed
Sedentary 0 - 777 0 - 792
Light 778 - 8415 793 - 8356
Moderate 8416 - 18731 8357 - 18437
Vigorous 18732 < 18438 <

221

222 Discussion 

223 The purpose of this study was to determine and validate cut-points to measure PA with 

224 Axivity sensors placed at the shank in older adults. Overall, the Axivity demonstrated good 

225 agreement with the gold standard for PA assessment, the ActiGraph, when assessing SB and LPA. 

226 When classifying MPA and VPA, the Axivity showed moderate agreement with the ActiGraph. 

227 However, with outliers accounted for, MPA and VPA showed good and excellent agreement, 

228 respectively. These data demonstrated that accelerometers placed just below the knee can 

229 effectively measure an older adult's PA. Overall, the resultant cut-points determined in this study 
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230 enable the assessment of PA in older adults at the proximal shank, either independently or in 

231 conjunction with research focused on free-living gait data from this site.

232 Our results supported our original hypothesis which predicted that SB and LPA would have 

233 greater agreement than MPA and VPA with the ActiGraph, as the SB and LPA demonstrated ICCs 

234 of 0.85 and 0.80, respectively. Whereas the MPA and VPA intensities demonstrated ICCs of 0.67 

235 and 0.70, respectively. This may be because participants, being older adults, did not all perform 

236 large amounts of MPA and VPA. The average percentage of time spent in VPA was 1.04 %, with 

237 26 participants having no VPA. This likely reduced the samples of MPA and VPA collected and 

238 could have affected the average of the resultant cut-points to identify MPA and VPA. These results 

239 are consistent with previous studies that assessed PA between ActiGraph and other devices, 

240 including the Axivity, which also found greatest agreement when classifying SB and LPA over 

241 MPA, and VPA, such as the study done by Rowlands et al. [29], due to the relatively small amount 

242 of time spent in moderate and vigorous PA levels [30]. 

243 With one outlier removed, these ICCs improved to 0.86, 0.82, 0.81, and 0.96 for SB, LPA, 

244 MPA, and VPA, respectively. Upon evaluation, the recorded Axivity accelerations and 

245 subsequently derived activity counts of the outlier were substantially higher in magnitude 

246 compared to those of the remaining participants, despite the ActiGraph data of the outlier aligning 

247 with that of the other participants. Consequently, the outlier’s optimized cut-points were 

248 significantly greater than the average cut-points of all subjects. Thus, when conducting the 

249 LOOCV including the outlier’s optimized cut-points, the model overestimated the time spent in 

250 Specifically, the resultant cut-points including the outlier are higher for MPA and VPA intensities 

251 when compared to the cut-points with the outlier removed. Higher recorded or erroneous 

252 accelerations from one subject’s Axivity can be due to many potential reasons, which can include 
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253 sensor movement as a result of being loosely attached and the introduction of artifacts and noise 

254 into the accelerometer readings. Nevertheless, we cannot pin-point the exact cause as to why one 

255 subject’s Axivity sensor collected greater accelerations than others’ Axivity sensors. The 

256 optimized cut-points of the outlier affected all PA intensities, however, it had a limited impact on 

257 SB and LPA data, which further highlights the quality of these outcomes in older adults compared 

258 to MPA and VPA. Despite the outlier’s removal improving the results to excellent validity, we 

259 still caution the use of VPA data in older adults moving forward, given the limited amount of data 

260 in these intensity levels. 

261 With respect to the cut-points used for MPA and VPA, they are similar to cut-points found 

262 in a study done by Rhudy et. al. [31] which identified cut-points for the ActiGraph GT9X at 

263 varying wear-locations proximal to the shank, such as the ankle, foot, along with the wrist and hip 

264 to measure moderate and vigorous PA. These cut-points are shown in Table 5 along with the cut-

265 points from the shank developed from the results of the current study. These wear locations offer 

266 some opportunity for comparing cut-points at proximal locations, such as the ankle and foot. 

267 Theoretically, the cut-points for the ankle and foot should be greater, as the impact accelerations 

268 experienced would be greater than those at the shank. It is also expected that the cut-points for the 

269 shank for both MPA and VPA are greater than those of the hip. This is mostly reflected in the 

270 results from Rhudy et al. and the current study, as the cut-points for MPA and VPA measured at 

271 the ankle are 14767 and 17818 counts per minute, respectively, and the cut-points for MPA and 

272 VPA measured at the foot are 20575 and 22629 counts per minute, respectively. For the current 

273 study, the cut-points for MPA and VPA measured at the shank are 8357 and 18438. As expected, 

274 these shank cut-points are greater than the cut-points for the hip for MPA and VPA, which are 

275 4978 and 6227 counts per minute. Furthermore, the cut-point for MPA at the shank is less than the 
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276 cut-points at the ankle and foot, as predicted. While the cut-point for VPA at the shank is less than 

277 the cut-point for the foot, it is greater than the cut-point at the ankle. This could be since the cut-

278 points for the foot and ankle in the aforementioned study were identified through a young, healthy 

279 population in a controlled setting, whereas the current study’s population consisted solely of older 

280 adults in free-living conditions. 

281
282 Table 5. Cut-points for MPA and VPA at foot, ankle, and hip wear locations from Rhudy et 
283 al. [31].

Wear Location MPA cut-point VPA cut-point
Foot 20575 22629
Ankle 14767 17818
Shank 8357 18438
Hip 4978 6227

284

285 This study has some limitations to be discussed. Firstly, participants removing the 

286 ActiGraph sensor when showering may have influenced the results, as the Axivity was worn for 

287 the full 72 hours. This likely would have minimal influence over the results with both 

288 accelerometers likely resulting in a SB classification, as showers are typically short in duration 

289 and most people won’t move a significant amount while showering. However, if participants forgot 

290 to wear, or delayed, the placement of the ActiGraph after their shower, this could adversely affect 

291 agreement between two sensors. 

292 Secondly, it is possible that individuals could have performed movement with their lower 

293 limbs, without moving their trunk, such as leg raises, which could have recorded more 

294 accelerations in the Axivity than the ActiGraph, if the hip-worn accelerometer was not 

295 experiencing movement. This would have impacted the final cut-points that were developed. 

296 Nevertheless, the current findings present a first step at classifying PA from shank-placed 
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297 accelerometers and identifying cut-points for this wear location, which can be widely used in gait 

298 research in the elderly. 

299

300 Conclusion

301 These results displayed a good agreement between the gold standard ActiGraph sensors 

302 and the Axivity sensors to classify PA and SB when worn at the shank. The resultant cut-points 

303 can be used for accelerometers, including the Axivity and ActiGraph, worn specifically just below 

304 the knee at the shank. The introduction of shank cut-points are a novel contribution that will aid in 

305 simplifying concurrent PA assessments that occur in older adults also completing gait assessments. 

306

307 Acknowledgements 

308 I would like to thank the Physical Activity Centre of Excellence at McMaster University for 

309 supporting this study, as well as all the participants for their time and efforts, that made this study 

310 possible.

311

312 References 

313 1. Langhammer B, Bergland A, Rydwik E. The importance of physical activity exercise among 
314 older people. BioMed Res Int. 2018;2018: 7856823. doi:10.1155/2018/7856823

315 2. Watson KB, Carlson SA, Gunn JP, Galuska DA, O’Connor A, Greenlund KJ, et al. Physical 
316 inactivity among adults aged 50 years and older - United States, 2014. MMWR Morb 
317 Mortal Wkly Rep. 2016;65: 954–958. doi:10.15585/mmwr.mm6536a3

318 3. Martins JC, Aguiar LT, Nadeau S, Scianni AA, Teixeira-Salmela LF, Faria CDC de M. 
319 Measurement properties of self-report physical activity assessment tools in stroke: a 
320 protocol for a systematic review. BMJ Open. 2017;7: e012655. doi:10.1136/bmjopen-2016-
321 012655

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.23294309doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.19.23294309
http://creativecommons.org/licenses/by/4.0/


322 4. Washburn RA, McAuley E, Katula J, Mihalko SL, Boileau RA. The physical activity scale 
323 for the elderly (PASE): evidence for validity. J Clin Epidemiol. 1999;52: 643–651. 
324 doi:10.1016/s0895-4356(99)00049-9

325 5. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. 
326 International physical activity questionnaire: 12-country reliability and validity. Med Sci 
327 Sports Exerc. 2003;35: 1381–1395. doi:10.1249/01.MSS.0000078924.61453.FB

328 6. Wendel-Vos GCW, Schuit AJ, Saris WHM, Kromhout D. Reproducibility and relative 
329 validity of the short questionnaire to assess health-enhancing physical activity. J Clin 
330 Epidemiol. 2003;56: 1163–1169. doi:10.1016/s0895-4356(03)00220-8

331 7. Sylvia LG, Bernstein EE, Hubbard JL, Keating L, Anderson EJ. A practical guide to 
332 measuring physical activity. J Acad Nutr Diet. 2014;114: 199–208. 
333 doi:10.1016/j.jand.2013.09.018

334 8. Sallis JF, Saelens BE. Assessment of physical activity by self-report: status, limitations, and 
335 future directions. Res Q Exerc Sport. 2000;71: 1–14. 
336 doi:10.1080/02701367.2000.11082780

337 9. Timperio A, Salmon J, Crawford D. Validity and reliability of a physical activity recall 
338 instrument among overweight and non-overweight men and women. J Sci Med Sport. 
339 2003;6: 477–491. doi:10.1016/S1440-2440(03)80273-6

340 10. Prince SA, Adamo KB, Hamel ME, Hardt J, Gorber SC, Tremblay M. A comparison of 
341 direct versus self-report measures for assessing physical activity in adults: a systematic 
342 review. Int J Behav Nutr Phys Act. 2008;5: 56. doi:10.1186/1479-5868-5-56

343 11. Neishabouri A, Nguyen J, Samuelsson J, Guthrie T, Biggs M, Wyatt J, et al. Quantification 
344 of acceleration as activity counts in ActiGraph wearable. Sci Rep. 2022;12: 11958. 
345 doi:10.1038/s41598-022-16003-x

346 12. Romero E, Neuman M, Warrington R. Kinetic energy harvester for body motion. 2009. 

347 13. Shah VV, McNames J, Mancini M, Carlson-Kuhta P, Spain RI, Nutt JG, et al. Laboratory 
348 versus daily life gait characteristics in patients with multiple sclerosis, Parkinson’s disease, 
349 and matched controls. J NeuroEngineering Rehabil. 2020;17: 159. doi:10.1186/s12984-020-
350 00781-4

351 14. Powell D, Nouredanesh M, Stuart S, Godfrey A. Investigating the AX6 inertial-based 
352 wearable for instrumented physical capability assessment of young adults in a low-resource 
353 setting. Smart Health. 2021;22: 100220. doi:10.1016/j.smhl.2021.100220

354 15. Li Y, Wang L. Human activity recognition based on residual network and BiLSTM. 
355 sensors. 2022;22: 635. doi:10.3390/s22020635
356

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.23294309doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.19.23294309
http://creativecommons.org/licenses/by/4.0/


357 16. Li Q, Young M, Naing V, Donelan JM. Walking speed estimation using a shank-mounted 
358 inertial measurement unit. J Biomech. 2010;43: 1640–1643. 
359 doi:10.1016/j.jbiomech.2010.01.031

360 17. Celik Y, Stuart S, Woo WL, Godfrey A. Wearable inertial gait algorithms: impact of wear 
361 location and environment in healthy and Parkinson’s populations. Sensors. 2021;21: 6476. 
362 doi:10.3390/s21196476

363 18. Tsukamoto H, Saito K, Saito H, Kijima H, Akagawa M, Komatsu A, et al. A novel 
364 classification of coronal plane knee joint instability using nine-axis inertial measurement 
365 units in patients with medial knee osteoarthritis. Sensors. 2023;23: 2797. 
366 doi:10.3390/s23052797

367 19. Morris R, Hickey A, Del Din S, Godfrey A, Lord S, Rochester L. A model of free-living 
368 gait: A factor analysis in Parkinson’s disease. Gait Posture. 2017;52: 68–71. 
369 doi:10.1016/j.gaitpost.2016.11.024

370 20. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, 
371 Inc. accelerometer. Med Sci Sports Exerc. 1998;30: 777. 

372 21. Liu F. Axivity_AX3. 2022. Available: https://github.com/FelixLiu-SF/Axivity_AX3

373 22. Brønd JC, Andersen LB, Arvidsson D. Generating ActiGraph counts from raw acceleration 
374 recorded by an alternative monitor. Med Sci Sports Exerc. 2017;49: 2351–2360. 
375 doi:10.1249/MSS.0000000000001344

376 23. LaMunion SR, Bassett DRJ, Toth LP, Crouter SE. Effect of wear location on ActiGraph 
377 activity counts: 2286 Board #299 June 1 2: 00 PM - 3: 30 PM. Med Sci Sports Exerc. 
378 2017;49: 643. doi:10.1249/01.mss.0000518693.36595.09

379 24. Optimization Toolbox version: 9.4 (R2022b), Natick, Massachusetts: The MathWorks Inc.; 
380 2022. 

381 25. Martin Bland J, Altman Douglas G. Statistical methods for assessing agreement between two 
382 methods of clinical measurement. The Lancet. 1986;327: 307–310. doi:10.1016/S0140-
383 6736(86)90837-8

384 26. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for 
385 reliability research. J Chiropr Med. 2016;15: 155–163. doi:10.1016/j.jcm.2016.02.012

386 27. Murray DW, Fitzpatrick R, Rogers K, Pandit H, Beard DJ, Carr AJ, et al. The use of the 
387 Oxford hip and knee scores. J Bone Joint Surg Br. 2007;89-B: 1010–1014. 
388 doi:10.1302/0301-620X.89B8.19424

389 28. Oxford Knee Score | Auckland Surgery. [cited 13 Jul 2023]. Available: 
390 https://www.aucklandsurgery.co.uk/navigator/oxford-knee-score/

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.23294309doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.19.23294309
http://creativecommons.org/licenses/by/4.0/


391 29. Rowlands AV, Mirkes EM, Yates T, Clemes S, Davies M, Khunti K, et al. Accelerometer-
392 assessed physical activity in epidemiology: are monitors equivalent? Med Sci Sports Exerc. 
393 2018;50: 257. doi:10.1249/MSS.0000000000001435

394 30. Pfister T, Matthews CE, Wang Q, Kopciuk KA, Courneya K, Friedenreich C. Comparison of 
395 two accelerometers for measuring physical activity and sedentary behaviour. BMJ Open 
396 Sport Exerc Med. 2017;3: e000227. doi:10.1136/bmjsem-2017-000227

397 31. Rhudy MB, Dreisbach SB, Moran MD, Ruggiero MJ, Veerabhadrappa P. Cut points of the 
398 Actigraph GT9X for moderate and vigorous intensity physical activity at four different 
399 wear locations. J Sports Sci. 2020;38: 503–510. doi:10.1080/02640414.2019.1707956

400
401 Supporting Information 

402 S1 Table. Participant Axivity and ActiGraph Data. Axivity Data is missing from Participant 

403 21 due to early removal of the Axivity AX6 sensor. 

404

405

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.23294309doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.19.23294309
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.23294309doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.19.23294309
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.23294309doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.19.23294309
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.23294309doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.19.23294309
http://creativecommons.org/licenses/by/4.0/

