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Key Points 
Question: Can machine learning models be used to classify Myasthenia gravis patients into 

groups at high or low risk for myasthenic crisis with high precision based on explainable data-

driven features derived from real-world clinical data?  
Findings: In this pseudo-prospective study of 51 Myasthenia gravis patients, the risk of 

myasthenic crisis using real-world clinical data was accurately classified employing two machine 

learning models with explainable features.   
Meaning: These findings suggest that it is possible to classify the risk for myasthenic crisis in 

patients based on real-world clinical data with high precision.  

 
Abstract 
Importance: Myasthenic crisis (MC) is a critical progression of Myasthenia gravis (MG), requiring 

intensive care treatment and invasive therapies. Classifying patients at high-risk for MC facilitates 

treatment decisions and helps prevent disease progression.  

Objective: To test whether machine learning models trained with real-world routine clinical data 

can aid precisely identifying MG patients at risk for MC.  

Design: This is a pseudo-prospective cohort study of MG patients presenting since January 2010. 

Setting: Single center. 
Participants: A cohort of 51 MG patients was used for model training based on a defined set of 

real-world clinical data. The cohort was created from a convenience sample of 13 MC patients 

matched based on sex, five-year age band, antibody status, thymus pathology with MG patients 

who had not suffered an MC. Data analyses and model refinements were performed from June 

2022 to May 2023. 

Exposure: Classification of MG patients to high or low risk for MC using Lasso regression or 

random forest machine learning models.  

Main Outcomes and Measures: The accuracy of the risk classification was assessed by patient.  

Results: This study included 51 MG patients (13 MC, 38 non-MC; median age MC group 70.5, 

non-MC group 65.5). The mean cross-validated AUC classifying MG patients as high or low risk 

for MC based on simple or compound features derived from real-world routine clinical data 

showed a predictive accuracy of 68.8% for the regularized Lasso regression and of 76.5% for the 

random forest model. Feature importance scores suggest that multimorbidity may play a role in 

risk classification. Different thresholds were applied to tune model performance to optimal 

parameters. Studying result stability across 100 runs further indicated that the random forest 

model was better suited to cope with feature variance. Studying feature importance across 5100 

model runs identified explainable features to distinguish MG patients at high or low risk for MC. 
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Conclusions and Relevance: In this study, feasibility of classifying risk for MC based on real-

world routine clinical data using machine learning was shown. The models showed accurate and 

consistent performance indicating the utility of personalized risk assessment in MG patients using 

machine learning models.  

 

Keywords: 
Myasthenic crisis, myasthenia gravis, risk classification, explainable machine learning, precision 

medicine, rare disease. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.23294175doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.19.23294175
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Introduction 
Myasthenia gravis (MG) is a rare chronic autoimmune disease causing fatigable muscle 

weakness due to auto-antibody-mediated decrease in neuromuscular transmission with a 

prevalence of 40-180 per 1 million people1,2. Myasthenic crisis (MC) defines critical exacerbation 

of MG which can be life threatening due to respiratory insufficiency and requires intensive care 

treatment, mechanical ventilation as well as invasive therapeutic procedures such as 

plasmapheresis. Up to 15-20% of MG patients develop MC over the course of their lifetime3,4. 

Although there has been a significant decrease in mortality of MC over the last decades, current 

figures for mortality are variable, but still reported as up to 5-12%4-6. Even though the presence 

of thymoma, MuSK autoantibodies7, stress, infections or inappropriate treatment are known risk 

factors for MC, among others, it is still impossible to anticipate MC or predict which patients 

develop MC in a cohort of patients at risk. The ability to predict which patients have a high risk of 

MC will help make confident and personalized treatment decisions and thereby help utilize 

resources more effectively.  

In predictive modeling the objective is to accurately project the chances that a specific event will 

or will not happen, thereby optimizing for prediction accuracy and not for the understanding of 

root causes. While byproducts such as the feature importance can give insight into why an event 

occurs, the primary interest lies in predicting if it will occur8. In principle, two classes of models 

are suited for prediction: regression, generally used for predicting a continuous numeric outcome, 

and classification for categorical outcomes.  

Here, we investigated whether it is possible to reliably classify Myasthenia gravis patients into 

groups at low- or high risk of MC based entirely on routine medical data in a proof-of-concept 

pseudo-prospective pilot study. Ultimately, our goal is to support making treatment decisions in a 

clinical context. Thus, we used real-world routine medical data such as common laboratory values 

and other case-associated data to classify patients from a pilot cohort of MG patients into MC risk 

groups. In an explainable data-driven approach, we investigated how to best classify patients into 

risk groups using either a regularized linear machine learning model to account for highly 

correlated features or a random forest classifier to minimize noise.  
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Methods 
Protocol approval and patient consent 
This study was approved by the local ethics committee (no. EA4/068/22). Informed consent was 

not required for this retrospective analysis. 

 

Study design and participants 
This study is a pilot study to demonstrate feasibility of MC prediction based on real-world routine 

clinical data. In this study our dependent variable allowed for the two categories: “myasthenic 

crisis” or “no myasthenic crisis”. Thus, we treated this as a classification model.  

We chose a 2-step approach in a pseudo-prospective manner (i.e., occurrence of MC was 

unknown to the machine learning models). First, we used univariate logistic regression to assess 

feature importance, and then we compared regularized regression with random forest 

classification to classify risk into low or high risk for MC. Details of model generation, performance 

testing and validation are given in the statistical analysis section below. In order to perform 

pseudo-prospective predictive analysis, we designed a cohort of MG patients from retrospective 

medical data of patients all treated since January 2010 until recent at the Integrated Myasthenia 

gravis Center of the Dept. of Neurology at Charité – Universitätsmedizin Berlin, a large academic 

tertiary care center, certified for applying standardized clinical pathways and patient management 

by the German Myasthenia Gravis Society. 53 patients with MC admitted to the neurological 

intensive care unit were screened, of which 13 were included in this pilot study (Table 1). To 

establish the final cohort for analysis, we initially matched each MC patient with up to four MG 

patients without MC based on (in order of priority) sex, five-year age band, antibody status, 

thymus pathology. After data cleanup (below), we were able to match 38 control patients.  

MC was defined as exacerbation of myasthenic symptoms with bulbar or general weakness 

requiring mechanical ventilation. Diagnosis of MG was established based on antibody findings, 

repetitive nerve stimulation or clinical assessment. Current data analyses and model refinements 

were performed from June 2022 to May 2023. 

 

Data curation and preprocessing 
All data were obtained from the patients’ electronic health records or from Charité’s Health Data 

Platform (HDP) which hosts up-to-date retrospective snapshots of the entire hospital 

management system, including laboratory values. To eliminate hindsight bias, we removed data 

that were generated within 6 months after the MC.  
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Input data were routine clinical data such as bloodwork, data relating to current hospital admission 

(e.g., length of stay, path through hospital, etc.), as well as treatment details (e.g., medication, 

procedures, etc.). A full list of considered features is shown in Supplementary Table 1. The data 

were cleaned from impossible values (e.g., negative laboratory values), normalized and 

standardized. The matching criteria were excluded as classifiers, since by design they were 

similar in test and control groups. Two patients with MC had to be excluded from the analysis 

because they had no remaining data after eliminating the data generated in the half year period 

after the crisis. 

 

Statistical and Machine Learning Analysis 
Modeling Approach: Analyses were performed in R version 3.6.1 (R Project for Statistical 

Computing). For a full list of libraries used see Supplementary Table 2. 

We used several feature categories for analyses: bloodwork, hospitalization, and treatment details 

(see Data Curation above for details). In regression models it is typical to use one row by patient 

and to depict trend in the feature design. An example is the number of encounter days by patient 

in general and the corresponding trend feature would be the average encounter days by patient 

per six months. If applicable, we added minimum, maximum, median, and standard deviation for 

each value as simple features. For features that did not change over time (e.g., age of onset), this 

was omitted. For the regularized regression, we also allowed pairwise interactions. In the random 

forest model, we allowed only simple features and no interactions, because the tree structure 

itself allows for nonlinear relationships. For the full list of features used see the labels in Fig. 3.  

We set a minimum completeness level of 80% per feature, meaning that at least 41 patients had 

to have a value for a particular feature. Out of originally more than 2000 possible features, 696 

feature candidates reached the completeness threshold to be considered in the models. The 

missing values for the features used were computed with the mice package9 using predictive 

mean matching for numeric features. This method predicts the value to be imputed based on all 

other values except the dependent variable. Then it draws a small set of candidate donors closest 

to the predicted value and draws one of these randomly10. Factor data follows the same process 

with the exception that the prediction is performed with a polyregression.  

In a first step, we determined feature importance in a logistic regression model. Features with a 

p-value of ≤ 0.05 were then used in a regularized Least Absolute Shrinkage and Selection 

Operator (Lasso) regression11 to account for many features being highly correlated among the 

top 50 from the first step. The Lasso regression algorithm identified 8 - 11 features per run that 

were most predictive. The parameter λ controls the strength of the shrinkage, where an increase 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.23294175doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.19.23294175
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

in λ results in an increase in shrinkage and an increase in variance. Due to the significant 

reduction in features, variance is introduced through the model. We thus also calculated a random 

forest model to gauge if variance was controlled well.  

Performance Metrics and Validation: Our primary model performance metric in both second phase 

models was the mean of the cross-validated area under the receiver-operator curve (AUC) over 

100 runs of training. AUC is a classification threshold independent metric, contrary to comparison 

metrics such as sensitivity and specificity which are highly dependent on what threshold is chosen 

to distinguish the groups.  

Accounting for the small data set, we performed leave-one-out cross-validation12. Standard 

metrics such as sensitivity, specificity, and precision were used to evaluate model performance. 

We also ran 100 cycles of training to account for two sources of randomness – imputation and 

the L1-regularization. L1-regularization penalizes the sum of absolute values and is sparse, 

meaning it sets all variables but the top ones to zero and doesn’t use them. Finally, we scrambled 

the target variable and verified that the results had a significantly lower AUC.  

 

Data and code availability 

Feature categories and lists are published as supplement to this manuscript (Supplementary 

Table 1). Ethical approval currently does not permit sharing of raw data. The analysis code will 

be made available upon reasonable request.   
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Results 
Demographics and clinical characteristics 
The cohort consisted of 51 Myasthenia gravis patients with 13 patients who suffered from at least 

one MC (9 patients had one MC, 4 had two or more MC) and 38 controls (Table 1). The median 

age in the MC group was 70.5, whereas the non-MC group showed a median age of 65.5. Overall, 

38 patients were AChR antibody positive and the remaining 13 were antibody negative. One 

patient tested positive for both AChR as well as MuSK, who we matched against AChR single-

positive patients due to a lack of other controls.  

 
Table 1: Clinical and demographic characteristics of patients 

  Myasthenic 
crisis 

Control 

Number of Patients  13 38 
Age at time of sampling, median 
(range) 

 70.5 (39 – 
89)  

65.5 (40 – 88) 

Disease duration (years), median 
(range) 

 13.5 (7-43)  9.5 (4 – 43)  

Onset, n (%) 
 

Late Onset MG 
 

8 (61%) 
 

20 (52%) 
 

Early Onset MG 5 (38%) 18 (47%) 

Sex, n (%) Female  6 (46%)  17 (45%)  
Male 7 (54%) 21 (55%) 

Antibody status, n (%) AChR 11* (85) 27 (71) 
AB-negative 2 (15) 11 (19) 

Thymectomy, n (%) No 4 (31) 11 (29) 
Yes 9 (69) 27 (71) 

Thymus pathology, n (%) Thymoma 5 (56) 12 (44.5) 
Hyperplasia 1 (11) 3 (8) 
Unremarkable 3 (33) 12 (44.5) 

Patients with number of MC, n 0 MC 0 38 
1 MC 9 0 
2 MC 2  0 
3 MC 2  0 

*One MC patient was positive for AChR and MuSK. As there were no appropriate AChR/MuSK-double 
positive controls she was considered in the AChR+ group.  
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Model Performance 
The Lasso regression model allowed the distinction between the MC and non-MC groups with a 

mean [standard deviation, sd] AUC of 68.8% [8.1%] (Figure 1A, Table 2), and random forest with 

a mean AUC of 76.7% [4%] (Figure 1B, Table 2).  

 
Fig. 1: Prediction results independent of threshold (A) for the Lasso regression, and (B) for 

the random forest prediction. The random forest prediction performs better in terms of AUC. 

The black line is the area under the curve for the prediction, the shaded dark blue area 

represents one standard deviation confidence intervals (CI) and the light blue 2 standard 

deviations CI. The labels show the thresholds and the respective CI. The purple line 

represents the prediction with the randomized target variable.  

 
Table 2: Result summary at different thresholds (TH) 
Metrics/Model Regularized regression Random Forest 
Mean AUC 68.8% 76.5% 
SD AUC 8.2% 4.0% 
Sensitivity TH 0.1: 80.5% 

TH 0.3: 54.7% 
TH 0.9: 10.5% 

TH 0.1: 99% 
TH 0.3: 73% 
TH 0.9: 1% 

Specificity TH 0.1: 38% 
TH 0.3: 83.4% 
TH 0.9: 99.5% 

TH 0.1: 9% 
TH 0.3: 51% 
TH 0.9: 100% 

 

Three configuration examples of the Lasso regression model (Table 2) show that the best 

accuracy (i.e., classifying most patients correctly) is not what the model should be optimized for. 

It is our major aim to correctly identify patients at risk for MC. It is therefore critical to reduce false 

negatives, because false negatives mean that patients with high risk of suffering an MC would be 
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classified as “low risk” and may be overlooked. We thus shifted the threshold splitting the two 

categories to reduce false negatives as much as possible. For this, we looked at the average 

predicted score by patient.  

The confusion matrices for the Lasso regression prediction (Fig. 2A) show that at a threshold of 

0.1, 35 out of 51 patients would be considered high risk for MC. Ten of these were correctly 

classified. The high number of 25 false positives was accompanied by a low number of false 

negatives (3 patients). Accordingly, at a threshold of 0.3, 13 patients were categorized as high 

risk, 7 of these true positives. 38 patients were considered low risk, whereas 6 patients were false 

negatives. In this setting, the number of false negatives doubled compared to the lowest 

threshold. To gauge the result range, at a threshold of 0.8, 50 patients were considered low risk, 

1 patient was considered high risk, and 12 MC patients were false negatives. In the random forest 

model (Fig. 2B) and at a threshold of 0.1, 48 patients (94%) were considered high risk. 13 of these 

were correctly classified, whereas 0 patients were false negatives. At a threshold of 0.3, 29 

patients (57%) were considered high risk. Of these, 9 were correctly classified and 4 patients 

were false negatives. At a threshold of 0.8, 0 patients (0%) were considered high risk. The goal 

is to maintain reasonable group sizes allowing the allocation of significantly more resources to 

those in high risk. False negatives should be avoided, even if this means that the precision of the 

model is lowered.  

 

 

 
Fig. 2: Confusion matrices of the classification results for the (A) Lasso regression model, 

and the (B) random forest model. Prediction on the x-axis and ground truth on the y-axis. 
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Predictor Importance and result stability 
Result stability varied by patient (Supplementary Fig. 1). However, while there were five 

particularly volatile prediction sets (#9, #10, #13, #20, #28) in the Lasso regression, there was 

only one volatile prediction set (#20) in the random forest model (Supplementary Fig. 1). This 

indicates that particularly the accuracy of the Lasso regression would benefit from more feature 

data per patient. These five patients all had an MC but were predicted as low-risk several times. 

We then compared the Lasso regression model with a random forest model to evaluate how much 

control can be asserted to the variance in the data, especially since the Lasso regression 

introduced variance by the chosen lambda (Supplementary Fig. 2). The high variance across runs 

in AUC as well as the high standard deviation of predictive score by patient across 100 predictions 

(Supplementary Fig. 3) suggest that using a higher number of patients as well as more data points 

(i.e., features) per patient would increase the prediction accuracy and reduce the number of cases 

when patients switch groups across runs. The chosen level of 20% imputation maximum was 

adequate in terms of not superseding the variance introduced by the model itself. (Supplementary 

Fig. 2). 

Feature importance for the Lasso regression is shown with coefficients from -20 to 50 (Fig. 3A). 

Negative coefficients indicate anti-correlation of a feature with MC. In the Lasso regression, the 

features used most were the mean trend of lymphocytes (mean [sd] coefficient 191.9 [64.9]) and 

the path of the patient through hospital units throughout the hospital stay (mean [sd] coefficient 

40.8 [14.0]) across a total of 5100 runs of the model (51 patients * 100 runs). Both were used in 

99% of the runs. The most important feature in the random forest was the relative minimum trend 

of creatinine measurements. As the use of each feature across runs is similar in the random forest 

model, feature importance is measured by its accuracy coefficient after leave-one-out validation 

(Fig. 3B). For the random forest, the feature importance ranges from -1 to 3. Contrary to the Lasso 

regression, negative feature importance indicates that these features are harmful to the accuracy 

of the model. A full list of considered features is shown in Supplementary Table 1. Both machine 

learning models identified creatinine in various forms as a highly relevant feature for classification. 

This may suggest that multimorbidity may play a role in MC risk classification. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.19.23294175doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.19.23294175
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

 
Fig. 3: Feature importance according to mean coefficient across 100 predictions. (A) Feature 

importance for the Lasso regression. The occurrence by feature varies, because of the L1 

regularization. The shading of the bars indicates the number of runs in which the feature was 

considered important enough (light grey = few runs, dark grey = many runs). In this context, 

feature importance is measured with negative or positive correlation with the dependent 

variable. The values around 0 are the least important ones.  

(B) Feature importance for the random forest prediction scaled to -1 to 3. In this case, the 

feature importance is calculated by comparing the prediction results after leaving out a 

feature. In this case, the negative values indicate that a feature is harmful to the prediction. 
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Discussion 
MC is the most critical presentation of MG and poses a significant burden to MG patients. It is still 

associated with a high morbidity, mortality, negative impact on quality of life, and requires 

intensive care medical treatment4,6,7,13,14. Thus, accurately predicting patients at risk for MC could 

aid treating patients preventively to avoid critical MG progression to MC as well as properly 

directing scarce clinical resources.  

There is a growing number of studies using machine learning and artificial intelligence for 

research on autoimmune diseases (e.g., on type 1 diabetes15, multiple sclerosis16, rheumatoid 

arthritis17, and Crohn’s disease18,19), yet, in many cases focusing on genetic risk assessment. 

Furthermore, some applications of predictive modeling in medicine have focused on predicting 

Parkinson’s disease in patients before the actual clinical diagnosis20 or predicting the risk for 

exacerbation in autoimmune diseases21.  

Although epidemiological assessment22, diagnosis23, classification of disease subtypes24, and 

therapeutic discovery25 for rare diseases are thought to be aided by various machine learning 

approaches, studies employing machine learning to monitor disease progression in MG are 

scarce. Further, even though disease progression models to describe disease course over time 

are now frequently used in drug development26, clinical use of disease progression modeling, 

e.g., to aid clinical decision making, is uncommon, particularly in rare diseases including MG. 

Recently, basic clinical data have been used to train a random forest classifier to predict short 

term clinical outcome in MG27. However, classifying the risk of MC based on real-world clinical 

data of MG patients, particularly using routine laboratory values and further case-associated data 

readily available at the point of care, has not been the subject of studies using machine learning 

for predictive modeling or risk classification. 

Challenges in predictive studies in medicine are general availability of relevant clinical data, high 

variance in treatment procedures as well as in treatment quality across institutions and health 

care systems. Furthermore, in most published cases machine learning models and data have 

been generated specifically for the purpose of a particular prediction task in the context of a 

controlled trial21,28,29. Thus, risk prediction of new patients outside of clinical trials using real-world 

medical data which is generated as a part of routine treatment will be difficult.  

Thus, as proof of concept, in this study we focused on using only real-world clinical data to infer 

patterns from patient data. We ultimately aim to make the results applicable within existing 

treatment procedures towards personalized disease management such as by aiding to define 

individual monitoring intervals or to quantify the risk of disease progression posed by a treatment 

change. Real-world clinical data most faithfully represents the acute disease phenotype of 
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patients, particularly in the case of rare diseases30. It could also simply enhance a patient’s quality 

of life by easing the mental burden and adjusting the monitoring intervals31. Furthermore, accurate 

prediction of clinical exacerbation of disease using real-world clinical data aids establishing 

individual therapeutic concepts and tailored treatment decisions. To this end, our goal was to 

predict the risk for MC using two different machine learning models trained on real-world routine 

clinical data. Indeed, our data suggest that it is possible to discern MG patients at risk for MC from 

patients not at risk for MC with comparable performance as in other predictive studies on auto-

immune diseases18. Intriguingly, the identification of creatinine, a marker of kidney injury, in 

various feature forms as a highly scoring features might suggest that multimorbidity, which 

commonly involves kidney injury, might place MG patients at high risk for MC. Indeed, 

multimorbidity is a known factor contributing to poor outcome in MC4. 

Studies on risk prediction in MG usually use classical statistical models27 to address clinical 

subtypes such as thymoma patients32-34, specific clinical situations such as initial steroid 

treatment35 or MG subtypes classified by specific autoantibodies and prediction of factors for 

clinical remission. Our study used multidimensional data from a heterogenous MG cohort to learn 

distinctive features with the aim of predicting MC in general, and thus this work contributes a 

generalizable model. Furthermore, all previously available studies have a prognostic focus31-34, 

i.e., the objective is to understand which features are predictive. On the contrary, our approach is 

feature agnostic. We here primarily aimed at high fidelity, i.e., robust model performance 

maintaining reasonable group sizes as well as avoiding false negatives, in predicting whether a 

patient is at high risk of MC.  

Classically, precision medicine has considered large scale sequencing data to tailor individual 

treatment decisions. Technological advances have made the use and integration of genomic, 

transcriptomic, and proteomic data possible36. While these additional data, without a doubt, retain 

analytic value, restricted availability of these data in a day-to-day treatment context creates a 

barrier between such diagnostic instruments and their utility in guiding treatment decisions. 

Indeed, the utility of large-scale genomic data in predicting the risk in complex sporadic conditions 

has been questioned37. Thus, advanced precision medicine should consider multimodal clinical 

data beyond the classical OMICS approaches. Real-world clinical data more closely reflect the 

medical phenotype of the patient30 and thereby aid understanding individual disease patterns and 

using individual risk factors for managing disease beyond a patient’s genotype38. To address this, 

we here investigated whether it is possible to support clinical decision making by unbiased 

analysis of readily available clinical data in a routine treatment setting.  
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Both machine learning models used herein (Lasso regression and random forest) are well 

understood and widely used machine learning algorithms to predict disease progression in a large 

variety of clinical scenarios20,39-43. The difference in AUC between the two models was expected, 

since Lasso regression was used due to the high correlation of features. The Lasso regression 

algorithm is known to introduce randomness (i.e., noise) because of the chosen lambda. Random 

forest classification was chosen specifically to control for noise in the data. In our dataset, trend 

features are highly predictive for the risk of MC (Fig. 3). Afterall, it is plausible to see a worsening 

of features in case of an imminent but not yet apparent MC. Vice versa, a patient who may be at 

high risk for a MC during a given visit may be in much better health (i.e., lower risk for MC) a few 

months later. Thus, risk for MC is not only dependent on the patient, but it can also be quite 

different for the same patient at two different points in time. Thus, model choice and feature design 

not only enabling, but focusing on a non-linear view of disease progression likely produce a more 

predictive result of the disease trajectory. The reduction of variance across and by patient can be 

addressed by including more patients as well as more data points per patient to the training set. 

Finally, the use of data contained in electronic health records, including laboratory parameters as 

features allows analyzing the reason for the good performance of the prediction algorithms. From 

an ethical point of view, this is a critical consideration as these models will have the capacity to 

alter medical decisions44.  

 
Limitations 
Our findings are limited by the small sample size of 51 patients and uneven matching in some 

subgroups. Furthermore, for proof of concept only a selection of the available data points from 

the health care records were used. To prevent selection bias and better and more stable score 

distinction by patient, future studies will benefit from larger sample sizes as well as larger data 

sets including more – if not all – direct and indirect clinical parameters per patient. Furthermore, 

the context in which the patients live (e.g., whether patients were received nursing care or lived 

alone/independent or their geographic location of country vs. city) seemed to impact the outcome 

when reviewing the narrative of individual patient charts. Making this information machine-

interpretable, would likely contribute a novel set of predictive features.  

 

Conclusions 

This study shows that it is possible to classify the risk for MC in MG patients using longitudinal 

real-world clinical data. Both models showed accurate and consistent performance indicating the 

utility of personalized risk assessment in MG patients using machine learning models. As our 
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models are improved, we anticipate that they will become valuable clinical tools for clinical 

decision support and allow unraveling the heterogeneity of MG disease phenotypes. 
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Supplementary Data 
 

 
Supplementary Figure 1: The two graphs show the stability of each patient’s predictions in the 

two sets of runs with different models (left: lasso regression (glm), right: random forest (rF). The 

black number in the middle is the mean predicted risk score for MC by patient. Each bar is a 

representation of all runs of the model (100 in each case). Bars that are entirely light yellow, are 

patients who had a crisis and were consistently predicted high risk (above the threshold (here 

0.3). The bars that are light blue represent patients that were false positives, meaning they were 

considered high risk, but had no crisis. The high number of false positives is intended to reduce 

the numbers of false negatives. The dark gray bars mean that these are below the threshold and 

thus considered low risk. Dark gray in combination with light yellow means that these were test 

group members but alternated in their prediction between the groups. In both models, there are 

patients that were below the threshold, but had a crisis. Examples are #9, #10, #12, #13, #20, 

and #28 in the Lasso regression and #8, #9 and #20 in the random forest. Dark gray in 

combination with light blue means that these were control group members but alternated in their 

prediction between the groups. One interesting example for this is patient #51 in both predictions. 

While the patient is classified as low risk in 80% of cases in the Lasso regression model and 

predicted as high risk in 80% of the cases of the random forest model, this patient had no 

myasthenic crisis.  
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Supplementary Figure 2: Imputed values above threshold: This graph compares the runs of the 

Lasso regression above the threshold with the number of imputed values by patient. One dot 

represents one patient. Across the number of runs we find patients with imputed values above 

the threshold. On the lower right of the plot there are 3 patients that were predicted above the 

threshold in 80-100% of the cases. At the same time, they had up to 8 imputed values. There is 

no obvious relationship between “predicted above the threshold” and the number of imputed 

values. This suggests that most of the variance by patient stems from the Lasso regression’s 

feature selection process. Thus, selecting a model less impacted by randomness such as the 

random forest is likely to show better results.  
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Supplementary Figure 3: This plot shows the mean predicted value by patient in 100 runs. A) 

Results by patient for the Lasso regression, B) results by patient for the random forest model. The 

orange bar represents the standard deviation by patient. High variation suggests that both models 

would benefit from more in-depth data by patient. For instance, one difference that seems relevant 

is whether patients receive professional nursing care or live in care facilities. However, in our data 

set, such data are currently only available from written physicians’ notes which at present cannot 

quantitatively be analyzed. 
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Supplementary Table 1 

List of all considered features. 

Feature Type Feature Name 

Patient Demographics Age 

 Sex 

 Age of Onset 

 Thymus Pathology 

Treatment Data # Encounter Days 

 Hospital Path 

 Medication History 

Blood Work MCHC 

 GOT AST 

 Potassium 

 Sodium 

 Leucocytes 

 MCH 

 Creatinine 

 Thrombocytes 

 Urea 

 Magnesium 

 GPT ALT 

 Alkaline phosphatase 

 Lymphocytes 

 Monocytes 

 Basophiles 

 Neutrophiles 

 immature granulocytes 

 Eosinophiles 

 LDH 
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 CRP 

 Creatinkinase CK 

 Titin Ab 

 Hct 

 tHB 

 Ca Channel PQ Type Ab 

 Procalcitonine 

 Myoglobine 

 Thrombo Exakt Tube 

 Rheumatoid factor IgM 

 Rheumatoid factor IgA 

 CK MB 

 GLDH 

 ACPA 

Treatment procedure PET/CT/MRT 

 Lumbar CSF puncture 

 EMG 

 Whole-body plethysmography 

 Thymus Excision und Resection 

 Ventilation  

 Monitoring 

 Complex intensive care treatment 

 Plasma transfusion 

 SSS Therapy 

 Immunotherapy/Immunosuppression 

 FPM 

 Tracheobronchoskopy 

 Blood transfusion 

 esophagogastroduodensoskopy 
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 catheter 

 EEG 

 Neurography 

 TEE 

 Plasmapheresis 

 Sonography 

 Co-Diffusions capazity determination 

 Minimally invasive technique 

 Robotics/Telemedicine 

 Biopsy 

 Coloscopy 

 Anesthesia 

 FRC 

 requiring care 

 Psychosocial intervention 

 Chemotherapy 

 FSSEP/SSEP 

 Immunoadsorption 

 IM10701 

 IM10671 

 IM10691 

 Granulocyte-stimulation 

 Hemodialysis/Hemofiltration 

 IM10711 
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Supplementary Table 2 
R-packages used and their version.  

Package Name Version 

Plyr 1.8.6 

Pillar 1.5.1 

Tidyr 1.1.3 

Stringr 1.4.0 

lubridate 1.7.10 

data.table 1.14 

readr 1.4.0 

DBI 1.1.1 

dbplyr 2.1.0 

RMySQL 0.10.20 

purrr 0.3.4 

forcats 0.5.1 

readxl 1.3.1 

tibble 3.1.0 

mice 3.13.0 

partykit 1.2-13 

broom 0.7.5 

rgdal 1.5-23 

sp 1.4-5 

scales 1.1.1 

dplyr 1.0.5 

plotrix 3.8-1 

glmnet 4.1-1 
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knitr 1.31 

rmarkdown 2.7 

ROCR 1.0-11 

glue 1.4.2 

gt 0.2.2 

mlr 2.19.0 

pROC 1.17.0.1 

libcoin 1.0-8 

ggthemes 4.2.4 

leaflet 2.0.4.1 

ggplot2 3.3.3 

ggrepel 0.9.1 

Mvtnorm 1.1-1 

ParamHelpers 1.14 
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